Abstract

We have created microscopic Fabry–Perot optical resonator cavities between the flattened end of a tunneling microscope tip and a semitransparent metal film. Power is transferred to cavity modes from a laser beam by means of surface-plasmon–polariton generation and subsequent radiative decay. We compare the dependence of the axial emission from these modes on cavity length and on the angle of incidence with the predictions of a stratified-medium model. The mode structure has a finesse that approaches the theoretical limit. At high incident power, second-harmonic radiation produced by weakly localized surface-plasmon–polaritons is also coupled into the cavity and detected in axial emission.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980) Chaps. 1 and 13.
  2. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [CrossRef]
  3. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).
  4. Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
    [CrossRef]
  5. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [CrossRef]
  6. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
    [CrossRef]
  7. H. Becker, S. E. Burns, N. Tessler, and R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997).
    [CrossRef]
  8. F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
    [CrossRef] [PubMed]
  9. F. De Martini, M. Marrocco, P. Mataloni, D. Murra, and R. Loudon, “Spontaneous and stimulated emission in the thresholdless microlaser,” J. Opt. Soc. Am. B 10, 360–380 (1993).
    [CrossRef]
  10. F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
    [CrossRef] [PubMed]
  11. C. Im, K. M. Engenhardt, and S. Gregory, “Light-induced transient currents from molecular films in a tunneling microscope junction,” Phys. Rev. B 59, 3153–3159 (1999).
    [CrossRef]
  12. H. Raether, Surface Plasmons, Vol. 3 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).
  13. J. Moreland, A. Adams, and P. K. Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25, 2297–2300 (1982).
    [CrossRef]
  14. A. R. McGurn, A. A. Maradudin, and V. Celli, “Localization effects in the scattering of light from a randomly rough grating,” Phys. Rev. B 31, 4866–4871 (1985).
    [CrossRef]
  15. K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559–1562 (1985).
    [CrossRef] [PubMed]
  16. E. R. Mendez and K. A. O’Donnell, “Observation of depolarization and backscattering enhancement in light scattering from Gaussian random surfaces,” Opt. Commun. 61, 91–95 (1987).
    [CrossRef]
  17. S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
    [CrossRef]
  18. N. Kroo, J.-P. Thost, M. Völcker, W. Kreiger, and H. Walther, “Decay length of surface plasmons determined with a tunnelling microscope,” Europhys. Lett. 15, 289–293 (1991).
    [CrossRef]
  19. D. W. Pohl, U. Ch. Fischer, and U. Dürig, “Scanning near-field optical microscopy (SNOM): basic principles and some recent developments,” in Scanning Microscopy Technologies and Applications, E. C. Teague, ed., Proc. SPIE 897, 84–90 (1988).
    [CrossRef]
  20. U. Ch. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989).
    [CrossRef] [PubMed]
  21. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  22. P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
    [CrossRef]
  23. D.-L. Hornauer, “Anregung und Streuung von geführten Wellen an Schichtsystemen mit statistisch rauhen Grenzflächen im sichtbaren Spektralbereich,” Ph.D. dissertion (University of Hamburg, Hamburg, Germany, 1979).
  24. G. J. Kovacs and G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B 16, 1297–1311 (1977).
    [CrossRef]
  25. K. R. Welford and J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35, 1467–1483 (1988).
    [CrossRef]
  26. C. H. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46, 145–148 (1981).
    [CrossRef]
  27. A. R. McGurn, T. A. Leskova, and V. M. Agranovich, “Weak-localization effects in the generation of second harmonics of light at a randomly rough vacuum-metal grating,” Phys. Rev. B 44, 11, 441–11, 456 (1991).
    [CrossRef]
  28. O. A. Aktsipetrov, V. N. Golovkina, O. I. Kapusta, T. A. Leskova, and N. N. Novikova, “Anderson localization effects in the second harmonic generation at a weakly rough metal surface,” Phys. Lett. A 170, 231–234 (1992).
    [CrossRef]
  29. S. I. Bozhevolnyi and K. Pedersen, “Second harmonic generation due to surface plasmon localization,” Surf. Sci. 377–379, 384–387 (1997).
    [CrossRef]
  30. L. Kuang and H. J. Simon, “Diffusely scattered second harmonic generation from a silver film due to surface plasmons,” Phys. Lett. A 197, 257–261 (1995).
    [CrossRef]

1999 (1)

C. Im, K. M. Engenhardt, and S. Gregory, “Light-induced transient currents from molecular films in a tunneling microscope junction,” Phys. Rev. B 59, 3153–3159 (1999).
[CrossRef]

1997 (2)

S. I. Bozhevolnyi and K. Pedersen, “Second harmonic generation due to surface plasmon localization,” Surf. Sci. 377–379, 384–387 (1997).
[CrossRef]

H. Becker, S. E. Burns, N. Tessler, and R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997).
[CrossRef]

1996 (1)

S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
[CrossRef]

1995 (1)

L. Kuang and H. J. Simon, “Diffusely scattered second harmonic generation from a silver film due to surface plasmons,” Phys. Lett. A 197, 257–261 (1995).
[CrossRef]

1993 (2)

P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

F. De Martini, M. Marrocco, P. Mataloni, D. Murra, and R. Loudon, “Spontaneous and stimulated emission in the thresholdless microlaser,” J. Opt. Soc. Am. B 10, 360–380 (1993).
[CrossRef]

1992 (2)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

O. A. Aktsipetrov, V. N. Golovkina, O. I. Kapusta, T. A. Leskova, and N. N. Novikova, “Anderson localization effects in the second harmonic generation at a weakly rough metal surface,” Phys. Lett. A 170, 231–234 (1992).
[CrossRef]

1991 (3)

A. R. McGurn, T. A. Leskova, and V. M. Agranovich, “Weak-localization effects in the generation of second harmonics of light at a randomly rough vacuum-metal grating,” Phys. Rev. B 44, 11, 441–11, 456 (1991).
[CrossRef]

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef] [PubMed]

N. Kroo, J.-P. Thost, M. Völcker, W. Kreiger, and H. Walther, “Decay length of surface plasmons determined with a tunnelling microscope,” Europhys. Lett. 15, 289–293 (1991).
[CrossRef]

1989 (3)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[CrossRef]

U. Ch. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989).
[CrossRef] [PubMed]

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[CrossRef]

1988 (2)

D. W. Pohl, U. Ch. Fischer, and U. Dürig, “Scanning near-field optical microscopy (SNOM): basic principles and some recent developments,” in Scanning Microscopy Technologies and Applications, E. C. Teague, ed., Proc. SPIE 897, 84–90 (1988).
[CrossRef]

K. R. Welford and J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35, 1467–1483 (1988).
[CrossRef]

1987 (2)

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

E. R. Mendez and K. A. O’Donnell, “Observation of depolarization and backscattering enhancement in light scattering from Gaussian random surfaces,” Opt. Commun. 61, 91–95 (1987).
[CrossRef]

1985 (2)

A. R. McGurn, A. A. Maradudin, and V. Celli, “Localization effects in the scattering of light from a randomly rough grating,” Phys. Rev. B 31, 4866–4871 (1985).
[CrossRef]

K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559–1562 (1985).
[CrossRef] [PubMed]

1982 (1)

J. Moreland, A. Adams, and P. K. Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25, 2297–2300 (1982).
[CrossRef]

1981 (1)

C. H. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46, 145–148 (1981).
[CrossRef]

1977 (1)

G. J. Kovacs and G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B 16, 1297–1311 (1977).
[CrossRef]

1968 (2)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).

Adam, P. M.

P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

Adams, A.

J. Moreland, A. Adams, and P. K. Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25, 2297–2300 (1982).
[CrossRef]

Agranovich, V. M.

A. R. McGurn, T. A. Leskova, and V. M. Agranovich, “Weak-localization effects in the generation of second harmonics of light at a randomly rough vacuum-metal grating,” Phys. Rev. B 44, 11, 441–11, 456 (1991).
[CrossRef]

Aktsipetrov, O. A.

O. A. Aktsipetrov, V. N. Golovkina, O. I. Kapusta, T. A. Leskova, and N. N. Novikova, “Anderson localization effects in the second harmonic generation at a weakly rough metal surface,” Phys. Lett. A 170, 231–234 (1992).
[CrossRef]

Arya, K.

K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559–1562 (1985).
[CrossRef] [PubMed]

Becker, H.

H. Becker, S. E. Burns, N. Tessler, and R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997).
[CrossRef]

Birman, J. L.

K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559–1562 (1985).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi and K. Pedersen, “Second harmonic generation due to surface plasmon localization,” Surf. Sci. 377–379, 384–387 (1997).
[CrossRef]

S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
[CrossRef]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[CrossRef]

Burns, S. E.

H. Becker, S. E. Burns, N. Tessler, and R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997).
[CrossRef]

Celli, V.

A. R. McGurn, A. A. Maradudin, and V. Celli, “Localization effects in the scattering of light from a randomly rough grating,” Phys. Rev. B 31, 4866–4871 (1985).
[CrossRef]

Chen, C. H.

C. H. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46, 145–148 (1981).
[CrossRef]

Crescentini, L.

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef] [PubMed]

de Castro, A. R. B.

C. H. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46, 145–148 (1981).
[CrossRef]

de Fornel, F.

P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

De Martini, F.

F. De Martini, M. Marrocco, P. Mataloni, D. Murra, and R. Loudon, “Spontaneous and stimulated emission in the thresholdless microlaser,” J. Opt. Soc. Am. B 10, 360–380 (1993).
[CrossRef]

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef] [PubMed]

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

Dürig, U.

D. W. Pohl, U. Ch. Fischer, and U. Dürig, “Scanning near-field optical microscopy (SNOM): basic principles and some recent developments,” in Scanning Microscopy Technologies and Applications, E. C. Teague, ed., Proc. SPIE 897, 84–90 (1988).
[CrossRef]

Engenhardt, K. M.

C. Im, K. M. Engenhardt, and S. Gregory, “Light-induced transient currents from molecular films in a tunneling microscope junction,” Phys. Rev. B 59, 3153–3159 (1999).
[CrossRef]

Fischer, U. Ch.

U. Ch. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989).
[CrossRef] [PubMed]

D. W. Pohl, U. Ch. Fischer, and U. Dürig, “Scanning near-field optical microscopy (SNOM): basic principles and some recent developments,” in Scanning Microscopy Technologies and Applications, E. C. Teague, ed., Proc. SPIE 897, 84–90 (1988).
[CrossRef]

Florez, L. T.

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[CrossRef]

Friend, R. H.

H. Becker, S. E. Burns, N. Tessler, and R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997).
[CrossRef]

Golovkina, V. N.

O. A. Aktsipetrov, V. N. Golovkina, O. I. Kapusta, T. A. Leskova, and N. N. Novikova, “Anderson localization effects in the second harmonic generation at a weakly rough metal surface,” Phys. Lett. A 170, 231–234 (1992).
[CrossRef]

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[CrossRef]

Goudonnet, J. P.

P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

Gregory, S.

C. Im, K. M. Engenhardt, and S. Gregory, “Light-induced transient currents from molecular films in a tunneling microscope junction,” Phys. Rev. B 59, 3153–3159 (1999).
[CrossRef]

Hansma, P. K.

J. Moreland, A. Adams, and P. K. Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25, 2297–2300 (1982).
[CrossRef]

Harbison, J. P.

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[CrossRef]

Ilchenko, V. S.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[CrossRef]

Im, C.

C. Im, K. M. Engenhardt, and S. Gregory, “Light-induced transient currents from molecular films in a tunneling microscope junction,” Phys. Rev. B 59, 3153–3159 (1999).
[CrossRef]

Innocenti, G.

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

Jacobovitz, G. R.

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

Jewell, J. L.

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[CrossRef]

Kapusta, O. I.

O. A. Aktsipetrov, V. N. Golovkina, O. I. Kapusta, T. A. Leskova, and N. N. Novikova, “Anderson localization effects in the second harmonic generation at a weakly rough metal surface,” Phys. Lett. A 170, 231–234 (1992).
[CrossRef]

Kovacs, G. J.

G. J. Kovacs and G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B 16, 1297–1311 (1977).
[CrossRef]

Kreiger, W.

N. Kroo, J.-P. Thost, M. Völcker, W. Kreiger, and H. Walther, “Decay length of surface plasmons determined with a tunnelling microscope,” Europhys. Lett. 15, 289–293 (1991).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).

Kroo, N.

N. Kroo, J.-P. Thost, M. Völcker, W. Kreiger, and H. Walther, “Decay length of surface plasmons determined with a tunnelling microscope,” Europhys. Lett. 15, 289–293 (1991).
[CrossRef]

Kuang, L.

L. Kuang and H. J. Simon, “Diffusely scattered second harmonic generation from a silver film due to surface plasmons,” Phys. Lett. A 197, 257–261 (1995).
[CrossRef]

Lee, Y. H.

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[CrossRef]

Leskova, T. A.

O. A. Aktsipetrov, V. N. Golovkina, O. I. Kapusta, T. A. Leskova, and N. N. Novikova, “Anderson localization effects in the second harmonic generation at a weakly rough metal surface,” Phys. Lett. A 170, 231–234 (1992).
[CrossRef]

A. R. McGurn, T. A. Leskova, and V. M. Agranovich, “Weak-localization effects in the generation of second harmonics of light at a randomly rough vacuum-metal grating,” Phys. Rev. B 44, 11, 441–11, 456 (1991).
[CrossRef]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Loudon, R.

F. De Martini, M. Marrocco, P. Mataloni, D. Murra, and R. Loudon, “Spontaneous and stimulated emission in the thresholdless microlaser,” J. Opt. Soc. Am. B 10, 360–380 (1993).
[CrossRef]

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef] [PubMed]

Maradudin, A. A.

A. R. McGurn, A. A. Maradudin, and V. Celli, “Localization effects in the scattering of light from a randomly rough grating,” Phys. Rev. B 31, 4866–4871 (1985).
[CrossRef]

Marrocco, M.

F. De Martini, M. Marrocco, P. Mataloni, D. Murra, and R. Loudon, “Spontaneous and stimulated emission in the thresholdless microlaser,” J. Opt. Soc. Am. B 10, 360–380 (1993).
[CrossRef]

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef] [PubMed]

Mataloni, P.

F. De Martini, M. Marrocco, P. Mataloni, D. Murra, and R. Loudon, “Spontaneous and stimulated emission in the thresholdless microlaser,” J. Opt. Soc. Am. B 10, 360–380 (1993).
[CrossRef]

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef] [PubMed]

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[CrossRef]

McGurn, A. R.

A. R. McGurn, T. A. Leskova, and V. M. Agranovich, “Weak-localization effects in the generation of second harmonics of light at a randomly rough vacuum-metal grating,” Phys. Rev. B 44, 11, 441–11, 456 (1991).
[CrossRef]

A. R. McGurn, A. A. Maradudin, and V. Celli, “Localization effects in the scattering of light from a randomly rough grating,” Phys. Rev. B 31, 4866–4871 (1985).
[CrossRef]

Mendez, E. R.

E. R. Mendez and K. A. O’Donnell, “Observation of depolarization and backscattering enhancement in light scattering from Gaussian random surfaces,” Opt. Commun. 61, 91–95 (1987).
[CrossRef]

Moreland, J.

J. Moreland, A. Adams, and P. K. Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25, 2297–2300 (1982).
[CrossRef]

Murra, D.

Novikova, N. N.

O. A. Aktsipetrov, V. N. Golovkina, O. I. Kapusta, T. A. Leskova, and N. N. Novikova, “Anderson localization effects in the second harmonic generation at a weakly rough metal surface,” Phys. Lett. A 170, 231–234 (1992).
[CrossRef]

O’Donnell, K. A.

E. R. Mendez and K. A. O’Donnell, “Observation of depolarization and backscattering enhancement in light scattering from Gaussian random surfaces,” Opt. Commun. 61, 91–95 (1987).
[CrossRef]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Pedersen, K.

S. I. Bozhevolnyi and K. Pedersen, “Second harmonic generation due to surface plasmon localization,” Surf. Sci. 377–379, 384–387 (1997).
[CrossRef]

Pohl, D. W.

U. Ch. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989).
[CrossRef] [PubMed]

D. W. Pohl, U. Ch. Fischer, and U. Dürig, “Scanning near-field optical microscopy (SNOM): basic principles and some recent developments,” in Scanning Microscopy Technologies and Applications, E. C. Teague, ed., Proc. SPIE 897, 84–90 (1988).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).

Salomon, L.

P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

Sambles, J. R.

K. R. Welford and J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35, 1467–1483 (1988).
[CrossRef]

Scherer, A.

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[CrossRef]

Scott, G. D.

G. J. Kovacs and G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B 16, 1297–1311 (1977).
[CrossRef]

Shen, Y. R.

C. H. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46, 145–148 (1981).
[CrossRef]

Simon, H. J.

L. Kuang and H. J. Simon, “Diffusely scattered second harmonic generation from a silver film due to surface plasmons,” Phys. Lett. A 197, 257–261 (1995).
[CrossRef]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Su, Z. B.

K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559–1562 (1985).
[CrossRef] [PubMed]

Tessler, N.

H. Becker, S. E. Burns, N. Tessler, and R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997).
[CrossRef]

Thost, J.-P.

N. Kroo, J.-P. Thost, M. Völcker, W. Kreiger, and H. Walther, “Decay length of surface plasmons determined with a tunnelling microscope,” Europhys. Lett. 15, 289–293 (1991).
[CrossRef]

Völcker, M.

N. Kroo, J.-P. Thost, M. Völcker, W. Kreiger, and H. Walther, “Decay length of surface plasmons determined with a tunnelling microscope,” Europhys. Lett. 15, 289–293 (1991).
[CrossRef]

Walther, H.

N. Kroo, J.-P. Thost, M. Völcker, W. Kreiger, and H. Walther, “Decay length of surface plasmons determined with a tunnelling microscope,” Europhys. Lett. 15, 289–293 (1991).
[CrossRef]

Welford, K. R.

K. R. Welford and J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35, 1467–1483 (1988).
[CrossRef]

Appl. Phys. Lett. (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[CrossRef]

Electron. Lett. (1)

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[CrossRef]

Europhys. Lett. (1)

N. Kroo, J.-P. Thost, M. Völcker, W. Kreiger, and H. Walther, “Decay length of surface plasmons determined with a tunnelling microscope,” Europhys. Lett. 15, 289–293 (1991).
[CrossRef]

J. Appl. Phys. (1)

H. Becker, S. E. Burns, N. Tessler, and R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997).
[CrossRef]

J. Mod. Opt. (1)

K. R. Welford and J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35, 1467–1483 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

E. R. Mendez and K. A. O’Donnell, “Observation of depolarization and backscattering enhancement in light scattering from Gaussian random surfaces,” Opt. Commun. 61, 91–95 (1987).
[CrossRef]

Phys. Lett. A (3)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[CrossRef]

O. A. Aktsipetrov, V. N. Golovkina, O. I. Kapusta, T. A. Leskova, and N. N. Novikova, “Anderson localization effects in the second harmonic generation at a weakly rough metal surface,” Phys. Lett. A 170, 231–234 (1992).
[CrossRef]

L. Kuang and H. J. Simon, “Diffusely scattered second harmonic generation from a silver film due to surface plasmons,” Phys. Lett. A 197, 257–261 (1995).
[CrossRef]

Phys. Rev. A (1)

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef] [PubMed]

Phys. Rev. B (7)

A. R. McGurn, T. A. Leskova, and V. M. Agranovich, “Weak-localization effects in the generation of second harmonics of light at a randomly rough vacuum-metal grating,” Phys. Rev. B 44, 11, 441–11, 456 (1991).
[CrossRef]

S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
[CrossRef]

C. Im, K. M. Engenhardt, and S. Gregory, “Light-induced transient currents from molecular films in a tunneling microscope junction,” Phys. Rev. B 59, 3153–3159 (1999).
[CrossRef]

J. Moreland, A. Adams, and P. K. Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25, 2297–2300 (1982).
[CrossRef]

A. R. McGurn, A. A. Maradudin, and V. Celli, “Localization effects in the scattering of light from a randomly rough grating,” Phys. Rev. B 31, 4866–4871 (1985).
[CrossRef]

G. J. Kovacs and G. D. Scott, “Optical excitation of surface plasma waves in layered media,” Phys. Rev. B 16, 1297–1311 (1977).
[CrossRef]

P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993).
[CrossRef]

Phys. Rev. Lett. (4)

U. Ch. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989).
[CrossRef] [PubMed]

F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
[CrossRef] [PubMed]

C. H. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46, 145–148 (1981).
[CrossRef]

K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559–1562 (1985).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. W. Pohl, U. Ch. Fischer, and U. Dürig, “Scanning near-field optical microscopy (SNOM): basic principles and some recent developments,” in Scanning Microscopy Technologies and Applications, E. C. Teague, ed., Proc. SPIE 897, 84–90 (1988).
[CrossRef]

Surf. Sci. (1)

S. I. Bozhevolnyi and K. Pedersen, “Second harmonic generation due to surface plasmon localization,” Surf. Sci. 377–379, 384–387 (1997).
[CrossRef]

Z. Naturforsch. Teil A (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).

Z. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Other (4)

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980) Chaps. 1 and 13.

H. Raether, Surface Plasmons, Vol. 3 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

D.-L. Hornauer, “Anregung und Streuung von geführten Wellen an Schichtsystemen mit statistisch rauhen Grenzflächen im sichtbaren Spektralbereich,” Ph.D. dissertion (University of Hamburg, Hamburg, Germany, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical arrangements of experimental setup. Dashed line, cavity axial emission direction.

Fig. 2
Fig. 2

(a) Calculated intensity of electromagnetic field at surface of tip mirror for glass–ambient–silver system with a three-layer effective medium model. (b) Intensity of axial emission from experimental system with bare fused-silica hemisphere and silver tip. Perspective and scale of (b) are chosen to approximately match those of experimental data in (a).

Fig. 3
Fig. 3

(a) Calculated intensity of electromagnetic field at surface of tip mirror for glass–calcium fluoride film–silver film–ambient–bulk silver system with a five-layer effective medium model. (b) Intensity of axial emission from experimental microcavity with silver film of thickness 45 nm and silver tip. Perspective and scale of (a) and (b) are chosen to approximately match those of data in Fig. 2.

Fig. 4
Fig. 4

Effect of repeated in situ tip-flattening on mode structure observed in axial emission from an experimental microcavity with silver film of thickness 45 nm and silver tip. The top data set was obtained before in situ flattening, the middle after flattening once in situ, and the bottom after repeating this procedure.

Fig. 5
Fig. 5

Measured intensity of axial emission in the Otto configuration for fundamental and second-harmonic radiation and for reflectivity.

Fig. 6
Fig. 6

Measured intensity of axial emission from the microcavity for fundamental (1ω) and second-harmonic (2ω) radiation.

Metrics