Abstract

A new technique for measuring the electro-optic coefficient of nonlinear optical polymer is described. In an attenuated-total-reflection experiment the refractive index of the poled polymer is changed because of the Pockels effect. This change causes a shift of the angular position of the surface plasmon modes that corresponds to a change in reflectivity at a fixed angle. By measuring the change of the light reflectivity at the properly chosen angle one can calculate the electro-optic coefficient of the poled polymer. Compared with other, conventional methods, here the electro-optic coefficients are given in a simpler form and the required parameters are easier to measure. The commonly used lock-in amplifier is not required. This technique is a highly sensitive method for measuring the electro-optic coefficient because of the newly chosen working interior angle for which a tiny change in the refractive index leads to a large change in reflectivity.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Burzynski, B. P. Singh, P. N. Prasad, R. Zanoni, and G. I. Stegeman, “Nonlinear optical processes in a polymer waveguide: grating coupler measurements of electronic and thermal nonlinearities,” Appl. Phys. Lett. 53, 2011–2013 (1988).
    [CrossRef]
  2. Y. Jiang, Z. Cao, and Y. Cheng, “Digital measurements of propagation loss in optical organic polymer waveguides,” in Integrated Optoelectronics II, R. T. Chen and B. Zhou, eds., Proc. SPIE 3551, 87–91 (1998).
    [CrossRef]
  3. M. Sinclair, D. McBranch, D. Moses, and A. J. Heeger, “Time-resolved waveguide modulation of a conjugated polymer,” Appl. Phys. Lett. 53, 2374–2376 (1988).
    [CrossRef]
  4. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
    [CrossRef]
  5. F. Michelotti, T. Gabler, H. Horhöld, R. Waldhausl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
    [CrossRef]
  6. R. Blum, M. Sprave, J. Sablotny, and M. Eich, “High-electric-field poling of nonlinear optical polymers,” J. Opt. Soc. Am. B 15, 318–328 (1998).
    [CrossRef]
  7. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–39 (1994).
    [CrossRef]
  8. J. S. Schildkraut, “Determination of the electro-optic coeffi-cient of a poled polymer film,” Appl. Opt. 29, 2839–2841 (1990).
    [CrossRef] [PubMed]
  9. F. Wang, E. Furman, and G. H. Haertling, “Electro-optic measurements of thin-film materials by means of reflection differential ellipsometry,” J. Appl. Phys. 78, 9–15 (1995).
    [CrossRef]
  10. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
    [CrossRef]
  11. F. Qiu, K. Misawa, X. Cheng, A. Ueki, and T. Kobayashi, “Determination of complex tensor components of electro-optic constants of dye-doped polymer film with a Mach–Zehnder interferometer,” Appl. Phys. Lett. 65, 1605–1607 (1994).
    [CrossRef]
  12. Ph. Pre⁁tre, L. M. Wu, R. A. Hill, and A. Knoesen, “Characterization of electro-optic polymer films by use of decal-deposited reflection Fabry–Perot microcavities,” J. Opt. Soc. Am. B 15, 379–392 (1998).
    [CrossRef]
  13. Y. Wang and H. J. Simon, “Electrooptic reflection with surface plasmons,” Opt. Quantum Electron. 25, 925–933 (1993).
    [CrossRef]
  14. H. G. Winfried, G. Horsthuis, and J. M. Krijnen, “Simple measuring method for electro-optic coefficients in poled polymer waveguides,” Appl. Phys. Lett. 55, 616–618 (1989).
    [CrossRef]
  15. E. V. Tomme, P. V. Daele, R. G. Baets, and P. E. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778–786 (1991).
    [CrossRef]
  16. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 7.
  17. I. P. Kaminow, W. L. Mamel, and H. P. Weber, “Metal-clad optical waveguides: analytical and experimental study,” Appl. Opt. 13, 396–405 (1974).
    [CrossRef] [PubMed]
  18. V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
    [CrossRef]

1998 (3)

1997 (1)

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

1995 (2)

F. Michelotti, T. Gabler, H. Horhöld, R. Waldhausl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
[CrossRef]

F. Wang, E. Furman, and G. H. Haertling, “Electro-optic measurements of thin-film materials by means of reflection differential ellipsometry,” J. Appl. Phys. 78, 9–15 (1995).
[CrossRef]

1994 (2)

F. Qiu, K. Misawa, X. Cheng, A. Ueki, and T. Kobayashi, “Determination of complex tensor components of electro-optic constants of dye-doped polymer film with a Mach–Zehnder interferometer,” Appl. Phys. Lett. 65, 1605–1607 (1994).
[CrossRef]

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–39 (1994).
[CrossRef]

1993 (1)

Y. Wang and H. J. Simon, “Electrooptic reflection with surface plasmons,” Opt. Quantum Electron. 25, 925–933 (1993).
[CrossRef]

1991 (1)

E. V. Tomme, P. V. Daele, R. G. Baets, and P. E. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778–786 (1991).
[CrossRef]

1990 (2)

J. S. Schildkraut, “Determination of the electro-optic coeffi-cient of a poled polymer film,” Appl. Opt. 29, 2839–2841 (1990).
[CrossRef] [PubMed]

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

1989 (2)

H. G. Winfried, G. Horsthuis, and J. M. Krijnen, “Simple measuring method for electro-optic coefficients in poled polymer waveguides,” Appl. Phys. Lett. 55, 616–618 (1989).
[CrossRef]

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
[CrossRef]

1988 (2)

R. Burzynski, B. P. Singh, P. N. Prasad, R. Zanoni, and G. I. Stegeman, “Nonlinear optical processes in a polymer waveguide: grating coupler measurements of electronic and thermal nonlinearities,” Appl. Phys. Lett. 53, 2011–2013 (1988).
[CrossRef]

M. Sinclair, D. McBranch, D. Moses, and A. J. Heeger, “Time-resolved waveguide modulation of a conjugated polymer,” Appl. Phys. Lett. 53, 2374–2376 (1988).
[CrossRef]

1974 (1)

Baets, R. G.

E. V. Tomme, P. V. Daele, R. G. Baets, and P. E. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778–786 (1991).
[CrossRef]

Blum, R.

Bräuer, A.

F. Michelotti, T. Gabler, H. Horhöld, R. Waldhausl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
[CrossRef]

Burland, D. M.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–39 (1994).
[CrossRef]

Burzynski, R.

R. Burzynski, B. P. Singh, P. N. Prasad, R. Zanoni, and G. I. Stegeman, “Nonlinear optical processes in a polymer waveguide: grating coupler measurements of electronic and thermal nonlinearities,” Appl. Phys. Lett. 53, 2011–2013 (1988).
[CrossRef]

Cao, Z.

Y. Jiang, Z. Cao, and Y. Cheng, “Digital measurements of propagation loss in optical organic polymer waveguides,” in Integrated Optoelectronics II, R. T. Chen and B. Zhou, eds., Proc. SPIE 3551, 87–91 (1998).
[CrossRef]

Chastaing, E.

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
[CrossRef]

Chen, A.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Chen, D.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Cheng, X.

F. Qiu, K. Misawa, X. Cheng, A. Ueki, and T. Kobayashi, “Determination of complex tensor components of electro-optic constants of dye-doped polymer film with a Mach–Zehnder interferometer,” Appl. Phys. Lett. 65, 1605–1607 (1994).
[CrossRef]

Cheng, Y.

Y. Jiang, Z. Cao, and Y. Cheng, “Digital measurements of propagation loss in optical organic polymer waveguides,” in Integrated Optoelectronics II, R. T. Chen and B. Zhou, eds., Proc. SPIE 3551, 87–91 (1998).
[CrossRef]

Daele, P. V.

E. V. Tomme, P. V. Daele, R. G. Baets, and P. E. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778–786 (1991).
[CrossRef]

Dalton, L. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Dentan, V.

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
[CrossRef]

Dumont, M.

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
[CrossRef]

Eich, M.

Fetterman, H. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Furman, E.

F. Wang, E. Furman, and G. H. Haertling, “Electro-optic measurements of thin-film materials by means of reflection differential ellipsometry,” J. Appl. Phys. 78, 9–15 (1995).
[CrossRef]

Gabler, T.

F. Michelotti, T. Gabler, H. Horhöld, R. Waldhausl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
[CrossRef]

Haertling, G. H.

F. Wang, E. Furman, and G. H. Haertling, “Electro-optic measurements of thin-film materials by means of reflection differential ellipsometry,” J. Appl. Phys. 78, 9–15 (1995).
[CrossRef]

Heeger, A. J.

M. Sinclair, D. McBranch, D. Moses, and A. J. Heeger, “Time-resolved waveguide modulation of a conjugated polymer,” Appl. Phys. Lett. 53, 2374–2376 (1988).
[CrossRef]

Hill, R. A.

Horhöld, H.

F. Michelotti, T. Gabler, H. Horhöld, R. Waldhausl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
[CrossRef]

Horsthuis, G.

H. G. Winfried, G. Horsthuis, and J. M. Krijnen, “Simple measuring method for electro-optic coefficients in poled polymer waveguides,” Appl. Phys. Lett. 55, 616–618 (1989).
[CrossRef]

Jiang, Y.

Y. Jiang, Z. Cao, and Y. Cheng, “Digital measurements of propagation loss in optical organic polymer waveguides,” in Integrated Optoelectronics II, R. T. Chen and B. Zhou, eds., Proc. SPIE 3551, 87–91 (1998).
[CrossRef]

Kaminow, I. P.

Knoesen, A.

Kobayashi, T.

F. Qiu, K. Misawa, X. Cheng, A. Ueki, and T. Kobayashi, “Determination of complex tensor components of electro-optic constants of dye-doped polymer film with a Mach–Zehnder interferometer,” Appl. Phys. Lett. 65, 1605–1607 (1994).
[CrossRef]

Krijnen, J. M.

H. G. Winfried, G. Horsthuis, and J. M. Krijnen, “Simple measuring method for electro-optic coefficients in poled polymer waveguides,” Appl. Phys. Lett. 55, 616–618 (1989).
[CrossRef]

Lagasse, P. E.

E. V. Tomme, P. V. Daele, R. G. Baets, and P. E. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778–786 (1991).
[CrossRef]

Levy, Y.

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
[CrossRef]

Mamel, W. L.

Man, H. T.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

McBranch, D.

M. Sinclair, D. McBranch, D. Moses, and A. J. Heeger, “Time-resolved waveguide modulation of a conjugated polymer,” Appl. Phys. Lett. 53, 2374–2376 (1988).
[CrossRef]

Michelotti, F.

F. Michelotti, T. Gabler, H. Horhöld, R. Waldhausl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
[CrossRef]

Miller, R. D.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–39 (1994).
[CrossRef]

Misawa, K.

F. Qiu, K. Misawa, X. Cheng, A. Ueki, and T. Kobayashi, “Determination of complex tensor components of electro-optic constants of dye-doped polymer film with a Mach–Zehnder interferometer,” Appl. Phys. Lett. 65, 1605–1607 (1994).
[CrossRef]

Moses, D.

M. Sinclair, D. McBranch, D. Moses, and A. J. Heeger, “Time-resolved waveguide modulation of a conjugated polymer,” Appl. Phys. Lett. 53, 2374–2376 (1988).
[CrossRef]

Prasad, P. N.

R. Burzynski, B. P. Singh, P. N. Prasad, R. Zanoni, and G. I. Stegeman, “Nonlinear optical processes in a polymer waveguide: grating coupler measurements of electronic and thermal nonlinearities,” Appl. Phys. Lett. 53, 2011–2013 (1988).
[CrossRef]

Pre?tre, Ph.

Qiu, F.

F. Qiu, K. Misawa, X. Cheng, A. Ueki, and T. Kobayashi, “Determination of complex tensor components of electro-optic constants of dye-doped polymer film with a Mach–Zehnder interferometer,” Appl. Phys. Lett. 65, 1605–1607 (1994).
[CrossRef]

Robin, P.

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
[CrossRef]

Sablotny, J.

Schildkraut, J. S.

Shi, Y.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Simon, H. J.

Y. Wang and H. J. Simon, “Electrooptic reflection with surface plasmons,” Opt. Quantum Electron. 25, 925–933 (1993).
[CrossRef]

Sinclair, M.

M. Sinclair, D. McBranch, D. Moses, and A. J. Heeger, “Time-resolved waveguide modulation of a conjugated polymer,” Appl. Phys. Lett. 53, 2374–2376 (1988).
[CrossRef]

Singh, B. P.

R. Burzynski, B. P. Singh, P. N. Prasad, R. Zanoni, and G. I. Stegeman, “Nonlinear optical processes in a polymer waveguide: grating coupler measurements of electronic and thermal nonlinearities,” Appl. Phys. Lett. 53, 2011–2013 (1988).
[CrossRef]

Sprave, M.

Stegeman, G. I.

R. Burzynski, B. P. Singh, P. N. Prasad, R. Zanoni, and G. I. Stegeman, “Nonlinear optical processes in a polymer waveguide: grating coupler measurements of electronic and thermal nonlinearities,” Appl. Phys. Lett. 53, 2011–2013 (1988).
[CrossRef]

Steier, W. H.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Teng, C. C.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

Tomme, E. V.

E. V. Tomme, P. V. Daele, R. G. Baets, and P. E. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778–786 (1991).
[CrossRef]

Ueki, A.

F. Qiu, K. Misawa, X. Cheng, A. Ueki, and T. Kobayashi, “Determination of complex tensor components of electro-optic constants of dye-doped polymer film with a Mach–Zehnder interferometer,” Appl. Phys. Lett. 65, 1605–1607 (1994).
[CrossRef]

Waldhausl, R.

F. Michelotti, T. Gabler, H. Horhöld, R. Waldhausl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
[CrossRef]

Walsh, C. A.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–39 (1994).
[CrossRef]

Wang, F.

F. Wang, E. Furman, and G. H. Haertling, “Electro-optic measurements of thin-film materials by means of reflection differential ellipsometry,” J. Appl. Phys. 78, 9–15 (1995).
[CrossRef]

Wang, W.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Wang, Y.

Y. Wang and H. J. Simon, “Electrooptic reflection with surface plasmons,” Opt. Quantum Electron. 25, 925–933 (1993).
[CrossRef]

Weber, H. P.

Winfried, H. G.

H. G. Winfried, G. Horsthuis, and J. M. Krijnen, “Simple measuring method for electro-optic coefficients in poled polymer waveguides,” Appl. Phys. Lett. 55, 616–618 (1989).
[CrossRef]

Wu, L. M.

Zanoni, R.

R. Burzynski, B. P. Singh, P. N. Prasad, R. Zanoni, and G. I. Stegeman, “Nonlinear optical processes in a polymer waveguide: grating coupler measurements of electronic and thermal nonlinearities,” Appl. Phys. Lett. 53, 2011–2013 (1988).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (6)

R. Burzynski, B. P. Singh, P. N. Prasad, R. Zanoni, and G. I. Stegeman, “Nonlinear optical processes in a polymer waveguide: grating coupler measurements of electronic and thermal nonlinearities,” Appl. Phys. Lett. 53, 2011–2013 (1988).
[CrossRef]

M. Sinclair, D. McBranch, D. Moses, and A. J. Heeger, “Time-resolved waveguide modulation of a conjugated polymer,” Appl. Phys. Lett. 53, 2374–2376 (1988).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

F. Qiu, K. Misawa, X. Cheng, A. Ueki, and T. Kobayashi, “Determination of complex tensor components of electro-optic constants of dye-doped polymer film with a Mach–Zehnder interferometer,” Appl. Phys. Lett. 65, 1605–1607 (1994).
[CrossRef]

H. G. Winfried, G. Horsthuis, and J. M. Krijnen, “Simple measuring method for electro-optic coefficients in poled polymer waveguides,” Appl. Phys. Lett. 55, 616–618 (1989).
[CrossRef]

Chem. Rev. (1)

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–39 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. V. Tomme, P. V. Daele, R. G. Baets, and P. E. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778–786 (1991).
[CrossRef]

J. Appl. Phys. (1)

F. Wang, E. Furman, and G. H. Haertling, “Electro-optic measurements of thin-film materials by means of reflection differential ellipsometry,” J. Appl. Phys. 78, 9–15 (1995).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
[CrossRef]

F. Michelotti, T. Gabler, H. Horhöld, R. Waldhausl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
[CrossRef]

Opt. Quantum Electron. (1)

Y. Wang and H. J. Simon, “Electrooptic reflection with surface plasmons,” Opt. Quantum Electron. 25, 925–933 (1993).
[CrossRef]

Proc. SPIE (1)

Y. Jiang, Z. Cao, and Y. Cheng, “Digital measurements of propagation loss in optical organic polymer waveguides,” in Integrated Optoelectronics II, R. T. Chen and B. Zhou, eds., Proc. SPIE 3551, 87–91 (1998).
[CrossRef]

Other (1)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sample geometry with the following typical parameters: 1, high index prism, n1=1.750; 2, silver film, ε2=-18+i0.47 (632.8 nm) and d2=55 nm; 3, poled polymer, n3=1.680 and d3=1.0 µm; 4, polymer buffer, n4=1.574 and d4=3.0 µm; and 5, base silver film.

Fig. 2
Fig. 2

Theoretical ATR spectrum. The wavelength is 632.8 nm. For the solid curve, n3=1.6800; for the dashed curve, n3=1.6801. This figure is a simulation of how the applied electric field affects the whole ATR spectrum.

Fig. 3
Fig. 3

Relationship between neff and n3 in Eq. (1). Solid lines, TE modes; dotted lines, TM modes.

Fig. 4
Fig. 4

Schematic of the experiment: ω, angular velocity of the sample; 2ω, angular velocity of the detector. A/D, analog to digital.

Tables (1)

Tables Icon

Table 1 Results of Calculation of dneff/dn3 in Eq. (1)

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δθ=dθdn3Δn3=dθdneffdneffdn3Δn3,
[γ]=00γ1300γ1300γ330γ130γ1300000,
1no2+γ13Ex2+1no2+γ13Ey2
+1ne2+γ33Ez2=1.
nx=no-½no3γ13E,
ny=no-½no3γ13E,
nz=ne-½ne3γ33E.
Δn3=-½n33γi3E,
dneff/dn31.
Δθ=-γi3n332n1 cos θE.
γi3=-2n1 cos θkn33EΔI.

Metrics