Abstract

We have created microscopic Fabry–Perot optical resonator cavities between the flattened end of a tunneling microscope tip and a semitransparent metal film. Power is transferred to cavity modes from a laser beam by means of surface-plasmon–polariton generation and subsequent radiative decay. We compare the dependence of the axial emission from these modes on cavity length and on the angle of incidence with the predictions of a stratified-medium model. The mode structure has a finesse that approaches the theoretical limit. At high incident power, second-harmonic radiation produced by weakly localized surface-plasmon–polaritons is also coupled into the cavity and detected in axial emission.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription