Abstract

We demonstrate single-shot wave-front measurements of high-peak-power 100-fs laser pulses using the Fresnel phase-retrieval method. The wave fronts are reconstructed from only two intensity distributions at two planes along the optical axis and are measured by means of simple charge-coupled-device cameras. Wave fronts of a terawatt-class laser pulse are measured to be better than 0.36λ, peak to valley, when compared with the measured far-field intensity distributions of the beam.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [CrossRef]
  2. J. Zhou, C.-P. Huang, M. M. Murnane, and H. C. Kapteyn, “Amplification of 26-fs, 2-TW pulses near the gain-narrowing limit in Ti:sapphire,” Opt. Lett. 20, 64–66 (1995).
    [CrossRef] [PubMed]
  3. C. P. J. Barty, T. Guo, C. Le Blanc, F. Raksi, C. Rose-Petruck, J. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,” Opt. Lett. 21, 668–670 (1996).
    [CrossRef] [PubMed]
  4. J. P. Chambaret, C. Le Blanc, A. Antonetti, G. Cheriaux, P. F. Curley, G. Darpentigny, and F. Salin, “Generation of 25-TW, 32-fs pulses at 10 Hz,” Opt. Lett. 21, 1921–1923 (1996).
    [CrossRef] [PubMed]
  5. K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, and H. Takuma, “100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate,” Opt. Lett. 23, 1468–1470 (1998).
    [CrossRef]
  6. K. Yamakawa, M. Aoyama, S. Matsuoka, H. Takuma, C. P. J. Barty, and D. Fittinghoff, “Generation of 16-fs, 10-TW pulses at a 10-Hz repetition rate with efficient Ti:sapphire amplifiers,” Opt. Lett. 23, 525–527 (1998).
    [CrossRef]
  7. M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Harman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, “Petawatt laser pulses,” Opt. Lett. 24, 160–162 (1999).
    [CrossRef]
  8. D. Malacara, ed., Optical Shop Testing, 2nd ed. (Wiley, New York, 1992), Chap. 10.
  9. Ref. 8, Chap. 4.
  10. J.-C. Chanteloup, F. Druon, M. Nantel, A. Maksimchuk, and G. Mourou, “Single-shot wave-front measurements of high-intensity ultrashort pulses with a three-wave interferometer,” Opt. Lett. 23, 621–623 (1998).
    [CrossRef]
  11. J. Primot and L. Sogno, “Achromatic three-wave (or more) lateral shearing interferometer,” J. Opt. Soc. Am. A 12, 2679–2685 (1995).
    [CrossRef]
  12. G. Liu and P. D. Scott, “Phase retrieval and twin-image elimination for in-line Fresnel holograms,” J. Opt. Soc. Am. A 4, 159–165 (1987).
    [CrossRef]
  13. I. Kodama, M. Yamaguchi, N. Ohyama, T. Honda, K. Shinohara, A. Ito, T. Matsumura, K. Kinoshita, and K. Yada, “Image reconstruction from an in-line x-ray hologram with intensity distribution constraint,” Opt. Commun. 125, 36–42 (1996).
    [CrossRef]
  14. J. R. Fienup, “Phase-retrieval algorithms for a complicated optical system,” Appl. Opt. 32, 1737–1746 (1993).
    [CrossRef] [PubMed]
  15. J. R. Fienup, J. C. Marron, T. J. Schulz, and J. H. Seldin, “Hubble Space Telescope characterized by using phase-retrieval algorithms,” Appl. Opt. 32, 1747–1766 (1993).
    [CrossRef] [PubMed]
  16. C. Roddier and F. Roddier, “Combined approach to the Hubble Space Telescope wave-front distortion analysis,” Appl. Opt. 32, 2992–3008 (1993).
    [CrossRef] [PubMed]
  17. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).
  18. J. R. Fienup and C. C. Wackerman, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978).
    [CrossRef] [PubMed]
  19. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [CrossRef] [PubMed]
  20. J. W. Goodman, Introduction of Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

1999

1998

1996

1995

1993

1987

1985

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

1982

1978

1972

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Akahane, Y.

Antonetti, A.

Aoyama, M.

Barty, C. P. J.

Britten, J. A.

Brown, C.

Chambaret, J. P.

Chanteloup, J.-C.

Cheriaux, G.

Curley, P. F.

Darpentigny, G.

Druon, F.

Fienup, J. R.

Fittinghoff, D.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Golick, B.

Guo, T.

Harman, S.

Honda, T.

I. Kodama, M. Yamaguchi, N. Ohyama, T. Honda, K. Shinohara, A. Ito, T. Matsumura, K. Kinoshita, and K. Yada, “Image reconstruction from an in-line x-ray hologram with intensity distribution constraint,” Opt. Commun. 125, 36–42 (1996).
[CrossRef]

Huang, C.-P.

Ito, A.

I. Kodama, M. Yamaguchi, N. Ohyama, T. Honda, K. Shinohara, A. Ito, T. Matsumura, K. Kinoshita, and K. Yada, “Image reconstruction from an in-line x-ray hologram with intensity distribution constraint,” Opt. Commun. 125, 36–42 (1996).
[CrossRef]

Kapteyn, H. C.

Kartz, M.

Kase, T.

Kinoshita, K.

I. Kodama, M. Yamaguchi, N. Ohyama, T. Honda, K. Shinohara, A. Ito, T. Matsumura, K. Kinoshita, and K. Yada, “Image reconstruction from an in-line x-ray hologram with intensity distribution constraint,” Opt. Commun. 125, 36–42 (1996).
[CrossRef]

Kodama, I.

I. Kodama, M. Yamaguchi, N. Ohyama, T. Honda, K. Shinohara, A. Ito, T. Matsumura, K. Kinoshita, and K. Yada, “Image reconstruction from an in-line x-ray hologram with intensity distribution constraint,” Opt. Commun. 125, 36–42 (1996).
[CrossRef]

Le Blanc, C.

Liu, G.

Maksimchuk, A.

Marron, J. C.

Matsumura, T.

I. Kodama, M. Yamaguchi, N. Ohyama, T. Honda, K. Shinohara, A. Ito, T. Matsumura, K. Kinoshita, and K. Yada, “Image reconstruction from an in-line x-ray hologram with intensity distribution constraint,” Opt. Commun. 125, 36–42 (1996).
[CrossRef]

Matsuoka, S.

Miller, J.

Mourou, G.

Murnane, M. M.

Nantel, M.

Ohyama, N.

I. Kodama, M. Yamaguchi, N. Ohyama, T. Honda, K. Shinohara, A. Ito, T. Matsumura, K. Kinoshita, and K. Yada, “Image reconstruction from an in-line x-ray hologram with intensity distribution constraint,” Opt. Commun. 125, 36–42 (1996).
[CrossRef]

Pennington, D.

Perry, M. D.

Powell, H. T.

Primot, J.

Raksi, F.

Roddier, C.

Roddier, F.

Rose-Petruck, C.

Salin, F.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Schulz, T. J.

Scott, P. D.

Seldin, J. H.

Shinohara, K.

I. Kodama, M. Yamaguchi, N. Ohyama, T. Honda, K. Shinohara, A. Ito, T. Matsumura, K. Kinoshita, and K. Yada, “Image reconstruction from an in-line x-ray hologram with intensity distribution constraint,” Opt. Commun. 125, 36–42 (1996).
[CrossRef]

Sogno, L.

Squier, J.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Stuart, B. C.

Takuma, H.

Tietbohl, G.

Vergino, M.

Wackerman, C. C.

Wilson, K. R.

Yada, K.

I. Kodama, M. Yamaguchi, N. Ohyama, T. Honda, K. Shinohara, A. Ito, T. Matsumura, K. Kinoshita, and K. Yada, “Image reconstruction from an in-line x-ray hologram with intensity distribution constraint,” Opt. Commun. 125, 36–42 (1996).
[CrossRef]

Yakovlev, V. V.

Yamaguchi, M.

I. Kodama, M. Yamaguchi, N. Ohyama, T. Honda, K. Shinohara, A. Ito, T. Matsumura, K. Kinoshita, and K. Yada, “Image reconstruction from an in-line x-ray hologram with intensity distribution constraint,” Opt. Commun. 125, 36–42 (1996).
[CrossRef]

Yamakawa, K.

Yanovsky, V.

Zhou, J.

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Commun.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

I. Kodama, M. Yamaguchi, N. Ohyama, T. Honda, K. Shinohara, A. Ito, T. Matsumura, K. Kinoshita, and K. Yada, “Image reconstruction from an in-line x-ray hologram with intensity distribution constraint,” Opt. Commun. 125, 36–42 (1996).
[CrossRef]

Opt. Lett.

J. Zhou, C.-P. Huang, M. M. Murnane, and H. C. Kapteyn, “Amplification of 26-fs, 2-TW pulses near the gain-narrowing limit in Ti:sapphire,” Opt. Lett. 20, 64–66 (1995).
[CrossRef] [PubMed]

K. Yamakawa, M. Aoyama, S. Matsuoka, H. Takuma, C. P. J. Barty, and D. Fittinghoff, “Generation of 16-fs, 10-TW pulses at a 10-Hz repetition rate with efficient Ti:sapphire amplifiers,” Opt. Lett. 23, 525–527 (1998).
[CrossRef]

J.-C. Chanteloup, F. Druon, M. Nantel, A. Maksimchuk, and G. Mourou, “Single-shot wave-front measurements of high-intensity ultrashort pulses with a three-wave interferometer,” Opt. Lett. 23, 621–623 (1998).
[CrossRef]

K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, and H. Takuma, “100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate,” Opt. Lett. 23, 1468–1470 (1998).
[CrossRef]

M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Harman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, “Petawatt laser pulses,” Opt. Lett. 24, 160–162 (1999).
[CrossRef]

J. R. Fienup and C. C. Wackerman, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978).
[CrossRef] [PubMed]

C. P. J. Barty, T. Guo, C. Le Blanc, F. Raksi, C. Rose-Petruck, J. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,” Opt. Lett. 21, 668–670 (1996).
[CrossRef] [PubMed]

J. P. Chambaret, C. Le Blanc, A. Antonetti, G. Cheriaux, P. F. Curley, G. Darpentigny, and F. Salin, “Generation of 25-TW, 32-fs pulses at 10 Hz,” Opt. Lett. 21, 1921–1923 (1996).
[CrossRef] [PubMed]

Optik (Stuttgart)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Other

J. W. Goodman, Introduction of Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

D. Malacara, ed., Optical Shop Testing, 2nd ed. (Wiley, New York, 1992), Chap. 10.

Ref. 8, Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of the iterative algorithm of the Fresnel phase-retrieval method for the wave-front measurement: ϕ0(x, y), initial uniform phase distribution; ϕ0(x, y), phase distribution at z=0; ϕz(x, y), phase distribution at z=Z; u0(x, y), amplitude (square root of measured intensity) at z=0; uz(x, y) amplitude (square root of measured intensity) at z=Z.

Fig. 2
Fig. 2

(a)–(c) Wave fronts reconstructed by the Fresnel phase-retrieval method from the two intensity measurements compared with (d)–(f) the reference wave fronts obtained with the phase profilometer. The wave fronts were deformed by a change in the distance between the two lenses of the telescope and/or by tilting of the outlet lens. The PV values of the wave fronts were (a) 0.04λ, (b) 0.18λ, (c) 0.24λ, (d) ⩽0.10λ, (e) 0.19λ, and (f) 0.25λ.

Fig. 3
Fig. 3

Two measured intensity distributions (image 1 and image 2) and the reconstructed wave fronts of the 100-fs pulses (a) without and (b) with a cylindrical lens with a focal length of 4.6 m. The reconstructed wave fronts were measured to be (a) 0.12λ PV and 0.02λ rms and (b) 2.07λ PV and 0.53λ rms.

Fig. 4
Fig. 4

Two measured intensity distributions (image 1 and image 2) and the reconstructed wave fronts of the 100-fs pulses at different output power levels. The output energies of the four-pass amplifier were (a) 42 mJ and (b) 2 mJ, both with 450-mJ pump lights, and (c) 2 mJ with 210-mJ pump light. The reconstructed wave fronts were measured to be (a) 0.36λ PV and 0.05λ rms, (b) 0.22λ PV and 0.03λ rms, and (c) 0.25λ PV and 0.04λ rms.

Metrics