Abstract

The dispersed optical heterodyne detected (OHD) birefringence and dichroism that result from the electronic response of nonresonant materials are described for a number of ultrafast pulse shapes. The OHD spectrograms that correspond to these dispersed instantaneous electronic responses display detuning oscillations along both the interpulse delay and the probe frequency dimensions. The frequency of these oscillations depends only on the detuning of the selected Fourier component of the probe pulse from the carrier frequency and the pulse shapes. This effect is demonstrated for Gaussian, sech2, and one-sided exponential probe pulses. For each of these pulse shapes the OHD spectrograms exhibit a characteristic dependence on detuning frequency. The effects of linear chirp on these OHD spectrograms are also considered. Experimentally observed nonresonant electronic spectrograms are compared with theory. These OHD spectrograms are also compared with the well-known frequency-resolved optical gating traces. Analysis of the OHD spectrograms may provide a more useful approach for the characterization of ultrafast pulses because of the phase-specific, amplitude level origin of these responses.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, New York, 1995).
  2. H. P. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160, 101–107 (1989).
    [CrossRef]
  3. W. T. Pollard and R. A. Mathies, “Analysis of femtosecond dynamic absorption spectra of nonstationary states,” Annu. Rev. Phys. Chem. 43, 497–523 (1992).
    [CrossRef] [PubMed]
  4. G. Stock and W. Domcke, “Detection of ultrafast molecular-excited-state dynamics with time- and frequency-resolved pump–probe spectroscopy,” Phys. Rev. A 45, 3032–3040 (1992).
    [CrossRef] [PubMed]
  5. P. Cong, H. P. Deuel, and J. D. Simon, “Using optical coherence to measure the ultrafast electronic dephasing of large molecules in room-temperature liquids,” Chem. Phys. Lett. 212, 367–373 (1993).
    [CrossRef]
  6. L. Zhu, P. Li, M. Huang, J. T. Sage, and P. M. Champion, “Real time observation of low frequency heme protein vibrations using femtosecond coherence spectroscopy,” Phys. Rev. Lett. 72, 301–304 (1994).
    [CrossRef] [PubMed]
  7. L. Zhu, W. Wang, J. T. Sage, and P. M. Champion, “Femto-second time-resolved vibrational spectroscopy of heme proteins,” J. Raman Spectrosc. 26, 527–534 (1995).
    [CrossRef]
  8. P. Vohringer, R. A. Westervelt, T.-S. Yang, D. C. Arnett, M. J. Feldstein, and N. F. Scherer, “Solvent and frequency dependence of vibrational dephasing on femtosecond time-scales,” J. Raman Spectrosc. 26, 535–551 (1995).
    [CrossRef]
  9. D. C. Arnett, T.-S. Yang, C. Moser, and N. F. Scherer, “Bath fluctuations from optical coherence: liquids and proteins,” in Femtochemistry: The Lausanne Conference, M. Chergui, ed. (World Scientific, Singapore, 1995), pp. 407–413.
  10. M. W. Balk and G. R. Fleming, “Dependence of the coherence spike on the material dephasing time in pump–probe experiments,” J. Chem. Phys. 83, 4300–4307 (1985).
    [CrossRef]
  11. S. L. Palfrey and T. F. Heinz, “Coherent interactions in pump–probe absorption measurements: the effect of phase gratings,” J. Opt. Soc. Am. B 2, 674–678 (1985).
    [CrossRef]
  12. P. Cong, Y. J. Yan, H. P. Deuel, and J. D. Simon, “Non-Markovian optical dephasing dynamics in room temperature liquids investigated by femtosecond transient absorption spectroscopy: theory and experiment,” J. Chem. Phys. 100, 7855–7866 (1994).
    [CrossRef]
  13. M. Chachisvilis, H. Fidder, and V. Sundström, “Electronic coherence in pseudo two-colour pump–probe spectroscopy,” Chem. Phys. Lett. 234, 141–150 (1995).
    [CrossRef]
  14. Y. Zhou, S. Constantine, S. Harrel, and L. D. Ziegler, “The probe frequency dependence of nonresonant femtosecond pump–probe nuclear responses: undercutting vibrational inhomogeneities,” J. Chem. Phys. 110, 5893–5905 (1999).
    [CrossRef]
  15. Y. Zhou, S. Constantine, J. A. Gardecki, and L. D. Ziegler, “Dispersed ultrafast nonresonant electronic responses: oscillations and near resonance effects,” Chem. Phys. Lett. 314, 73–82 (1999).
    [CrossRef]
  16. S. Constantine, Y. Zhou, J. A. Gardecki, and L. D. Ziegler, “What can be learned from dispersed optical heterodyne detected ultrafast nuclear reponses?” submitted to J. Chem. Phys.
  17. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. B 10, 1101–1111 (1993).
    [CrossRef]
  18. D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
    [CrossRef]
  19. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
    [CrossRef] [PubMed]
  20. K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11, 1595–1608 (1994).
    [CrossRef]
  21. K. W. DeLong and R. Trebino, “Improved ultrashort pulse-retrieval algorithm for frequency-resolved optical gating,” J. Opt. Soc. Am. B 11, 2429–2437 (1994).
    [CrossRef]
  22. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
    [CrossRef]
  23. I. Kang, T. Krauss, and F. Wise, “Sensitive measurement of nonlinear refraction and two-photon absorption by spectrally resolved two-beam coupling,” Opt. Lett. 22, 1077–1079 (1997).
    [CrossRef] [PubMed]
  24. J.-K. Wang, T.-L. Chiu, C.-H. Chi, and C.-K. Sun, “Nonlinear refraction and absorption measurements with chirped femtosecond laser pulses: experiments and simulations,” J. Opt. Soc. Am. B 16, 651–661 (1999).
    [CrossRef]
  25. D. McMorrow, N. Thantu, J. S. Melinger, S. K. Kim, and W. T. Lotshaw, “Probing the microscopic molecular environments in liquids: intermolecular dynamics of CS2 in alkane solvents,” J. Phys. Chem. 100, 10, 389–10, 399 (1996).
    [CrossRef]
  26. R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
    [CrossRef]
  27. T. Steffen, J. T. Fourkas, and K. Duppen, “Time-resolved four-and six-wave mixing in liquids. I. Theory,” J. Chem. Phys. 105, 7364–7382 (1996).
    [CrossRef]
  28. One of the reviewers of this manuscript pointed out that the idea of OHD FROG is described in R. P. Trebino, and K. W. DeLong, “Method and apparatus for measuring the phase and intensity of one or more ultrashort light pulses and for measuring the optical properties of materials,” U.S. patent 5, 530, 544 (June 25, 1996). An outline of a simplified procedure for pulse phase retrieval based on these OHD signals is also given in that patent.
  29. C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenny-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
    [CrossRef]
  30. D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–453 (1988).
    [CrossRef]

1999 (3)

Y. Zhou, S. Constantine, S. Harrel, and L. D. Ziegler, “The probe frequency dependence of nonresonant femtosecond pump–probe nuclear responses: undercutting vibrational inhomogeneities,” J. Chem. Phys. 110, 5893–5905 (1999).
[CrossRef]

Y. Zhou, S. Constantine, J. A. Gardecki, and L. D. Ziegler, “Dispersed ultrafast nonresonant electronic responses: oscillations and near resonance effects,” Chem. Phys. Lett. 314, 73–82 (1999).
[CrossRef]

J.-K. Wang, T.-L. Chiu, C.-H. Chi, and C.-K. Sun, “Nonlinear refraction and absorption measurements with chirped femtosecond laser pulses: experiments and simulations,” J. Opt. Soc. Am. B 16, 651–661 (1999).
[CrossRef]

1997 (2)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

I. Kang, T. Krauss, and F. Wise, “Sensitive measurement of nonlinear refraction and two-photon absorption by spectrally resolved two-beam coupling,” Opt. Lett. 22, 1077–1079 (1997).
[CrossRef] [PubMed]

1996 (2)

D. McMorrow, N. Thantu, J. S. Melinger, S. K. Kim, and W. T. Lotshaw, “Probing the microscopic molecular environments in liquids: intermolecular dynamics of CS2 in alkane solvents,” J. Phys. Chem. 100, 10, 389–10, 399 (1996).
[CrossRef]

T. Steffen, J. T. Fourkas, and K. Duppen, “Time-resolved four-and six-wave mixing in liquids. I. Theory,” J. Chem. Phys. 105, 7364–7382 (1996).
[CrossRef]

1995 (3)

M. Chachisvilis, H. Fidder, and V. Sundström, “Electronic coherence in pseudo two-colour pump–probe spectroscopy,” Chem. Phys. Lett. 234, 141–150 (1995).
[CrossRef]

L. Zhu, W. Wang, J. T. Sage, and P. M. Champion, “Femto-second time-resolved vibrational spectroscopy of heme proteins,” J. Raman Spectrosc. 26, 527–534 (1995).
[CrossRef]

P. Vohringer, R. A. Westervelt, T.-S. Yang, D. C. Arnett, M. J. Feldstein, and N. F. Scherer, “Solvent and frequency dependence of vibrational dephasing on femtosecond time-scales,” J. Raman Spectrosc. 26, 535–551 (1995).
[CrossRef]

1994 (4)

L. Zhu, P. Li, M. Huang, J. T. Sage, and P. M. Champion, “Real time observation of low frequency heme protein vibrations using femtosecond coherence spectroscopy,” Phys. Rev. Lett. 72, 301–304 (1994).
[CrossRef] [PubMed]

P. Cong, Y. J. Yan, H. P. Deuel, and J. D. Simon, “Non-Markovian optical dephasing dynamics in room temperature liquids investigated by femtosecond transient absorption spectroscopy: theory and experiment,” J. Chem. Phys. 100, 7855–7866 (1994).
[CrossRef]

K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11, 1595–1608 (1994).
[CrossRef]

K. W. DeLong and R. Trebino, “Improved ultrashort pulse-retrieval algorithm for frequency-resolved optical gating,” J. Opt. Soc. Am. B 11, 2429–2437 (1994).
[CrossRef]

1993 (4)

R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. B 10, 1101–1111 (1993).
[CrossRef]

D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[CrossRef]

D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
[CrossRef] [PubMed]

P. Cong, H. P. Deuel, and J. D. Simon, “Using optical coherence to measure the ultrafast electronic dephasing of large molecules in room-temperature liquids,” Chem. Phys. Lett. 212, 367–373 (1993).
[CrossRef]

1992 (2)

W. T. Pollard and R. A. Mathies, “Analysis of femtosecond dynamic absorption spectra of nonstationary states,” Annu. Rev. Phys. Chem. 43, 497–523 (1992).
[CrossRef] [PubMed]

G. Stock and W. Domcke, “Detection of ultrafast molecular-excited-state dynamics with time- and frequency-resolved pump–probe spectroscopy,” Phys. Rev. A 45, 3032–3040 (1992).
[CrossRef] [PubMed]

1989 (1)

H. P. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160, 101–107 (1989).
[CrossRef]

1988 (1)

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–453 (1988).
[CrossRef]

1987 (1)

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenny-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

1985 (2)

M. W. Balk and G. R. Fleming, “Dependence of the coherence spike on the material dephasing time in pump–probe experiments,” J. Chem. Phys. 83, 4300–4307 (1985).
[CrossRef]

S. L. Palfrey and T. F. Heinz, “Coherent interactions in pump–probe absorption measurements: the effect of phase gratings,” J. Opt. Soc. Am. B 2, 674–678 (1985).
[CrossRef]

1977 (1)

R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
[CrossRef]

Arnett, D. C.

P. Vohringer, R. A. Westervelt, T.-S. Yang, D. C. Arnett, M. J. Feldstein, and N. F. Scherer, “Solvent and frequency dependence of vibrational dephasing on femtosecond time-scales,” J. Raman Spectrosc. 26, 535–551 (1995).
[CrossRef]

Balk, M. W.

M. W. Balk and G. R. Fleming, “Dependence of the coherence spike on the material dephasing time in pump–probe experiments,” J. Chem. Phys. 83, 4300–4307 (1985).
[CrossRef]

Becker, P. C.

H. P. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160, 101–107 (1989).
[CrossRef]

Bigot, J.-Y.

H. P. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160, 101–107 (1989).
[CrossRef]

Chachisvilis, M.

M. Chachisvilis, H. Fidder, and V. Sundström, “Electronic coherence in pseudo two-colour pump–probe spectroscopy,” Chem. Phys. Lett. 234, 141–150 (1995).
[CrossRef]

Champion, P. M.

L. Zhu, W. Wang, J. T. Sage, and P. M. Champion, “Femto-second time-resolved vibrational spectroscopy of heme proteins,” J. Raman Spectrosc. 26, 527–534 (1995).
[CrossRef]

L. Zhu, P. Li, M. Huang, J. T. Sage, and P. M. Champion, “Real time observation of low frequency heme protein vibrations using femtosecond coherence spectroscopy,” Phys. Rev. Lett. 72, 301–304 (1994).
[CrossRef] [PubMed]

Chi, C.-H.

Chiu, T.-L.

Cong, P.

P. Cong, Y. J. Yan, H. P. Deuel, and J. D. Simon, “Non-Markovian optical dephasing dynamics in room temperature liquids investigated by femtosecond transient absorption spectroscopy: theory and experiment,” J. Chem. Phys. 100, 7855–7866 (1994).
[CrossRef]

P. Cong, H. P. Deuel, and J. D. Simon, “Using optical coherence to measure the ultrafast electronic dephasing of large molecules in room-temperature liquids,” Chem. Phys. Lett. 212, 367–373 (1993).
[CrossRef]

Constantine, S.

Y. Zhou, S. Constantine, S. Harrel, and L. D. Ziegler, “The probe frequency dependence of nonresonant femtosecond pump–probe nuclear responses: undercutting vibrational inhomogeneities,” J. Chem. Phys. 110, 5893–5905 (1999).
[CrossRef]

Y. Zhou, S. Constantine, J. A. Gardecki, and L. D. Ziegler, “Dispersed ultrafast nonresonant electronic responses: oscillations and near resonance effects,” Chem. Phys. Lett. 314, 73–82 (1999).
[CrossRef]

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

K. W. DeLong and R. Trebino, “Improved ultrashort pulse-retrieval algorithm for frequency-resolved optical gating,” J. Opt. Soc. Am. B 11, 2429–2437 (1994).
[CrossRef]

K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11, 1595–1608 (1994).
[CrossRef]

Deuel, H. P.

P. Cong, Y. J. Yan, H. P. Deuel, and J. D. Simon, “Non-Markovian optical dephasing dynamics in room temperature liquids investigated by femtosecond transient absorption spectroscopy: theory and experiment,” J. Chem. Phys. 100, 7855–7866 (1994).
[CrossRef]

P. Cong, H. P. Deuel, and J. D. Simon, “Using optical coherence to measure the ultrafast electronic dephasing of large molecules in room-temperature liquids,” Chem. Phys. Lett. 212, 367–373 (1993).
[CrossRef]

Domcke, W.

G. Stock and W. Domcke, “Detection of ultrafast molecular-excited-state dynamics with time- and frequency-resolved pump–probe spectroscopy,” Phys. Rev. A 45, 3032–3040 (1992).
[CrossRef] [PubMed]

Duppen, K.

T. Steffen, J. T. Fourkas, and K. Duppen, “Time-resolved four-and six-wave mixing in liquids. I. Theory,” J. Chem. Phys. 105, 7364–7382 (1996).
[CrossRef]

Feldstein, M. J.

P. Vohringer, R. A. Westervelt, T.-S. Yang, D. C. Arnett, M. J. Feldstein, and N. F. Scherer, “Solvent and frequency dependence of vibrational dephasing on femtosecond time-scales,” J. Raman Spectrosc. 26, 535–551 (1995).
[CrossRef]

Fidder, H.

M. Chachisvilis, H. Fidder, and V. Sundström, “Electronic coherence in pseudo two-colour pump–probe spectroscopy,” Chem. Phys. Lett. 234, 141–150 (1995).
[CrossRef]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Fleming, G. R.

M. W. Balk and G. R. Fleming, “Dependence of the coherence spike on the material dephasing time in pump–probe experiments,” J. Chem. Phys. 83, 4300–4307 (1985).
[CrossRef]

Fourkas, J. T.

T. Steffen, J. T. Fourkas, and K. Duppen, “Time-resolved four-and six-wave mixing in liquids. I. Theory,” J. Chem. Phys. 105, 7364–7382 (1996).
[CrossRef]

Fragnito, H. P.

H. P. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160, 101–107 (1989).
[CrossRef]

Gardecki, J. A.

Y. Zhou, S. Constantine, J. A. Gardecki, and L. D. Ziegler, “Dispersed ultrafast nonresonant electronic responses: oscillations and near resonance effects,” Chem. Phys. Lett. 314, 73–82 (1999).
[CrossRef]

Harrel, S.

Y. Zhou, S. Constantine, S. Harrel, and L. D. Ziegler, “The probe frequency dependence of nonresonant femtosecond pump–probe nuclear responses: undercutting vibrational inhomogeneities,” J. Chem. Phys. 110, 5893–5905 (1999).
[CrossRef]

Heinz, T. F.

Hellwarth, R. W.

R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
[CrossRef]

Huang, M.

L. Zhu, P. Li, M. Huang, J. T. Sage, and P. M. Champion, “Real time observation of low frequency heme protein vibrations using femtosecond coherence spectroscopy,” Phys. Rev. Lett. 72, 301–304 (1994).
[CrossRef] [PubMed]

Kalpouzos, C.

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenny-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

Kane, D. J.

K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11, 1595–1608 (1994).
[CrossRef]

D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
[CrossRef] [PubMed]

R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. B 10, 1101–1111 (1993).
[CrossRef]

D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[CrossRef]

Kang, I.

Kenney-Wallace, G. A.

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–453 (1988).
[CrossRef]

Kenny-Wallace, G. A.

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenny-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

Kim, S. K.

D. McMorrow, N. Thantu, J. S. Melinger, S. K. Kim, and W. T. Lotshaw, “Probing the microscopic molecular environments in liquids: intermolecular dynamics of CS2 in alkane solvents,” J. Phys. Chem. 100, 10, 389–10, 399 (1996).
[CrossRef]

Krauss, T.

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Li, P.

L. Zhu, P. Li, M. Huang, J. T. Sage, and P. M. Champion, “Real time observation of low frequency heme protein vibrations using femtosecond coherence spectroscopy,” Phys. Rev. Lett. 72, 301–304 (1994).
[CrossRef] [PubMed]

Lotshaw, W. T.

D. McMorrow, N. Thantu, J. S. Melinger, S. K. Kim, and W. T. Lotshaw, “Probing the microscopic molecular environments in liquids: intermolecular dynamics of CS2 in alkane solvents,” J. Phys. Chem. 100, 10, 389–10, 399 (1996).
[CrossRef]

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–453 (1988).
[CrossRef]

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenny-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

Mathies, R. A.

W. T. Pollard and R. A. Mathies, “Analysis of femtosecond dynamic absorption spectra of nonstationary states,” Annu. Rev. Phys. Chem. 43, 497–523 (1992).
[CrossRef] [PubMed]

McMorrow, D.

D. McMorrow, N. Thantu, J. S. Melinger, S. K. Kim, and W. T. Lotshaw, “Probing the microscopic molecular environments in liquids: intermolecular dynamics of CS2 in alkane solvents,” J. Phys. Chem. 100, 10, 389–10, 399 (1996).
[CrossRef]

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–453 (1988).
[CrossRef]

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenny-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

Melinger, J. S.

D. McMorrow, N. Thantu, J. S. Melinger, S. K. Kim, and W. T. Lotshaw, “Probing the microscopic molecular environments in liquids: intermolecular dynamics of CS2 in alkane solvents,” J. Phys. Chem. 100, 10, 389–10, 399 (1996).
[CrossRef]

Palfrey, S. L.

Pollard, W. T.

W. T. Pollard and R. A. Mathies, “Analysis of femtosecond dynamic absorption spectra of nonstationary states,” Annu. Rev. Phys. Chem. 43, 497–523 (1992).
[CrossRef] [PubMed]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Sage, J. T.

L. Zhu, W. Wang, J. T. Sage, and P. M. Champion, “Femto-second time-resolved vibrational spectroscopy of heme proteins,” J. Raman Spectrosc. 26, 527–534 (1995).
[CrossRef]

L. Zhu, P. Li, M. Huang, J. T. Sage, and P. M. Champion, “Real time observation of low frequency heme protein vibrations using femtosecond coherence spectroscopy,” Phys. Rev. Lett. 72, 301–304 (1994).
[CrossRef] [PubMed]

Scherer, N. F.

P. Vohringer, R. A. Westervelt, T.-S. Yang, D. C. Arnett, M. J. Feldstein, and N. F. Scherer, “Solvent and frequency dependence of vibrational dephasing on femtosecond time-scales,” J. Raman Spectrosc. 26, 535–551 (1995).
[CrossRef]

Shank, C. V.

H. P. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160, 101–107 (1989).
[CrossRef]

Simon, J. D.

P. Cong, Y. J. Yan, H. P. Deuel, and J. D. Simon, “Non-Markovian optical dephasing dynamics in room temperature liquids investigated by femtosecond transient absorption spectroscopy: theory and experiment,” J. Chem. Phys. 100, 7855–7866 (1994).
[CrossRef]

P. Cong, H. P. Deuel, and J. D. Simon, “Using optical coherence to measure the ultrafast electronic dephasing of large molecules in room-temperature liquids,” Chem. Phys. Lett. 212, 367–373 (1993).
[CrossRef]

Steffen, T.

T. Steffen, J. T. Fourkas, and K. Duppen, “Time-resolved four-and six-wave mixing in liquids. I. Theory,” J. Chem. Phys. 105, 7364–7382 (1996).
[CrossRef]

Stock, G.

G. Stock and W. Domcke, “Detection of ultrafast molecular-excited-state dynamics with time- and frequency-resolved pump–probe spectroscopy,” Phys. Rev. A 45, 3032–3040 (1992).
[CrossRef] [PubMed]

Sun, C.-K.

Sundström, V.

M. Chachisvilis, H. Fidder, and V. Sundström, “Electronic coherence in pseudo two-colour pump–probe spectroscopy,” Chem. Phys. Lett. 234, 141–150 (1995).
[CrossRef]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Thantu, N.

D. McMorrow, N. Thantu, J. S. Melinger, S. K. Kim, and W. T. Lotshaw, “Probing the microscopic molecular environments in liquids: intermolecular dynamics of CS2 in alkane solvents,” J. Phys. Chem. 100, 10, 389–10, 399 (1996).
[CrossRef]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

K. W. DeLong and R. Trebino, “Improved ultrashort pulse-retrieval algorithm for frequency-resolved optical gating,” J. Opt. Soc. Am. B 11, 2429–2437 (1994).
[CrossRef]

K. W. DeLong, R. Trebino, and D. J. Kane, “Comparison of ultrashort-pulse frequency-resolved optical-gating traces for three common beam geometries,” J. Opt. Soc. Am. B 11, 1595–1608 (1994).
[CrossRef]

D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18, 823–825 (1993).
[CrossRef] [PubMed]

D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[CrossRef]

R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. B 10, 1101–1111 (1993).
[CrossRef]

Vohringer, P.

P. Vohringer, R. A. Westervelt, T.-S. Yang, D. C. Arnett, M. J. Feldstein, and N. F. Scherer, “Solvent and frequency dependence of vibrational dephasing on femtosecond time-scales,” J. Raman Spectrosc. 26, 535–551 (1995).
[CrossRef]

Wang, J.-K.

Wang, W.

L. Zhu, W. Wang, J. T. Sage, and P. M. Champion, “Femto-second time-resolved vibrational spectroscopy of heme proteins,” J. Raman Spectrosc. 26, 527–534 (1995).
[CrossRef]

Westervelt, R. A.

P. Vohringer, R. A. Westervelt, T.-S. Yang, D. C. Arnett, M. J. Feldstein, and N. F. Scherer, “Solvent and frequency dependence of vibrational dephasing on femtosecond time-scales,” J. Raman Spectrosc. 26, 535–551 (1995).
[CrossRef]

Wise, F.

Yan, Y. J.

P. Cong, Y. J. Yan, H. P. Deuel, and J. D. Simon, “Non-Markovian optical dephasing dynamics in room temperature liquids investigated by femtosecond transient absorption spectroscopy: theory and experiment,” J. Chem. Phys. 100, 7855–7866 (1994).
[CrossRef]

Yang, T.-S.

P. Vohringer, R. A. Westervelt, T.-S. Yang, D. C. Arnett, M. J. Feldstein, and N. F. Scherer, “Solvent and frequency dependence of vibrational dephasing on femtosecond time-scales,” J. Raman Spectrosc. 26, 535–551 (1995).
[CrossRef]

Zhou, Y.

Y. Zhou, S. Constantine, J. A. Gardecki, and L. D. Ziegler, “Dispersed ultrafast nonresonant electronic responses: oscillations and near resonance effects,” Chem. Phys. Lett. 314, 73–82 (1999).
[CrossRef]

Y. Zhou, S. Constantine, S. Harrel, and L. D. Ziegler, “The probe frequency dependence of nonresonant femtosecond pump–probe nuclear responses: undercutting vibrational inhomogeneities,” J. Chem. Phys. 110, 5893–5905 (1999).
[CrossRef]

Zhu, L.

L. Zhu, W. Wang, J. T. Sage, and P. M. Champion, “Femto-second time-resolved vibrational spectroscopy of heme proteins,” J. Raman Spectrosc. 26, 527–534 (1995).
[CrossRef]

L. Zhu, P. Li, M. Huang, J. T. Sage, and P. M. Champion, “Real time observation of low frequency heme protein vibrations using femtosecond coherence spectroscopy,” Phys. Rev. Lett. 72, 301–304 (1994).
[CrossRef] [PubMed]

Ziegler, L. D.

Y. Zhou, S. Constantine, S. Harrel, and L. D. Ziegler, “The probe frequency dependence of nonresonant femtosecond pump–probe nuclear responses: undercutting vibrational inhomogeneities,” J. Chem. Phys. 110, 5893–5905 (1999).
[CrossRef]

Y. Zhou, S. Constantine, J. A. Gardecki, and L. D. Ziegler, “Dispersed ultrafast nonresonant electronic responses: oscillations and near resonance effects,” Chem. Phys. Lett. 314, 73–82 (1999).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

W. T. Pollard and R. A. Mathies, “Analysis of femtosecond dynamic absorption spectra of nonstationary states,” Annu. Rev. Phys. Chem. 43, 497–523 (1992).
[CrossRef] [PubMed]

Chem. Phys. Lett. (4)

H. P. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse,” Chem. Phys. Lett. 160, 101–107 (1989).
[CrossRef]

P. Cong, H. P. Deuel, and J. D. Simon, “Using optical coherence to measure the ultrafast electronic dephasing of large molecules in room-temperature liquids,” Chem. Phys. Lett. 212, 367–373 (1993).
[CrossRef]

M. Chachisvilis, H. Fidder, and V. Sundström, “Electronic coherence in pseudo two-colour pump–probe spectroscopy,” Chem. Phys. Lett. 234, 141–150 (1995).
[CrossRef]

Y. Zhou, S. Constantine, J. A. Gardecki, and L. D. Ziegler, “Dispersed ultrafast nonresonant electronic responses: oscillations and near resonance effects,” Chem. Phys. Lett. 314, 73–82 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[CrossRef]

D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–453 (1988).
[CrossRef]

J. Chem. Phys. (4)

T. Steffen, J. T. Fourkas, and K. Duppen, “Time-resolved four-and six-wave mixing in liquids. I. Theory,” J. Chem. Phys. 105, 7364–7382 (1996).
[CrossRef]

P. Cong, Y. J. Yan, H. P. Deuel, and J. D. Simon, “Non-Markovian optical dephasing dynamics in room temperature liquids investigated by femtosecond transient absorption spectroscopy: theory and experiment,” J. Chem. Phys. 100, 7855–7866 (1994).
[CrossRef]

Y. Zhou, S. Constantine, S. Harrel, and L. D. Ziegler, “The probe frequency dependence of nonresonant femtosecond pump–probe nuclear responses: undercutting vibrational inhomogeneities,” J. Chem. Phys. 110, 5893–5905 (1999).
[CrossRef]

M. W. Balk and G. R. Fleming, “Dependence of the coherence spike on the material dephasing time in pump–probe experiments,” J. Chem. Phys. 83, 4300–4307 (1985).
[CrossRef]

J. Opt. Soc. Am. B (5)

J. Phys. Chem. (2)

D. McMorrow, N. Thantu, J. S. Melinger, S. K. Kim, and W. T. Lotshaw, “Probing the microscopic molecular environments in liquids: intermolecular dynamics of CS2 in alkane solvents,” J. Phys. Chem. 100, 10, 389–10, 399 (1996).
[CrossRef]

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenny-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

J. Raman Spectrosc. (2)

L. Zhu, W. Wang, J. T. Sage, and P. M. Champion, “Femto-second time-resolved vibrational spectroscopy of heme proteins,” J. Raman Spectrosc. 26, 527–534 (1995).
[CrossRef]

P. Vohringer, R. A. Westervelt, T.-S. Yang, D. C. Arnett, M. J. Feldstein, and N. F. Scherer, “Solvent and frequency dependence of vibrational dephasing on femtosecond time-scales,” J. Raman Spectrosc. 26, 535–551 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

G. Stock and W. Domcke, “Detection of ultrafast molecular-excited-state dynamics with time- and frequency-resolved pump–probe spectroscopy,” Phys. Rev. A 45, 3032–3040 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

L. Zhu, P. Li, M. Huang, J. T. Sage, and P. M. Champion, “Real time observation of low frequency heme protein vibrations using femtosecond coherence spectroscopy,” Phys. Rev. Lett. 72, 301–304 (1994).
[CrossRef] [PubMed]

Prog. Quantum Electron. (1)

R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[CrossRef]

Other (4)

One of the reviewers of this manuscript pointed out that the idea of OHD FROG is described in R. P. Trebino, and K. W. DeLong, “Method and apparatus for measuring the phase and intensity of one or more ultrashort light pulses and for measuring the optical properties of materials,” U.S. patent 5, 530, 544 (June 25, 1996). An outline of a simplified procedure for pulse phase retrieval based on these OHD signals is also given in that patent.

D. C. Arnett, T.-S. Yang, C. Moser, and N. F. Scherer, “Bath fluctuations from optical coherence: liquids and proteins,” in Femtochemistry: The Lausanne Conference, M. Chergui, ed. (World Scientific, Singapore, 1995), pp. 407–413.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, New York, 1995).

S. Constantine, Y. Zhou, J. A. Gardecki, and L. D. Ziegler, “What can be learned from dispersed optical heterodyne detected ultrafast nuclear reponses?” submitted to J. Chem. Phys.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental dispersed OHD birefringent responses of chloroform pumped and probed by identical ∼35-fs sech2 pulses (∼1.2 transform limit) for several indicated detunings from the carrier wavelength (600 nm). Damped detuning oscillations that are due to the nonresonant electronic response are evident for delays from -0.15 ps to 0. The oscillatory features in the region of positive times are due primarily to the chloroform intramolecular vibrational response. The 0-, 130-, and 260-cm-1 responses have been raised by 0.2 unit to display more clearly the differences between these dispersed responses.

Fig. 2
Fig. 2

Calculated OHD birefringent and dichroic spectrograms for nonresonant electronic responses that are due to 40-fs transform-limited Gaussian pulses (upper row) and to 40-fs transform-limited sech2 pulses (lower row). The corresponding PG FROG spectrograms are also given.

Fig. 3
Fig. 3

Top, dispersed OHD birefringent nonresonant electronic responses that are due to transform-limited 40-fs Gaussian pulses as a function of interpulse delay for a given detuning from probe pulse carrier frequency. Bottom, the corresponding OHD differential probe spectra of the birefringent spectrogram as a function of interpulse delay. These responses–spectra are just normalized slices through the spectrogram given in Fig. 2 along the two perpendicular time and frequency dimensions.

Fig. 4
Fig. 4

Top, dispersed OHD dichroic nonresonant electronic responses that are due to transform-limited 40-fs Gaussian pulses as a function of interpulse delay for a given detuning from probe pulse carrier frequency. Bottom, the corresponding OHD differential probe spectra of the birefringent spectrogram as a function of interpulse delay. These responses–spectra are just normalized slices through the spectrogram given in Fig. 2 along the two perpendicular time and frequency dimensions.

Fig. 5
Fig. 5

Comparison of OHD birefringent response at two probe detuning (ΔD) frequencies and for two pulse durations (τp=FWHH) for Gaussian and sech2 pulse shapes.

Fig. 6
Fig. 6

Calculated OHD birefringence and dichroism nonresonant response spectrograms that are due to a 40-fs pump pulse and a 150-fs one-sided exponential probe pulse, and the corresponding PG FROG spectrogram.

Fig. 7
Fig. 7

OHD birefringence (Bir.), OHD dichroism (Dic.), and PG FROG spectrograms for the nonresonant electronic responses that are due to transform-limited (TL) 40-fs Gaussian pulses and to 40-fs linearly chirped Gaussian pulses (±1.3 TL). Pump and probe pulses are taken to be identical.

Fig. 8
Fig. 8

Bottom, experimental nonresonant electronic birefringent OHD spectrograms (Suprasil quartz sample) that are due to 44-fs, 1.14 transform-limited, near-Gaussian pump and probe pulses. The spectrogram is normalized to the peak intensity for each detuning frequency. Responses for the range of detunings across the red and blue sides of the probe pulse, which generate this spectrogram, are also given. The corresponding theoretically calculated nonresonant electronic responses that are due to linearly chirped (1.14 transform-limited) 44-fs Gaussian pulses are displayed in the top row.

Fig. 9
Fig. 9

Right, experimental OHD nonresonant birefrigent spectrogram resulting from a 42-fs Gaussian pump pulse and a 380-fs Gaussian probe. The probe pulse spectrum was ∼1.3 that of a transform-limited Gaussian pulse. This response was generated by a quartz sample. Left, a corresponding calculated OHD spectrogram for a (1.3) linearly chirped Gaussian probe pulse.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

S(ΔD,τ)=-2 Im[E˜LO*(ΔD)P˜(3)(ΔD,τ)],
E˜LO(ΔD)=12π-dt exp(-iΔDt)EˆLO(t),
P˜(3)(ΔD,τ)=12π-dt exp(-iΔDt)Pˆ(3)(t,τ).
ΔTT(ΔD,τ)=S(ΔD,τ)|E˜pr(ΔD)|2.
Pˆ(3)(t,τ)γEˆpr(t-τ)Eˆpu*(t)Eˆpu(t)γEˆpr(t-τ)Iˆpu(t).
SFROG(ΔD,τ)=|P˜(3)(ΔD,τ)|2.
Stot(τ)=-+ S(ΔD,τ)dΔD
-Imexp(-iθ)γ×-+dtIˆpu(t)Eˆpr(t-τ)-+dtEˆpr*(t-τ)×-+dΔD exp[-iΔD(t-t)]
-Imexp(-iθ)γ-+dtIˆpu(t)Iˆpr(t-τ).
Stot(ΔD)=-+ S(ΔD,τ)dτ
-Imexp(-iθ)γ-+dt exp(-iΔDt)Iˆpu(t)×-+dt exp(-iΔDt)×-+ dτEˆpr(t-τ)Eˆpr*(t-τ)
-Imexp(-iθ)γ-+ dtIˆpu(t)Ipr(ΔD).
Sbir(ΔD,τ)Γ-2 exp(-Γ2τ2/3)×exp(-2ΔD2/3Γ2)cos(2ΔDτ/3).
Sdic(ΔD,τ)-Γ-2 exp(-Γ2τ2/3)×exp(-2ΔD2/3Γ2)sin(2ΔDτ/3).
Sbir(ΔD,τ)exp(-Γ2β2τ2/2a)exp[-ΔD2(β2+Γ2)/2aβ2]cos(Γ2ΔDτ/a),
Sdic(ΔD,τ)-exp(-Γ2β2τ2/2a)exp[-ΔD2(β2+Γ2)/2aβ2]sin(Γ2ΔDτ/a),
Sbir(ΔD,τ)exp(-β2τ2/2)exp(-ΔD2/2β2)cos(ΔDτ),
Sdic(ΔD,τ)-exp(-β2τ2/2)exp(-ΔD2/2β2)sin(ΔDτ).
W(τ)=-+ dtF(t-τ)G(t)=F(τ) * G(τ),
S(ΔD,τ)-Im[exp(-iθ)W(τ)/p*].
S(ΔD,τ)
=Im{exp(-iθ)[π2/(2aΓ*+|Γ|2)]1/2
×exp[2iΔDτa/(2a+Γ)]exp[-ΔD2a/Γ*(2a+Γ)]
×exp[-2aΓτ2/(2a+Γ)]}.

Metrics