Abstract

A single isolated defect within a two-dimensional photonic crystal semiconductor slab is shown to provide a lithographically tunable doubly degenerate emission resonance within the photonic bandgap, with a measured quality factor (Q) of 80–150, depending on the cavity geometry. Spontaneous emission outside the cavity linewidth is below the measurement limit of our system. Stimulated emission from this photonic crystal defect cavity is demonstrated at room temperature under pulsed optical pumping in spite of the large surface-to-volume ratio of this cavity and the associated large nonradiative surface recombination rate.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  4. S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
    [CrossRef] [PubMed]
  5. E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
    [CrossRef] [PubMed]
  6. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP–InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
    [CrossRef]
  7. S. Lin, V. Hietala, S. Lyo, and A. Zaslavsky, “Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity,” Appl. Phys. Lett. 68, 3233–3235 (1996).
    [CrossRef]
  8. D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
    [CrossRef]
  9. R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
    [CrossRef]
  10. C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).
    [CrossRef]
  11. R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).
    [CrossRef]
  12. N. Kawai, M. Wada, and K. Sakoda, “Numerical analysis of localized defect modes in a photonic crystal: two-dimensional triangular lattice with square rods,” Jpn. J. Appl. Phys., 37, 4644–4647 (1998), Pt. 1.
    [CrossRef]
  13. T. Ueta, K. Ohtaka, N. Kawai, and K. Sakoda, “Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).
    [CrossRef]
  14. R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).
  15. P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc.: Optoelectron. 145, 384–390 (1998).
  16. O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [CrossRef] [PubMed]
  17. O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
    [CrossRef]
  18. J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
    [CrossRef]
  19. See, for example, A. Yariv, Quantum Electronics (Wiley, New York, 1989).

1999

R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[CrossRef]

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).
[CrossRef]

R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).
[CrossRef]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
[CrossRef]

J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

1998

N. Kawai, M. Wada, and K. Sakoda, “Numerical analysis of localized defect modes in a photonic crystal: two-dimensional triangular lattice with square rods,” Jpn. J. Appl. Phys., 37, 4644–4647 (1998), Pt. 1.
[CrossRef]

T. Ueta, K. Ohtaka, N. Kawai, and K. Sakoda, “Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).
[CrossRef]

R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).

P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc.: Optoelectron. 145, 384–390 (1998).

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

1997

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP–InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
[CrossRef]

1996

S. Lin, V. Hietala, S. Lyo, and A. Zaslavsky, “Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity,” Appl. Phys. Lett. 68, 3233–3235 (1996).
[CrossRef]

1991

S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
[CrossRef] [PubMed]

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef] [PubMed]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

1946

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Baba, T.

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP–InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
[CrossRef]

Benisty, H.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

Boroditsky, M.

R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).

Brommer, K.

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef] [PubMed]

Coccioli, R.

R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).

D’Urso, B.

R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[CrossRef]

Dalichaouch, R.

S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
[CrossRef] [PubMed]

Dapkus, P.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

De la Rue, R.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).
[CrossRef]

Fan, S.

P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc.: Optoelectron. 145, 384–390 (1998).

Gmitter, T.

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef] [PubMed]

Hietala, V.

S. Lin, V. Hietala, S. Lyo, and A. Zaslavsky, “Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity,” Appl. Phys. Lett. 68, 3233–3235 (1996).
[CrossRef]

Houdre, R.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

Hwang, J.

J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Joannopoulos, J.

P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc.: Optoelectron. 145, 384–390 (1998).

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, S.

P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc.: Optoelectron. 145, 384–390 (1998).

Kawai, N.

N. Kawai, M. Wada, and K. Sakoda, “Numerical analysis of localized defect modes in a photonic crystal: two-dimensional triangular lattice with square rods,” Jpn. J. Appl. Phys., 37, 4644–4647 (1998), Pt. 1.
[CrossRef]

T. Ueta, K. Ohtaka, N. Kawai, and K. Sakoda, “Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).
[CrossRef]

Kim, I.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Kim, K.

R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).

Kitzke, B.

R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).
[CrossRef]

Krauss, T.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

Labilloy, D.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

Lee, R.

R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[CrossRef]

R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).
[CrossRef]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, Y.

J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Lin, S.

S. Lin, V. Hietala, S. Lyo, and A. Zaslavsky, “Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity,” Appl. Phys. Lett. 68, 3233–3235 (1996).
[CrossRef]

Lyo, S.

S. Lin, V. Hietala, S. Lyo, and A. Zaslavsky, “Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity,” Appl. Phys. Lett. 68, 3233–3235 (1996).
[CrossRef]

McCall, S.

S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
[CrossRef] [PubMed]

Meade, R.

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef] [PubMed]

O’Brien, J.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Oesterle, U.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

Ohtaka, K.

T. Ueta, K. Ohtaka, N. Kawai, and K. Sakoda, “Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).
[CrossRef]

Painter, O.

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
[CrossRef]

R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).
[CrossRef]

R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[CrossRef]

Platzman, P.

S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
[CrossRef] [PubMed]

Purcell, E.

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Rahmat-Samii, Y.

R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).

Rappe, A.

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef] [PubMed]

Ryu, H.

J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Sakoda, K.

T. Ueta, K. Ohtaka, N. Kawai, and K. Sakoda, “Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).
[CrossRef]

N. Kawai, M. Wada, and K. Sakoda, “Numerical analysis of localized defect modes in a photonic crystal: two-dimensional triangular lattice with square rods,” Jpn. J. Appl. Phys., 37, 4644–4647 (1998), Pt. 1.
[CrossRef]

Scherer, A.

R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).
[CrossRef]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
[CrossRef]

Schultz, S.

S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
[CrossRef] [PubMed]

Smith, C.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

Smith, D.

S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
[CrossRef] [PubMed]

Ueta, T.

T. Ueta, K. Ohtaka, N. Kawai, and K. Sakoda, “Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).
[CrossRef]

Villeneuve, P.

P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc.: Optoelectron. 145, 384–390 (1998).

Vuckovic, J.

Wada, M.

N. Kawai, M. Wada, and K. Sakoda, “Numerical analysis of localized defect modes in a photonic crystal: two-dimensional triangular lattice with square rods,” Jpn. J. Appl. Phys., 37, 4644–4647 (1998), Pt. 1.
[CrossRef]

Weisbuch, C.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

Yablonovitch, E.

R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yariv, A.

R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[CrossRef]

R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).
[CrossRef]

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Zaslavsky, A.

S. Lin, V. Hietala, S. Lyo, and A. Zaslavsky, “Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity,” Appl. Phys. Lett. 68, 3233–3235 (1996).
[CrossRef]

Appl. Phys. Lett.

S. Lin, V. Hietala, S. Lyo, and A. Zaslavsky, “Photonic band gap quantum well and quantum box structures: a high-Q resonant cavity,” Appl. Phys. Lett. 68, 3233–3235 (1996).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, C. Smith, R. Houdre, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998).
[CrossRef]

R. Lee, O. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74, 1522–1524 (1999).
[CrossRef]

Electron. Lett.

C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystals,” Electron. Lett. 35, 228–230 (1999).
[CrossRef]

R. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Photonic bandgap disk laser,” Electron. Lett. 35, 569–570 (1999).
[CrossRef]

IEE Proc.: Optoelectron.

R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc.: Optoelectron. 145, 391–397 (1998).

P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc.: Optoelectron. 145, 384–390 (1998).

IEEE J. Sel. Top. Quantum Electron.

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP–InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808–830 (1997).
[CrossRef]

J. Appl. Phys.

T. Ueta, K. Ohtaka, N. Kawai, and K. Sakoda, “Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

N. Kawai, M. Wada, and K. Sakoda, “Numerical analysis of localized defect modes in a photonic crystal: two-dimensional triangular lattice with square rods,” Jpn. J. Appl. Phys., 37, 4644–4647 (1998), Pt. 1.
[CrossRef]

Phys. Rev.

E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B

J. Hwang, H. Ryu, and Y. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
[CrossRef] [PubMed]

E. Yablonovitch, T. Gmitter, R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Donor and acceptor modes in photonic band-structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef] [PubMed]

Science

O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Other

See, for example, A. Yariv, Quantum Electronics (Wiley, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Oblique-angle scanning electron micrograph image of a typical two-dimensional photonic crystal defect cavity fabricated in an InGaAsP semiconductor slab.

Fig. 2
Fig. 2

Cross section through the patterned membrane structure. The InGaAsP slab in the measured devices is approximately 150 nm thick, and the air gap underneath the membrane can be seen.

Fig. 3
Fig. 3

Left: Calculated band structure for the two-dimensional photonic crystal for the design parameters (nd)/λ0.33 and r/a0.35. The bandgap lies in the frequency range 0.348–0.465, with the midgap at ≈0.4065. Right: Fraction of the first Brillouin zone, which lies below the light line.

Fig. 4
Fig. 4

Comparison of the photoluminescence spectra from a photonic crystal slab and from a slab with a single defect cavity with a lattice spacing of a591 nm. The top figure shows that the emission spectrum from the crystal slab has been inhibited below our measurement sensitivity limit. The lower figure shows the cavity resonance.

Fig. 5
Fig. 5

Defect cavity spontaneous emission tuning. The normalized spontaneous emission spectrum for defect cavities based on photonic crystals with different lattice spacings are shown, with the lattice spacing a given to the left of each plot. The dark-gray bands indicate the estimated defect frequency a/λ=0.4065±1%. The light-gray bands indicate the estimated band edge (with 5% error), as described in the text. In (c) and (d), only the upper (high-frequency) band edge is visible; in (g) and (h), only the lower (low-frequency) band edge is visible.

Fig. 6
Fig. 6

Defect cavity light output versus average pump power plot. The two inset figures show the pumping and detection configuration (top) and a similar LL plot for longer pumping pulses (bottom). The light output shows a clear change in slope efficiency, indicating the onset of stimulated emission at approximately Pavg=30 µW. Above 1 mW, the roll-off in the radiative efficiency can be seen as the device begins to overheat.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δνmode=Δν1/21-Gm0G0,

Metrics