Abstract

We analyze nonlinear excitation in a four-level atomic system that exhibits electromagnetically induced transparency induced by a strong coupling laser. We show that, at the line center of the atomic transition, the nondegenerate two-photon excitation in the dressed states can be enhanced by constructive quantum interference in two excitation paths while the linear absorption is inhibited by destructive quantum interference. We report an experimental study of the interference-enhanced two-photon absorption in a multilevel Λ-type rubidium atomic system and compare the measurements with the theoretical calculations.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Arimondo, “Coherent population trapping in laser spectroscopy,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1996), Vol. XXXV, pp. 257–354.
  2. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [CrossRef] [PubMed]
  3. J. Eberly, M. L. Pons, and H. R. Haq, “Dressed-field pulses in an absorbing medium,” Phys. Rev. Lett. 66, 2593–2596 (1994).
  4. K. Hakuta, L. Marmet, and B. P. Soicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
    [CrossRef] [PubMed]
  5. M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991); M. O. Scully and M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360–1363 (1992).
    [CrossRef] [PubMed]
  6. M. Jain, A. J. Merriam, K. Kasapi, G. Y. Yin, and S. E. Harris, “Elimination of optical self-focusing by population trapping,” Phys. Rev. Lett. 75, 4385–4388 (1995).
    [CrossRef] [PubMed]
  7. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
    [CrossRef] [PubMed]
  8. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
    [CrossRef] [PubMed]
  9. O. Kocharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992).
    [CrossRef]
  10. M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191–201 (1992).
    [CrossRef]
  11. P. R. Hemmer, D. P. Kats, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20, 982–984 (1995).
    [CrossRef] [PubMed]
  12. Y. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21, 1064–1065 (1996).
    [CrossRef] [PubMed]
  13. A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).
    [CrossRef]
  14. A. Kasapi, “Enhanced isotope discrimination using electromagnetically induced transparency,” Phys. Rev. Lett. 77, 1035–1038 (1996).
    [CrossRef] [PubMed]
  15. M. D. Lukin, M. Fleischhauer, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
    [CrossRef]
  16. S. Wielandy and A. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81, 3359–3362 (1998).
    [CrossRef]
  17. A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optically written waveguide in an atomic vapor,” Phys. Rev. Lett. 82, 1438–1401 (1999).
    [CrossRef]
  18. L. V. Hau, S. E. Harris, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–595 (1999).
    [CrossRef]
  19. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
    [CrossRef]
  20. G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
    [CrossRef] [PubMed]
  21. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
    [CrossRef]
  22. C. Chen, Y. Y. Yin, and D. S. Elliott, “Interference between optical transitions,” Phys. Rev. Lett. 64, 507–510 (1990); C. Chen and D. S. Elliott, “Measurements of optical phase variations using interfering multiphoton ionization processes,” Phys. Rev. Lett. 65, 1737–1740 (1990).
    [CrossRef] [PubMed]
  23. Y. Q. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995).
    [CrossRef]

1999

A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optically written waveguide in an atomic vapor,” Phys. Rev. Lett. 82, 1438–1401 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–595 (1999).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

1998

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

S. Wielandy and A. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81, 3359–3362 (1998).
[CrossRef]

1997

A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).
[CrossRef]

M. D. Lukin, M. Fleischhauer, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
[CrossRef]

1996

Y. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21, 1064–1065 (1996).
[CrossRef] [PubMed]

A. Kasapi, “Enhanced isotope discrimination using electromagnetically induced transparency,” Phys. Rev. Lett. 77, 1035–1038 (1996).
[CrossRef] [PubMed]

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef] [PubMed]

1995

M. Jain, A. J. Merriam, K. Kasapi, G. Y. Yin, and S. E. Harris, “Elimination of optical self-focusing by population trapping,” Phys. Rev. Lett. 75, 4385–4388 (1995).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
[CrossRef] [PubMed]

P. R. Hemmer, D. P. Kats, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20, 982–984 (1995).
[CrossRef] [PubMed]

Y. Q. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995).
[CrossRef]

1994

J. Eberly, M. L. Pons, and H. R. Haq, “Dressed-field pulses in an absorbing medium,” Phys. Rev. Lett. 66, 2593–2596 (1994).

1992

O. Kocharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992).
[CrossRef]

M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191–201 (1992).
[CrossRef]

1991

K. Hakuta, L. Marmet, and B. P. Soicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Agarwal, G. S.

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–595 (1999).
[CrossRef]

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Cronin-Golomb, M.

Deutsch, M.

A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).
[CrossRef]

Donoghue, J.

Dun, M. H.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
[CrossRef] [PubMed]

Eberly, J.

J. Eberly, M. L. Pons, and H. R. Haq, “Dressed-field pulses in an absorbing medium,” Phys. Rev. Lett. 66, 2593–2596 (1994).

Fleischhauer, M.

M. D. Lukin, M. Fleischhauer, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
[CrossRef]

Friese, M. E. J.

A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optically written waveguide in an atomic vapor,” Phys. Rev. Lett. 82, 1438–1401 (1999).
[CrossRef]

Fry, E.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Fulton, D. J.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
[CrossRef] [PubMed]

Gaeta, A.

S. Wielandy and A. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81, 3359–3362 (1998).
[CrossRef]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Hakuta, K.

K. Hakuta, L. Marmet, and B. P. Soicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
[CrossRef] [PubMed]

Haq, H. R.

J. Eberly, M. L. Pons, and H. R. Haq, “Dressed-field pulses in an absorbing medium,” Phys. Rev. Lett. 66, 2593–2596 (1994).

Harris, S. E.

L. V. Hau, S. E. Harris, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–595 (1999).
[CrossRef]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

M. Jain, A. J. Merriam, K. Kasapi, G. Y. Yin, and S. E. Harris, “Elimination of optical self-focusing by population trapping,” Phys. Rev. Lett. 75, 4385–4388 (1995).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Harshawardhan, W.

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef] [PubMed]

Hau, L. V.

L. V. Hau, S. E. Harris, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–595 (1999).
[CrossRef]

Heckenberg, N. R.

A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optically written waveguide in an atomic vapor,” Phys. Rev. Lett. 82, 1438–1401 (1999).
[CrossRef]

Hemmer, P. R.

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Imamoglu, A.

A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).
[CrossRef]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Jain, M.

M. Jain, A. J. Merriam, K. Kasapi, G. Y. Yin, and S. E. Harris, “Elimination of optical self-focusing by population trapping,” Phys. Rev. Lett. 75, 4385–4388 (1995).
[CrossRef] [PubMed]

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Kasapi, A.

A. Kasapi, “Enhanced isotope discrimination using electromagnetically induced transparency,” Phys. Rev. Lett. 77, 1035–1038 (1996).
[CrossRef] [PubMed]

Kasapi, K.

M. Jain, A. J. Merriam, K. Kasapi, G. Y. Yin, and S. E. Harris, “Elimination of optical self-focusing by population trapping,” Phys. Rev. Lett. 75, 4385–4388 (1995).
[CrossRef] [PubMed]

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Kats, D. P.

Kocharovskaya, O.

O. Kocharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992).
[CrossRef]

Kumar, P.

Li, Y.

Y. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21, 1064–1065 (1996).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Li, Y. Q.

Y. Q. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995).
[CrossRef]

Lukin, M. D.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

M. D. Lukin, M. Fleischhauer, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
[CrossRef]

Marmet, L.

K. Hakuta, L. Marmet, and B. P. Soicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
[CrossRef] [PubMed]

Merriam, A. J.

M. Jain, A. J. Merriam, K. Kasapi, G. Y. Yin, and S. E. Harris, “Elimination of optical self-focusing by population trapping,” Phys. Rev. Lett. 75, 4385–4388 (1995).
[CrossRef] [PubMed]

Moseley, R. R.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
[CrossRef] [PubMed]

Pons, M. L.

J. Eberly, M. L. Pons, and H. R. Haq, “Dressed-field pulses in an absorbing medium,” Phys. Rev. Lett. 66, 2593–2596 (1994).

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Rubinsztein-Dunlop, H.

A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optically written waveguide in an atomic vapor,” Phys. Rev. Lett. 82, 1438–1401 (1999).
[CrossRef]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Schmidt, H.

A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).
[CrossRef]

Scully, M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Scully, M. O.

M. D. Lukin, M. Fleischhauer, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
[CrossRef]

M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191–201 (1992).
[CrossRef]

Shahriar, M. S.

Shepherd, S.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
[CrossRef] [PubMed]

Sinclair, B. D.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
[CrossRef] [PubMed]

Soicheff, B. P.

K. Hakuta, L. Marmet, and B. P. Soicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
[CrossRef] [PubMed]

Truscott, A. G.

A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optically written waveguide in an atomic vapor,” Phys. Rev. Lett. 82, 1438–1401 (1999).
[CrossRef]

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Wielandy, S.

S. Wielandy and A. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81, 3359–3362 (1998).
[CrossRef]

Woods, G.

A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).
[CrossRef]

Xiao, M.

Y. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21, 1064–1065 (1996).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Y. Q. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995).
[CrossRef]

Yamamoto, Y.

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

Yin, G. Y.

M. Jain, A. J. Merriam, K. Kasapi, G. Y. Yin, and S. E. Harris, “Elimination of optical self-focusing by population trapping,” Phys. Rev. Lett. 75, 4385–4388 (1995).
[CrossRef] [PubMed]

Zibrov, A. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–595 (1999).
[CrossRef]

Opt. Lett.

Phys. Rep.

O. Kocharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992).
[CrossRef]

M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191–201 (1992).
[CrossRef]

Phys. Rev. A

Y. Q. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995).
[CrossRef]

Phys. Rev. Lett.

M. Jain, A. J. Merriam, K. Kasapi, G. Y. Yin, and S. E. Harris, “Elimination of optical self-focusing by population trapping,” Phys. Rev. Lett. 75, 4385–4388 (1995).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dun, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670–673 (1995).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

J. Eberly, M. L. Pons, and H. R. Haq, “Dressed-field pulses in an absorbing medium,” Phys. Rev. Lett. 66, 2593–2596 (1994).

K. Hakuta, L. Marmet, and B. P. Soicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596–599 (1991).
[CrossRef] [PubMed]

A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).
[CrossRef]

A. Kasapi, “Enhanced isotope discrimination using electromagnetically induced transparency,” Phys. Rev. Lett. 77, 1035–1038 (1996).
[CrossRef] [PubMed]

M. D. Lukin, M. Fleischhauer, and M. O. Scully, “Spectroscopy in dense coherent media: line narrowing and interference effects,” Phys. Rev. Lett. 79, 2959–2962 (1997).
[CrossRef]

S. Wielandy and A. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81, 3359–3362 (1998).
[CrossRef]

A. G. Truscott, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optically written waveguide in an atomic vapor,” Phys. Rev. Lett. 82, 1438–1401 (1999).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
[CrossRef]

G. S. Agarwal and W. Harshawardhan, “Inhibition and enhancement of two photon absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef] [PubMed]

S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

Other

C. Chen, Y. Y. Yin, and D. S. Elliott, “Interference between optical transitions,” Phys. Rev. Lett. 64, 507–510 (1990); C. Chen and D. S. Elliott, “Measurements of optical phase variations using interfering multiphoton ionization processes,” Phys. Rev. Lett. 65, 1737–1740 (1990).
[CrossRef] [PubMed]

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991); M. O. Scully and M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360–1363 (1992).
[CrossRef] [PubMed]

E. Arimondo, “Coherent population trapping in laser spectroscopy,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1996), Vol. XXXV, pp. 257–354.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Four-level atomic system and laser coupling scheme. (b) Dressed-state picture, showing two-photon excitation by quantum interference between the two excitation paths.

Fig. 2
Fig. 2

(a) Calculated probe absorption coefficient, -Im(ρ23), versus probe detuning Δ for the homogeneous four-level system shown in Fig. 1. The central peak at Δ=0 (solid curve) corresponds to the two-photon absorption induced by constructive quantum interference [Fig. 1(b)]. The two peaks near Δ=±10γ31 are the Autler–Townes doublet. (b) Excited-state population ρ44 from two-photon excitation for the homogeneous four-level system. The two peaks near Δ=±10γ31 are from the stepwise excitations |2|-|4 and |2|+|4, respectively. The central peak is induced by constructive interference between the two excitation paths shown in Fig. 1(b). The relevant parameters are Δ1=Δ2=0, γ32=1.1γ31, γ41=1.15γ31, γ42=1.2γ31, Ω=10γ31, Ω=5γ31, and g=0.1γ31.

Fig. 3
Fig. 3

(a) Probe absorption coefficient -Im(ρ23) and (b) pump laser absorption coefficient -Im(ρ14) versus probe detuning Δ for the homogeneous four-level system. The relevant parameters are Δ1=Δ2=0, γ32=1.1γ31, γ41=1.15γ31, and γ42=1.2γ31. Ω=10γ31, with Ω=5γ31 and g=2γ31 for the solid lines and Ω=5γ31 and g=0.1γ31 for the dashed lines. Comparison of (a) and (b) indicates that the two peaks near Δ=±10γ31 are due mainly to one-photon absorption |2|± and saturate quickly as the probe intensity increases. Pump laser absorption coefficient Im(ρ14) contributes to two-photon absorption: Stepwise two-photon absorption occurs at Δ=±10γ31 and saturates more quickly than the interference-enhanced two-photon absorption at Δ=0 as the probe laser’s intensity increases.

Fig. 4
Fig. 4

Probe absorption coefficient -Im(ρ23) versus Δ for the four-level system with an inhomogeneous Doppler width Γd=100γ31. Other parameters are the same as those in Fig. 2. With the pump laser on (Ω=5γ31), two-photon absorption enhanced by constructive interference occurs at Δ=0, which reduces the EIT at line center. The spectral line profile is unchanged elsewhere.

Fig. 5
Fig. 5

(a), (b) Energy-level structures and laser coupling schemes of the  87Rb D1 and D2 transitions used in the experiments. (c) Schematic drawing of the experimental apparatus: M’s, mirrors; P’s, polarizers; λ/2s, half-wave plates; D, photodiode detector; PC, personal computer. The pump laser (DL2) was chopped at 1 kHz, and we used lock-in detection to observe the effect of the interference-induced two-photon absorption on the probe laser transmission.

Fig. 6
Fig. 6

Measured probe absorption versus probe detuning Δ for the  87Rb system shown in Fig. 5(a). (a) Probe absorption spectrum without the pump laser, showing a normal EIT line profile with the transparent window at zero detuning. The spectrum was recorded without the lock-in amplifier. (b) Relative probe absorption spectrum with the pump laser on, which shows the difference in probe absorption with and without the pump laser. The pump laser was chopped at 1 kHz, and the probe signal was recorded with the lock-in amplifier. The central peak at zero detuning corresponds to two-photon absorption induced by constructive quantum interference. Note the different frequency scales in (a) and (b).

Fig. 7
Fig. 7

Measured probe absorption versus probe detuning Δ for the  87Rb system shown in Fig. 5(b). (a) Probe absorption spectrum without the pump laser, showing a normal EIT line profile with the transparent window at the zero detuning. The spectrum was recorded without the lock-in amplifier. (b) Relative probe absorption spectrum with the pump laser on, which shows the difference in the probe absorption with and without the pump laser. The pump laser was chopped at 1 kHz, and the probe signal was recorded with the lock-in amplifier. The central peak at zero detuning corresponds to two-photon absorption induced by constructive quantum interference. Note the different frequency scales in (a) and (b).

Fig. 8
Fig. 8

Calculated probe absorption spectra for the four-level system including Doppler broadening. The two spectra in (a) have essentially the same line profiles, except for a slightly reduced transparency at line center Δ=0 for the spectrum with Ω=3γ31, demonstrating the enhanced two-photon excitation from constructive interference. (b) Difference of the two spectra (the spectrum with Ω=3γ31 subtracts the spectrum Ω=0), which is consistent with the experimental measurements shown in Figs. 7(b) and 8(b). The relevant parameters are Δ1=Δ2=0, γ32=1.05γ31, γ41=1.1γ31, γ42=1.15γ31, and Ω=25γ31, and the Doppler width is 200γ31.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

dρ11dt=γ31ρ33+γ41ρ44+iΩ(ρ31-ρ13)+iΩ(ρ41-ρ14),
dρ22dt=γ32ρ33+γ42ρ44+ig(ρ32-ρ23),
dρ33dt=-(γ31+γ32)ρ33+iΩ(ρ13-ρ31)+ig(ρ23-ρ32),
dρ44dt=-(γ41+γ42)ρ44+iΩ(ρ14-ρ41),
dρ12dt=-i(Δ1-Δ)ρ12-igρ13+iΩρ32+iΩρ42,
dρ13dt=-γ31+γ322+iΔ1ρ13-igρ12+iΩ(ρ33-ρ11)+iΩρ43,
dρ14dt=-γ41+γ422+iΔ2ρ14+iΩ(ρ44-ρ11)+iΩρ34,
dρ23dt=-γ31+γ322+iΔρ23+ig(ρ33-ρ22)-iΩρ21,
dρ24dt=-γ41+γ422+i(Δ+Δ2-Δ1)ρ24-iΩρ21+igρ34,
dρ34dt=-γ31+γ32+γ41+γ422+i(Δ2-Δ1)ρ34-iΩρ31+iΩρ14+igρ24.
ρ44=4g2Ω2Ω2(γ41+γ42)2,
ρ22=1-4g2Ω2(γ32+2γ41)Ω2γ32(γ41+γ42)21,
ρ11=ρ33=4g2Ω2γ41Ω2γ32(γ41+γ42)2,
ρ23=-i 2gΩ2Ω2(γ41+γ42),
ρ14=-i 2Ωg2Ω2(γ41+γ42),
ρ24=i 2ΩgΩ(γ41+γ42).
P22π2|d·Ep|--|d·Ea|4E--ωp+2|d·Ep|++|d·Ea|4E+-ωp2×δ(E42-ωp-ωa).
P2=2π22|d·Ep|31|d·Ea|4Ω2×δ(E42-ωp-ωa)g2Ω2Ω2.
P12π2|d·Ep|-E--ωp+2|d·Ep|+E+-ωp2=2π2|d·Ep|3-Ω+2|d·Ep|3Ω2=0.

Metrics