Abstract

We have investigated the influence of the temperature on the photoinduced birefringence as well as on the diffraction efficiency of azo dye doped or grafted polymers. The samples are composed of three polymer matrices containing 2, 5-dimethyl-4-(p-nitrophenylazo anisole). We propose two theoretical models to explain the experimental increase of both phenomena when the temperature is decreased. Models are based on the statistical angular distribution of the chromophores that depends on the intensity of the polarized laser beam in the media, counteracted by the thermal agitation. Parameters introduced in both models can be used to characterize the polymeric system properties.

© 2000 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).
  2. J. Xu, G. Zhang, Q. Wu, Y. Liang, S. Liu, X. Chen, and Y. Shen, “Holographic recording and light amplification in doped polymer film,” Opt. Lett. 20, 504–506 (1995).
  3. S. V. O’Leary, “Real-time processing by degenerate four-wave mixing in polarization sensitive dye-impregnated polymer films,” Opt. Commun. 104, 245–250 (1994).
  4. L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).
  5. B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).
  6. P. M. Lundquist, C. Poga, R. G. De Voe, Y. Jia, W. E. Moerner, M.-P. Bernal, H. Coufal, and R. K. Grygier, “Holographic digital data storage in a photorefractive polymer,” Opt. Lett. 21, 890–892 (1996).
  7. M. S. Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).
  8. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
  9. T. Buffeteau and M. Pézolet, “In situ study of photoinduced orientation in azopolymers by time-dependent polarization modulation infrared spectroscopy,” Appl. Opt. 50, 948–955 (1996).
  10. A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientation photodichroism and photoisomerization of aromatic azo compounds. I: Model of the system,” Opt. Spectrosc. (USSR) 31, 295–299 (1971).
  11. L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically-controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).
  12. P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
  13. P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).
  14. M. Dumont, “A common model for optical ordering of photoisomerizable molecules,” in Photorefractive Organic Materials. Science and Applications, F. Kajzar, V. M. Agranovich, and C. Y.-C. Lee, eds. (Kluwer Academic, Amsterdam, 1996), Vol. 9, pp. 501–511.
  15. L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Polarization-preserving wavefront reversal by four-wave mixing in photoanisotropic materials,” Appl. Opt. 27, 1598–1602 (1988).
  16. J. S. Hwang, G. J. Lee, and T. K. Lim, “Temperature dependence of photo-induced anisotropy of azo-doped polymer film at the glass transition region of a polymer matrix,” J. Korean Phys. Soc. 27, 392–395 (1994).
  17. S. Ivanov, I. Yakovlev, S. Kostromin, and V. Shibaev, “Laser-induced birefringence in homeotropic films of photochromic comb-shaped liquid-crystalline copolymers with azobenzene moieties at different temperatures,” Makromol. Chem. 12, 709–715 (1991).
  18. O.-K. Song, C. H. Wang, and M. A. Pauley, “Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below Tg,” Macromolecules 30, 6913–6919 (1997).
  19. B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).
  20. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).
  21. C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).
  22. P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).
  23. L. Lamarre and C. S. P. Sung, “Studies of physical aging and molecular motion by azochromophorric labels attached to the main chains of amorphous polymers,” Macromolecules 16, 1729–1736 (1983).
  24. Y. Atassi, J. A. Delaire, and K. Nakatani, “Coupling between photochromism and second-harmonic generation in spiropyran- and spirooxazin-doped polymer films,” J. Appl. Chem. 99, 16320–16326 (1995).
  25. M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327–338 (1995).
  26. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 121–154.
  27. Z. Sekkat, J. Wood, and W. Knoll, “Reorientation mechanism of azobenzenes within the Tran → Cis photoisomerization,” J. Phys. Chem. 99, 17226–17234 (1995).
  28. T. G. Pedersen, P. M. Johansen, N. C. R. Holme, P. Ramanujam, and S. Hvilsted, “Theoretical model of photoinduced anisotropy in liquid-crystalline azobenzene side-chain polyesters,” J. Opt. Soc. Am. B 15, 1120–1129 (1998).
  29. I. Mita, K. Horie, and K. Hirao, “Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film,” Macromolecules 22, 558–563 (1989).
  30. S. Xie, A. Natansohn, and P. Rochon, “Recent development in aromatic azo polymers research,” Chem. Mater. 5, 403–411 (1993).
  31. Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373–381 (1993).
  32. N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, New York, 1967), pp. 169–174.
  33. M. L. Williams, R. F. Landel, and J. D. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” J. Am. Chem. Soc. 77, 3701–3707 (1955).
  34. C. D. Eisenbach, “Effect of polymer matrix on the cis–trans isomerization of azobenzene residues in bulk polymers,” Makromol. Chem. 179, 2489–2506 (1978).
  35. D. Kermisch, “Nonuniform sinusoidally modulated dielectric gratings,” J. Opt. Soc. Am. 59, 1409–1414 (1969).
  36. L. B. Au, J. C. W. Newell, and L. Solymar, “Non-uniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).
  37. H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  38. R. N. Haward, The Physics of Glassy Polymers (Wiley, New York, 1973), pp. 25–41 and 171–176.
  39. C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).
  40. P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarization holography reveals the nature of the grating in azo-dye contained polymers,” J. Opt. Soc. Am. B (to be published).
  41. P.-A. Blanche, P. C. Lemaire, M. Dumont, and M. Fischer, “Photoinduced orientation of azo dye in various polymer matrices,” Opt. Lett. 24, 1349–1351 (1999).
  42. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
  43. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymer,” J. Opt. Soc. Am. B 11, 320–330 (1994).
  44. W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, and R. J. Twieg, “Mechanisms of photorefractivity in polymer composites,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme and J. W. Stasiak, eds., Proc. SPIE 2850, 2–13 (1996).

2000 (1)

C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).

1999 (3)

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).

C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).

P.-A. Blanche, P. C. Lemaire, M. Dumont, and M. Fischer, “Photoinduced orientation of azo dye in various polymer matrices,” Opt. Lett. 24, 1349–1351 (1999).

1998 (1)

1997 (2)

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).

O.-K. Song, C. H. Wang, and M. A. Pauley, “Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below Tg,” Macromolecules 30, 6913–6919 (1997).

1996 (5)

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).

T. Buffeteau and M. Pézolet, “In situ study of photoinduced orientation in azopolymers by time-dependent polarization modulation infrared spectroscopy,” Appl. Opt. 50, 948–955 (1996).

P. M. Lundquist, C. Poga, R. G. De Voe, Y. Jia, W. E. Moerner, M.-P. Bernal, H. Coufal, and R. K. Grygier, “Holographic digital data storage in a photorefractive polymer,” Opt. Lett. 21, 890–892 (1996).

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, and R. J. Twieg, “Mechanisms of photorefractivity in polymer composites,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme and J. W. Stasiak, eds., Proc. SPIE 2850, 2–13 (1996).

1995 (6)

J. Xu, G. Zhang, Q. Wu, Y. Liang, S. Liu, X. Chen, and Y. Shen, “Holographic recording and light amplification in doped polymer film,” Opt. Lett. 20, 504–506 (1995).

Y. Atassi, J. A. Delaire, and K. Nakatani, “Coupling between photochromism and second-harmonic generation in spiropyran- and spirooxazin-doped polymer films,” J. Appl. Chem. 99, 16320–16326 (1995).

M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327–338 (1995).

Z. Sekkat, J. Wood, and W. Knoll, “Reorientation mechanism of azobenzenes within the Tran → Cis photoisomerization,” J. Phys. Chem. 99, 17226–17234 (1995).

M. S. Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).

1994 (4)

S. V. O’Leary, “Real-time processing by degenerate four-wave mixing in polarization sensitive dye-impregnated polymer films,” Opt. Commun. 104, 245–250 (1994).

J. S. Hwang, G. J. Lee, and T. K. Lim, “Temperature dependence of photo-induced anisotropy of azo-doped polymer film at the glass transition region of a polymer matrix,” J. Korean Phys. Soc. 27, 392–395 (1994).

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymer,” J. Opt. Soc. Am. B 11, 320–330 (1994).

1993 (3)

S. Xie, A. Natansohn, and P. Rochon, “Recent development in aromatic azo polymers research,” Chem. Mater. 5, 403–411 (1993).

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373–381 (1993).

B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).

1992 (1)

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).

1991 (2)

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).

S. Ivanov, I. Yakovlev, S. Kostromin, and V. Shibaev, “Laser-induced birefringence in homeotropic films of photochromic comb-shaped liquid-crystalline copolymers with azobenzene moieties at different temperatures,” Makromol. Chem. 12, 709–715 (1991).

1989 (1)

I. Mita, K. Horie, and K. Hirao, “Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film,” Macromolecules 22, 558–563 (1989).

1988 (2)

L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Polarization-preserving wavefront reversal by four-wave mixing in photoanisotropic materials,” Appl. Opt. 27, 1598–1602 (1988).

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically-controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).

1987 (1)

L. B. Au, J. C. W. Newell, and L. Solymar, “Non-uniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).

1984 (1)

1983 (1)

L. Lamarre and C. S. P. Sung, “Studies of physical aging and molecular motion by azochromophorric labels attached to the main chains of amorphous polymers,” Macromolecules 16, 1729–1736 (1983).

1978 (1)

C. D. Eisenbach, “Effect of polymer matrix on the cis–trans isomerization of azobenzene residues in bulk polymers,” Makromol. Chem. 179, 2489–2506 (1978).

1971 (1)

A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientation photodichroism and photoisomerization of aromatic azo compounds. I: Model of the system,” Opt. Spectrosc. (USSR) 31, 295–299 (1971).

1969 (2)

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

D. Kermisch, “Nonuniform sinusoidally modulated dielectric gratings,” J. Opt. Soc. Am. 59, 1409–1414 (1969).

1955 (1)

M. L. Williams, R. F. Landel, and J. D. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” J. Am. Chem. Soc. 77, 3701–3707 (1955).

Atassi, Y.

Y. Atassi, J. A. Delaire, and K. Nakatani, “Coupling between photochromism and second-harmonic generation in spiropyran- and spirooxazin-doped polymer films,” J. Appl. Chem. 99, 16320–16326 (1995).

Au, L. B.

L. B. Au, J. C. W. Newell, and L. Solymar, “Non-uniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).

Bernal, M.-P.

Bjorklund, G. C.

Blanche, P. A.

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).

Blanche, P.-A.

C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).

C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).

P.-A. Blanche, P. C. Lemaire, M. Dumont, and M. Fischer, “Photoinduced orientation of azo dye in various polymer matrices,” Opt. Lett. 24, 1349–1351 (1999).

Buffeteau, T.

T. Buffeteau and M. Pézolet, “In situ study of photoinduced orientation in azopolymers by time-dependent polarization modulation infrared spectroscopy,” Appl. Opt. 50, 948–955 (1996).

Burland, D. M.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).

Chen, X.

Coufal, H.

Dalton, L. R.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).

De Voe, R. G.

Delaire, J. A.

Y. Atassi, J. A. Delaire, and K. Nakatani, “Coupling between photochromism and second-harmonic generation in spiropyran- and spirooxazin-doped polymer films,” J. Appl. Chem. 99, 16320–16326 (1995).

Dragostinova, V.

L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, “Polarization-preserving wavefront reversal by four-wave mixing in photoanisotropic materials,” Appl. Opt. 27, 1598–1602 (1988).

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically-controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).

Dubois, P.

C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).

C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).

Ducharme, S.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).

Dumont, M.

P.-A. Blanche, P. C. Lemaire, M. Dumont, and M. Fischer, “Photoinduced orientation of azo dye in various polymer matrices,” Opt. Lett. 24, 1349–1351 (1999).

M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327–338 (1995).

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373–381 (1993).

Eisenbach, C. D.

C. D. Eisenbach, “Effect of polymer matrix on the cis–trans isomerization of azobenzene residues in bulk polymers,” Makromol. Chem. 179, 2489–2506 (1978).

Ferry, J. D.

M. L. Williams, R. F. Landel, and J. D. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” J. Am. Chem. Soc. 77, 3701–3707 (1955).

Fischer, M.

Froc, G.

M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327–338 (1995).

Geletneky, C.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).

Ghosn, R.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).

Gosselin, J.

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).

Grunnet-Jepsen, A.

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, and R. J. Twieg, “Mechanisms of photorefractivity in polymer composites,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme and J. W. Stasiak, eds., Proc. SPIE 2850, 2–13 (1996).

Grygier, R. K.

Hache, F.

Hall Jr., H. K.

B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).

Harper, A. W.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).

Hirao, K.

I. Mita, K. Horie, and K. Hirao, “Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film,” Macromolecules 22, 558–563 (1989).

Ho, M. S.

M. S. Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).

Holme, N. C. R.

Horie, K.

I. Mita, K. Horie, and K. Hirao, “Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film,” Macromolecules 22, 558–563 (1989).

Hosotte, S.

M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327–338 (1995).

Hubble, A.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).

Hvilsted, S.

Hwang, J. S.

J. S. Hwang, G. J. Lee, and T. K. Lim, “Temperature dependence of photo-induced anisotropy of azo-doped polymer film at the glass transition region of a polymer matrix,” J. Korean Phys. Soc. 27, 392–395 (1994).

Ivanov, S.

S. Ivanov, I. Yakovlev, S. Kostromin, and V. Shibaev, “Laser-induced birefringence in homeotropic films of photochromic comb-shaped liquid-crystalline copolymers with azobenzene moieties at different temperatures,” Makromol. Chem. 12, 709–715 (1991).

Javidi, B.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).

Jéro?me, R.

C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).

C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).

Jia, Y.

Johansen, P. M.

Jurich, M.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).

Kermisch, D.

Kippelen, B.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).

B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).

Knoll, W.

Z. Sekkat, J. Wood, and W. Knoll, “Reorientation mechanism of azobenzenes within the Tran → Cis photoisomerization,” J. Phys. Chem. 99, 17226–17234 (1995).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kostromin, S.

S. Ivanov, I. Yakovlev, S. Kostromin, and V. Shibaev, “Laser-induced birefringence in homeotropic films of photochromic comb-shaped liquid-crystalline copolymers with azobenzene moieties at different temperatures,” Makromol. Chem. 12, 709–715 (1991).

Lamarre, L.

L. Lamarre and C. S. P. Sung, “Studies of physical aging and molecular motion by azochromophorric labels attached to the main chains of amorphous polymers,” Macromolecules 16, 1729–1736 (1983).

Landel, R. F.

M. L. Williams, R. F. Landel, and J. D. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” J. Am. Chem. Soc. 77, 3701–3707 (1955).

Laquindanum, J.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).

Lee, G. J.

J. S. Hwang, G. J. Lee, and T. K. Lim, “Temperature dependence of photo-induced anisotropy of azo-doped polymer film at the glass transition region of a polymer matrix,” J. Korean Phys. Soc. 27, 392–395 (1994).

Lee, V. Y.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).

Lemaire, P. C.

C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).

P.-A. Blanche, P. C. Lemaire, M. Dumont, and M. Fischer, “Photoinduced orientation of azo dye in various polymer matrices,” Opt. Lett. 24, 1349–1351 (1999).

Lemaire, Ph. C.

C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).

Liang, Y.

Liang, Z.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).

Lim, T. K.

J. S. Hwang, G. J. Lee, and T. K. Lim, “Temperature dependence of photo-induced anisotropy of azo-doped polymer film at the glass transition region of a polymer matrix,” J. Korean Phys. Soc. 27, 392–395 (1994).

Liu, S.

Lundquist, P. M.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).

P. M. Lundquist, C. Poga, R. G. De Voe, Y. Jia, W. E. Moerner, M.-P. Bernal, H. Coufal, and R. K. Grygier, “Holographic digital data storage in a photorefractive polymer,” Opt. Lett. 21, 890–892 (1996).

Lyon, S. R.

B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).

Maertens, C.

C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).

C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).

Makushenko, A. M.

A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientation photodichroism and photoisomerization of aromatic azo compounds. I: Model of the system,” Opt. Spectrosc. (USSR) 31, 295–299 (1971).

Markovsky, P.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically-controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).

Mateva, N.

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically-controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).

Meerholz, K.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).

Mita, I.

I. Mita, K. Horie, and K. Hirao, “Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film,” Macromolecules 22, 558–563 (1989).

Moerner, W. E.

P. M. Lundquist, C. Poga, R. G. De Voe, Y. Jia, W. E. Moerner, M.-P. Bernal, H. Coufal, and R. K. Grygier, “Holographic digital data storage in a photorefractive polymer,” Opt. Lett. 21, 890–892 (1996).

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, and R. J. Twieg, “Mechanisms of photorefractivity in polymer composites,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme and J. W. Stasiak, eds., Proc. SPIE 2850, 2–13 (1996).

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymer,” J. Opt. Soc. Am. B 11, 320–330 (1994).

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).

Moylan, C. R.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).

Nakatani, K.

Y. Atassi, J. A. Delaire, and K. Nakatani, “Coupling between photochromism and second-harmonic generation in spiropyran- and spirooxazin-doped polymer films,” J. Appl. Chem. 99, 16320–16326 (1995).

Natansohn, A.

M. S. Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).

S. Xie, A. Natansohn, and P. Rochon, “Recent development in aromatic azo polymers research,” Chem. Mater. 5, 403–411 (1993).

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).

Neporent, B. S.

A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientation photodichroism and photoisomerization of aromatic azo compounds. I: Model of the system,” Opt. Spectrosc. (USSR) 31, 295–299 (1971).

Newell, J. C. W.

L. B. Au, J. C. W. Newell, and L. Solymar, “Non-uniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).

Nikolova, L.

O’Leary, S. V.

S. V. O’Leary, “Real-time processing by degenerate four-wave mixing in polarization sensitive dye-impregnated polymer films,” Opt. Commun. 104, 245–250 (1994).

Padias, A. B.

B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).

Pauley, M. A.

O.-K. Song, C. H. Wang, and M. A. Pauley, “Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below Tg,” Macromolecules 30, 6913–6919 (1997).

Pedersen, T. G.

Peyghambarian, N.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).

B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).

Pézolet, M.

T. Buffeteau and M. Pézolet, “In situ study of photoinduced orientation in azopolymers by time-dependent polarization modulation infrared spectroscopy,” Appl. Opt. 50, 948–955 (1996).

Poga, C.

Ramanujam, P.

Rochon, P.

M. S. Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).

S. Xie, A. Natansohn, and P. Rochon, “Recent development in aromatic azo polymers research,” Chem. Mater. 5, 403–411 (1993).

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).

Sandalphon,

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).

Scott, J. C.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).

Sekkat, Z.

Z. Sekkat, J. Wood, and W. Knoll, “Reorientation mechanism of azobenzenes within the Tran → Cis photoisomerization,” J. Phys. Chem. 99, 17226–17234 (1995).

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373–381 (1993).

Shen, Y.

Shibaev, V.

S. Ivanov, I. Yakovlev, S. Kostromin, and V. Shibaev, “Laser-induced birefringence in homeotropic films of photochromic comb-shaped liquid-crystalline copolymers with azobenzene moieties at different temperatures,” Makromol. Chem. 12, 709–715 (1991).

Silence, S. M.

Solymar, L.

L. B. Au, J. C. W. Newell, and L. Solymar, “Non-uniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).

Song, O.-K.

O.-K. Song, C. H. Wang, and M. A. Pauley, “Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below Tg,” Macromolecules 30, 6913–6919 (1997).

Stolbova, O. V.

A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientation photodichroism and photoisomerization of aromatic azo compounds. I: Model of the system,” Opt. Spectrosc. (USSR) 31, 295–299 (1971).

Sung, C. S. P.

L. Lamarre and C. S. P. Sung, “Studies of physical aging and molecular motion by azochromophorric labels attached to the main chains of amorphous polymers,” Macromolecules 16, 1729–1736 (1983).

Thompson, C. L.

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, and R. J. Twieg, “Mechanisms of photorefractivity in polymer composites,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme and J. W. Stasiak, eds., Proc. SPIE 2850, 2–13 (1996).

Todorov, T.

Tomova, N.

Twieg, R. J.

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, and R. J. Twieg, “Mechanisms of photorefractivity in polymer composites,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme and J. W. Stasiak, eds., Proc. SPIE 2850, 2–13 (1996).

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).

Volodin, B. L.

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).

Wang, C. H.

O.-K. Song, C. H. Wang, and M. A. Pauley, “Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below Tg,” Macromolecules 30, 6913–6919 (1997).

Williams, M. L.

M. L. Williams, R. F. Landel, and J. D. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” J. Am. Chem. Soc. 77, 3701–3707 (1955).

Wood, J.

Z. Sekkat, J. Wood, and W. Knoll, “Reorientation mechanism of azobenzenes within the Tran → Cis photoisomerization,” J. Phys. Chem. 99, 17226–17234 (1995).

Wortmann, R.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).

Wu, B.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).

Wu, Q.

Xie, S.

S. Xie, A. Natansohn, and P. Rochon, “Recent development in aromatic azo polymers research,” Chem. Mater. 5, 403–411 (1993).

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).

Xu, C.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).

Xu, J.

Yakovlev, I.

S. Ivanov, I. Yakovlev, S. Kostromin, and V. Shibaev, “Laser-induced birefringence in homeotropic films of photochromic comb-shaped liquid-crystalline copolymers with azobenzene moieties at different temperatures,” Makromol. Chem. 12, 709–715 (1991).

Zhang, G.

Adv. Mater. (1)

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubble, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519–540 (1995).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

P. Rochon, J. Gosselin, A. Natansohn, and S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Chem. Mater. (1)

S. Xie, A. Natansohn, and P. Rochon, “Recent development in aromatic azo polymers research,” Chem. Mater. 5, 403–411 (1993).

Electron. Lett. (1)

B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, Jr., “New highly efficient photorefractive polymer composite for optical storage and image-processing applications,” Electron. Lett. 29, 1873–1874 (1993).

J. Am. Chem. Soc. (1)

M. L. Williams, R. F. Landel, and J. D. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” J. Am. Chem. Soc. 77, 3701–3707 (1955).

J. Appl. Chem. (1)

Y. Atassi, J. A. Delaire, and K. Nakatani, “Coupling between photochromism and second-harmonic generation in spiropyran- and spirooxazin-doped polymer films,” J. Appl. Chem. 99, 16320–16326 (1995).

J. Korean Phys. Soc. (1)

J. S. Hwang, G. J. Lee, and T. K. Lim, “Temperature dependence of photo-induced anisotropy of azo-doped polymer film at the glass transition region of a polymer matrix,” J. Korean Phys. Soc. 27, 392–395 (1994).

J. Mod. Opt. (2)

L. Nikolova, P. Markovsky, N. Tomova, V. Dragostinova, and N. Mateva, “Optically-controlled photo-induced birefringence in photo-anisotropic materials,” J. Mod. Opt. 35, 1789–1799 (1988).

L. B. Au, J. C. W. Newell, and L. Solymar, “Non-uniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

Z. Sekkat, J. Wood, and W. Knoll, “Reorientation mechanism of azobenzenes within the Tran → Cis photoisomerization,” J. Phys. Chem. 99, 17226–17234 (1995).

J. Polym. Sci., Part B: Polym. Phys. (1)

C. Maertens, P. Dubois, R. Jérôme, P.-A. Blanche, and P. C. Lemaire, “Synthesis and polarized light induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” J. Polym. Sci., Part B: Polym. Phys. 38, 205–213 (2000).

Macromolecules (4)

O.-K. Song, C. H. Wang, and M. A. Pauley, “Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below Tg,” Macromolecules 30, 6913–6919 (1997).

L. Lamarre and C. S. P. Sung, “Studies of physical aging and molecular motion by azochromophorric labels attached to the main chains of amorphous polymers,” Macromolecules 16, 1729–1736 (1983).

M. S. Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups,” Macromolecules 28, 6124–6127 (1995).

I. Mita, K. Horie, and K. Hirao, “Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film,” Macromolecules 22, 558–563 (1989).

Makromol. Chem. (2)

C. D. Eisenbach, “Effect of polymer matrix on the cis–trans isomerization of azobenzene residues in bulk polymers,” Makromol. Chem. 179, 2489–2506 (1978).

S. Ivanov, I. Yakovlev, S. Kostromin, and V. Shibaev, “Laser-induced birefringence in homeotropic films of photochromic comb-shaped liquid-crystalline copolymers with azobenzene moieties at different temperatures,” Makromol. Chem. 12, 709–715 (1991).

Nature (London) (2)

K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994).

B. L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, and N. Peyghambarian, “A polymeric organical pattern recognition system for security verification,” Nature (London) 383, 58–60 (1996).

Nonlinear Opt. (1)

M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327–338 (1995).

Opt. Commun. (2)

S. V. O’Leary, “Real-time processing by degenerate four-wave mixing in polarization sensitive dye-impregnated polymer films,” Opt. Commun. 104, 245–250 (1994).

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarised light induced birefringence in azo dye doped polymer: a new model and polarised holographic experiments,” Opt. Commun. 139, 92–98 (1997).

Opt. Lett. (3)

Opt. Spectrosc. (USSR) (1)

A. M. Makushenko, B. S. Neporent, and O. V. Stolbova, “Reversible orientation photodichroism and photoisomerization of aromatic azo compounds. I: Model of the system,” Opt. Spectrosc. (USSR) 31, 295–299 (1971).

Phys. Rev. Lett. (1)

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).

Polym. Eng. Sci. (1)

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Temperature variation of the photoinduced birefringence of an azo dye doped polymer,” Polym. Eng. Sci. 38, 406–412 (1999).

Polym. Int. (1)

C. Maertens, P. Dubois, R. Jéro⁁me, P.-A. Blanche, and Ph. C. Lemaire, “Dynamics of the photoinduced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups,” Polym. Int. 48, 205–211 (1999).

Proc. SPIE (1)

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, and R. J. Twieg, “Mechanisms of photorefractivity in polymer composites,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme and J. W. Stasiak, eds., Proc. SPIE 2850, 2–13 (1996).

Science (1)

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1184 (1996).

Synth. Met. (1)

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373–381 (1993).

Other (5)

N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, New York, 1967), pp. 169–174.

M. Dumont, “A common model for optical ordering of photoisomerizable molecules,” in Photorefractive Organic Materials. Science and Applications, F. Kajzar, V. M. Agranovich, and C. Y.-C. Lee, eds. (Kluwer Academic, Amsterdam, 1996), Vol. 9, pp. 501–511.

P. A. Blanche, Ph. C. Lemaire, C. Maertens, P. Dubois, and R. Jéro⁁me, “Polarization holography reveals the nature of the grating in azo-dye contained polymers,” J. Opt. Soc. Am. B (to be published).

R. N. Haward, The Physics of Glassy Polymers (Wiley, New York, 1973), pp. 25–41 and 171–176.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 121–154.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics