Abstract

The sphere method is used for the direct measurement of sum- and difference-frequency generation phase matched in the principal planes of KTiOAsO4,RbTiOAsO4, and CsTiOAsO4, including the tuning curves of 1.064-µm-pumped OPO’s emitting between 3 and 5 µm. The nonlinear least-squares fitting of our experimental data leads to refined dispersion equations of the principal refractive indices; the resulting dual-oscillator form equations are valid over the complete transparency range of the three studied materials.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. Powers, S. Ramakrishna, C. L. Tang, and L. K. Cheng, “Optical parametric oscillation with KTiOAsO4,” Opt. Lett. 18, 1171–1173 (1993).
    [CrossRef]
  2. P. E. Powers, C. L. Tang, and L. K. Cheng, “High-repetition-rate femtosecond optical parametric oscillator based on RbTiOAsO4,” Opt. Lett. 19, 1439–1441 (1994).
    [CrossRef] [PubMed]
  3. D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Ti:sapphire-pumped femtosecond optical parametric oscillator based on KTiOPO4 and RbTiOAsO4,” Appl. Phys. B: Lasers Opt. 60, 437–442 (1995).
    [CrossRef]
  4. P. E. Powers, C. L. Tang, and L. K. Cheng, “High-repetition-rate femtosecond optical parametric oscillator based on CsTiOAsO4,” Opt. Lett. 19, 37–39 (1994).
    [CrossRef] [PubMed]
  5. W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C. 1993), pp. 430–432.
  6. D. L. Fenimore, K. L. Schepler, D. Zelmon, S. Kück, U. B. Ramabadran, P. Von Richter, and D. Small, “Rubidium titanyl arsenate difference-frequency generation and validation of new Sellmeier coefficients,” J. Opt. Soc. Am. B 13, 1935–1940 (1996).
    [CrossRef]
  7. D. L. Fenimore, K. L. Schepler, U. B. Ramabadran, and S. R. MacPherson, “Infrared corrected Sellmeier coefficients for potassium titanyl arsenate,” J. Opt. Soc. Am. B 12, 794–796 (1995).
    [CrossRef]
  8. G. T. Kennedy, D. T. Reid, A. Miller, M. Ebrahimzadeh, H. Karlsson, G. Arivdsson, and F. Laurell, “Near- to mid-infrared picosecond optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 23, 503–505 (1998).
    [CrossRef]
  9. B. Boulanger, J. P. Fève, B. Ménaert, and G. Marnier, “Methodology for optical studies of nonlinear crystals: application to the isomorph family KTiOPO4, KTiOAsO4, RbTiOAsO4, and CsTiOAsO4,” Pure Appl. Opt. 7, 239–256 (1998).
    [CrossRef]
  10. I. Rousseau, B. Boulanger, J. P. Fève, and O. Pacaud, “Extended sphere method for complete investigation of the phase-matching properties sum- and difference-frequency generation,” Appl. Opt. 38, 7406–7408 (1999).
    [CrossRef]
  11. G. Marnier, “Process for the flux synthesis of crystals of the KTiOPO4, potassium titanyl monophosphate type,” French patent FR 2585345 (January 30, 1987); U.S. patent 4746396 (May 24, 1988).
  12. G. M. Loiacono, D. N. Loiacono, and R. A. Stolzenberger, “Crystal growth and characterization of ferroelectric CsTiOAsO4,” J. Cryst. Growth 131, 323–330 (1993).
    [CrossRef]
  13. B. Boulanger and G. Marnier, “Field factor calculation for the study of the relationships between all 3-wave non-linear optical interactions in uniaxial and biaxial acentric crystals,” J. Phys.: Condens. Matter 3, 8327–8350 (1991).
  14. D. A. Roberts, “Dispersion equations for nonlinear optical crystals: KDP, AgGaSe2, and AgGaS2,” Appl. Opt. 35, 4677–4688 (1996).
    [CrossRef] [PubMed]
  15. J. P. Fève, B. Boulanger, and G. Marnier, “Experimental study of internal and external conical refractions in KTP,” Opt. Commun. 105, 243–252 (1994).
    [CrossRef]
  16. L. T. Cheng, L. K. Cheng, and J. D. Bierlein, “Linear and nonlinear optical properties of the arsenate isomorphs of KTP,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals II, B. H. Chai, ed., Proc. SPIE 1863, 43–53 (1993).
    [CrossRef]
  17. G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
    [CrossRef]
  18. A. Khodjaoui, J. Mangin, and G. Marnier, “Dielectric properties of KTA and secondary optical absorption of KTA and KTP,” Nonlinear Opt. 6, 1–12 (1993).
  19. B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B: Lasers Opt. 67, 537–544 (1998).
    [CrossRef]

1999 (1)

1998 (3)

G. T. Kennedy, D. T. Reid, A. Miller, M. Ebrahimzadeh, H. Karlsson, G. Arivdsson, and F. Laurell, “Near- to mid-infrared picosecond optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 23, 503–505 (1998).
[CrossRef]

B. Boulanger, J. P. Fève, B. Ménaert, and G. Marnier, “Methodology for optical studies of nonlinear crystals: application to the isomorph family KTiOPO4, KTiOAsO4, RbTiOAsO4, and CsTiOAsO4,” Pure Appl. Opt. 7, 239–256 (1998).
[CrossRef]

B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B: Lasers Opt. 67, 537–544 (1998).
[CrossRef]

1996 (2)

1995 (2)

D. L. Fenimore, K. L. Schepler, U. B. Ramabadran, and S. R. MacPherson, “Infrared corrected Sellmeier coefficients for potassium titanyl arsenate,” J. Opt. Soc. Am. B 12, 794–796 (1995).
[CrossRef]

D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Ti:sapphire-pumped femtosecond optical parametric oscillator based on KTiOPO4 and RbTiOAsO4,” Appl. Phys. B: Lasers Opt. 60, 437–442 (1995).
[CrossRef]

1994 (3)

1993 (4)

P. E. Powers, S. Ramakrishna, C. L. Tang, and L. K. Cheng, “Optical parametric oscillation with KTiOAsO4,” Opt. Lett. 18, 1171–1173 (1993).
[CrossRef]

L. T. Cheng, L. K. Cheng, and J. D. Bierlein, “Linear and nonlinear optical properties of the arsenate isomorphs of KTP,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals II, B. H. Chai, ed., Proc. SPIE 1863, 43–53 (1993).
[CrossRef]

A. Khodjaoui, J. Mangin, and G. Marnier, “Dielectric properties of KTA and secondary optical absorption of KTA and KTP,” Nonlinear Opt. 6, 1–12 (1993).

G. M. Loiacono, D. N. Loiacono, and R. A. Stolzenberger, “Crystal growth and characterization of ferroelectric CsTiOAsO4,” J. Cryst. Growth 131, 323–330 (1993).
[CrossRef]

1991 (1)

B. Boulanger and G. Marnier, “Field factor calculation for the study of the relationships between all 3-wave non-linear optical interactions in uniaxial and biaxial acentric crystals,” J. Phys.: Condens. Matter 3, 8327–8350 (1991).

1988 (1)

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[CrossRef]

Arivdsson, G.

Bierlein, J. D.

L. T. Cheng, L. K. Cheng, and J. D. Bierlein, “Linear and nonlinear optical properties of the arsenate isomorphs of KTP,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals II, B. H. Chai, ed., Proc. SPIE 1863, 43–53 (1993).
[CrossRef]

Boulanger, B.

I. Rousseau, B. Boulanger, J. P. Fève, and O. Pacaud, “Extended sphere method for complete investigation of the phase-matching properties sum- and difference-frequency generation,” Appl. Opt. 38, 7406–7408 (1999).
[CrossRef]

B. Boulanger, J. P. Fève, B. Ménaert, and G. Marnier, “Methodology for optical studies of nonlinear crystals: application to the isomorph family KTiOPO4, KTiOAsO4, RbTiOAsO4, and CsTiOAsO4,” Pure Appl. Opt. 7, 239–256 (1998).
[CrossRef]

J. P. Fève, B. Boulanger, and G. Marnier, “Experimental study of internal and external conical refractions in KTP,” Opt. Commun. 105, 243–252 (1994).
[CrossRef]

B. Boulanger and G. Marnier, “Field factor calculation for the study of the relationships between all 3-wave non-linear optical interactions in uniaxial and biaxial acentric crystals,” J. Phys.: Condens. Matter 3, 8327–8350 (1991).

Bréhat, F.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[CrossRef]

Carabatos-Nedelec, C.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[CrossRef]

Cheng, L. K.

Cheng, L. T.

L. T. Cheng, L. K. Cheng, and J. D. Bierlein, “Linear and nonlinear optical properties of the arsenate isomorphs of KTP,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals II, B. H. Chai, ed., Proc. SPIE 1863, 43–53 (1993).
[CrossRef]

Ebrahimzadeh, M.

G. T. Kennedy, D. T. Reid, A. Miller, M. Ebrahimzadeh, H. Karlsson, G. Arivdsson, and F. Laurell, “Near- to mid-infrared picosecond optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 23, 503–505 (1998).
[CrossRef]

D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Ti:sapphire-pumped femtosecond optical parametric oscillator based on KTiOPO4 and RbTiOAsO4,” Appl. Phys. B: Lasers Opt. 60, 437–442 (1995).
[CrossRef]

Fenimore, D. L.

Fève, J. P.

I. Rousseau, B. Boulanger, J. P. Fève, and O. Pacaud, “Extended sphere method for complete investigation of the phase-matching properties sum- and difference-frequency generation,” Appl. Opt. 38, 7406–7408 (1999).
[CrossRef]

B. Boulanger, J. P. Fève, B. Ménaert, and G. Marnier, “Methodology for optical studies of nonlinear crystals: application to the isomorph family KTiOPO4, KTiOAsO4, RbTiOAsO4, and CsTiOAsO4,” Pure Appl. Opt. 7, 239–256 (1998).
[CrossRef]

J. P. Fève, B. Boulanger, and G. Marnier, “Experimental study of internal and external conical refractions in KTP,” Opt. Commun. 105, 243–252 (1994).
[CrossRef]

Fontana, M. D.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[CrossRef]

Karlsson, H.

Kennedy, G. T.

Khodjaoui, A.

A. Khodjaoui, J. Mangin, and G. Marnier, “Dielectric properties of KTA and secondary optical absorption of KTA and KTP,” Nonlinear Opt. 6, 1–12 (1993).

Kück, S.

Kugel, G. E.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[CrossRef]

Laurell, F.

Loiacono, D. N.

G. M. Loiacono, D. N. Loiacono, and R. A. Stolzenberger, “Crystal growth and characterization of ferroelectric CsTiOAsO4,” J. Cryst. Growth 131, 323–330 (1993).
[CrossRef]

Loiacono, G. M.

G. M. Loiacono, D. N. Loiacono, and R. A. Stolzenberger, “Crystal growth and characterization of ferroelectric CsTiOAsO4,” J. Cryst. Growth 131, 323–330 (1993).
[CrossRef]

MacPherson, S. R.

Mangin, J.

A. Khodjaoui, J. Mangin, and G. Marnier, “Dielectric properties of KTA and secondary optical absorption of KTA and KTP,” Nonlinear Opt. 6, 1–12 (1993).

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[CrossRef]

Marnier, G.

B. Boulanger, J. P. Fève, B. Ménaert, and G. Marnier, “Methodology for optical studies of nonlinear crystals: application to the isomorph family KTiOPO4, KTiOAsO4, RbTiOAsO4, and CsTiOAsO4,” Pure Appl. Opt. 7, 239–256 (1998).
[CrossRef]

J. P. Fève, B. Boulanger, and G. Marnier, “Experimental study of internal and external conical refractions in KTP,” Opt. Commun. 105, 243–252 (1994).
[CrossRef]

A. Khodjaoui, J. Mangin, and G. Marnier, “Dielectric properties of KTA and secondary optical absorption of KTA and KTP,” Nonlinear Opt. 6, 1–12 (1993).

B. Boulanger and G. Marnier, “Field factor calculation for the study of the relationships between all 3-wave non-linear optical interactions in uniaxial and biaxial acentric crystals,” J. Phys.: Condens. Matter 3, 8327–8350 (1991).

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[CrossRef]

Ménaert, B.

B. Boulanger, J. P. Fève, B. Ménaert, and G. Marnier, “Methodology for optical studies of nonlinear crystals: application to the isomorph family KTiOPO4, KTiOAsO4, RbTiOAsO4, and CsTiOAsO4,” Pure Appl. Opt. 7, 239–256 (1998).
[CrossRef]

Miller, A.

Nebel, A.

B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B: Lasers Opt. 67, 537–544 (1998).
[CrossRef]

Pacaud, O.

Powers, P. E.

Ramabadran, U. B.

Ramakrishna, S.

Reid, D. T.

G. T. Kennedy, D. T. Reid, A. Miller, M. Ebrahimzadeh, H. Karlsson, G. Arivdsson, and F. Laurell, “Near- to mid-infrared picosecond optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 23, 503–505 (1998).
[CrossRef]

D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Ti:sapphire-pumped femtosecond optical parametric oscillator based on KTiOPO4 and RbTiOAsO4,” Appl. Phys. B: Lasers Opt. 60, 437–442 (1995).
[CrossRef]

Roberts, D. A.

Rousseau, I.

Ruffing, B.

B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B: Lasers Opt. 67, 537–544 (1998).
[CrossRef]

Schepler, K. L.

Sibbett, W.

D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Ti:sapphire-pumped femtosecond optical parametric oscillator based on KTiOPO4 and RbTiOAsO4,” Appl. Phys. B: Lasers Opt. 60, 437–442 (1995).
[CrossRef]

Small, D.

Stolzenberger, R. A.

G. M. Loiacono, D. N. Loiacono, and R. A. Stolzenberger, “Crystal growth and characterization of ferroelectric CsTiOAsO4,” J. Cryst. Growth 131, 323–330 (1993).
[CrossRef]

Tang, C. L.

Von Richter, P.

Wallenstein, R.

B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B: Lasers Opt. 67, 537–544 (1998).
[CrossRef]

Wyncke, B.

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[CrossRef]

Zelmon, D.

Appl. Opt. (2)

Appl. Phys. B: Lasers Opt. (2)

B. Ruffing, A. Nebel, and R. Wallenstein, “All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator,” Appl. Phys. B: Lasers Opt. 67, 537–544 (1998).
[CrossRef]

D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Ti:sapphire-pumped femtosecond optical parametric oscillator based on KTiOPO4 and RbTiOAsO4,” Appl. Phys. B: Lasers Opt. 60, 437–442 (1995).
[CrossRef]

J. Cryst. Growth (1)

G. M. Loiacono, D. N. Loiacono, and R. A. Stolzenberger, “Crystal growth and characterization of ferroelectric CsTiOAsO4,” J. Cryst. Growth 131, 323–330 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. C (1)

G. E. Kugel, F. Bréhat, B. Wyncke, M. D. Fontana, G. Marnier, C. Carabatos-Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C 21, 5565–5583 (1988).
[CrossRef]

J. Phys.: Condens. Matter (1)

B. Boulanger and G. Marnier, “Field factor calculation for the study of the relationships between all 3-wave non-linear optical interactions in uniaxial and biaxial acentric crystals,” J. Phys.: Condens. Matter 3, 8327–8350 (1991).

Nonlinear Opt. (1)

A. Khodjaoui, J. Mangin, and G. Marnier, “Dielectric properties of KTA and secondary optical absorption of KTA and KTP,” Nonlinear Opt. 6, 1–12 (1993).

Opt. Commun. (1)

J. P. Fève, B. Boulanger, and G. Marnier, “Experimental study of internal and external conical refractions in KTP,” Opt. Commun. 105, 243–252 (1994).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (1)

L. T. Cheng, L. K. Cheng, and J. D. Bierlein, “Linear and nonlinear optical properties of the arsenate isomorphs of KTP,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals II, B. H. Chai, ed., Proc. SPIE 1863, 43–53 (1993).
[CrossRef]

Pure Appl. Opt. (1)

B. Boulanger, J. P. Fève, B. Ménaert, and G. Marnier, “Methodology for optical studies of nonlinear crystals: application to the isomorph family KTiOPO4, KTiOAsO4, RbTiOAsO4, and CsTiOAsO4,” Pure Appl. Opt. 7, 239–256 (1998).
[CrossRef]

Other (2)

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Conference on Lasers and Electro-Optics, Vol. 11 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C. 1993), pp. 430–432.

G. Marnier, “Process for the flux synthesis of crystals of the KTiOPO4, potassium titanyl monophosphate type,” French patent FR 2585345 (January 30, 1987); U.S. patent 4746396 (May 24, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Measured and calculated phase-matching curves in (a) the xz plane and (b) the yz plane of KTA, RTA, and CTA for type II SHG: λfe+λfoλgo. λf is generated from the tunable OPO.

Fig. 2
Fig. 2

Measured and calculated phase-matching curves in the yz plane of KTA, RTA, and CTA for type II SFG: λpe+λioλgo. λi is generated from the tunable OPO; λp=1.064 µm.

Fig. 3
Fig. 3

Measured and calculated phase-matching curves in (a) the xz plane and (b) the yz plane of KTA and RTA for type I DFG: λpo-λioλge. λi is generated from the tunable OPO; λp=1.064 µm.

Fig. 4
Fig. 4

Experimental phase-matching curves in (a) the xz plane of KTA, RTA, and CTA, (b) the yz plane of KTA and RTA, and (c) the yz plane of CTA for type III DFG: λpo-λieλgo. λi is generated from the tunable OPO; λp=1.064 µm.

Fig. 5
Fig. 5

Wavelength ranges covered by the experimental data for the refractive indices nx, y and nz. The vertical dashed lines indicate the transparency range of the crystals. The different types of data are denoted by a, optical axes; b, type II SHG; c, type II SFG; d, type I DFG; and e, type III DFG.

Fig. 6
Fig. 6

Comparison between measured phase-matching directions and the calculations for two different dispersion equations in the case of type III DFG in the xz plane of CTA.

Fig. 7
Fig. 7

Calculated conversion efficiency for type I DFG along the phase-matching direction of maximum nonlinear effective coefficient, as a function of the generated wavelength λg. Crystal length L=10 mm, beam-waist radius wo=100 µm, λp=1.064 µm. The refractive indices are calculated from Eq. (3) and Table 1, and the nonlinear coefficients are taken from Ref. 9.

Tables (1)

Tables Icon

Table 1 Sellmeier Coefficients for KTA, RTA, and CTA, Corresponding to the Dispersion Eq. (3) with λ in µma

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

cos2 θPM=λaλcnα(λc)-λaλbnα(λb)-2-nz-2(λa)
[nβ-2(λa)-nz-2(λa)],
λc=λp,λa=λg,λb=λifortypeIDFG,
λc=λp,λa=λi,λb=λgfortypeIIIDFG,
λc=λg,λa=λi,λb=λpfortypeIISFG,
λi=λgfortypeIISHG,
cos2 θOA(λ)=1-ny-2(λ)-nx-2(λ)nz-2(λ)-nx-2(λ).
ni2=Ai+Biλpiλpi-Ci+Diλqiλqi-Ei,

Metrics