Abstract

Iron-doped lithium niobate crystals are illuminated with a single continuous-wave (cw) focused green laser beam. Surface deformations, temperature distributions, and changes of the refractive index of the material are investigated by means of interferometric techniques. It turns out that light absorption causes pronounced temperature profiles in the samples, which induce pyroelectric fields. Electronic space-charge fields that compensate these pyroelectric fields remain in the crystals after the focused light is switched off and modulate, together with bulk-photovoltaic fields, the refractive index by means of the electro-optic effect. These low-spatial-frequency effects must be taken into account when focused light beams are utilized, e.g., for high-speed holographic data storage or two-beam coupling, because the effects determine an upper limit of the highest usable cw light intensities.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–224 (1968).
    [CrossRef]
  2. J. J. Amodei, W. Phillips, and D. L. Staebler, “Improved electrooptic materials and fixing techniques for holographic recording,” Appl. Opt. 11, 390–396 (1972).
    [CrossRef] [PubMed]
  3. P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications I and II, Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988, 1989).
  4. K. Buse, “Thermal gratings and pyroelectrically produced charge redistribution in BaTiO3 and KNbO3,” J. Opt. Soc. Am. B 10, 1266–1275 (1993).
    [CrossRef]
  5. K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A 57, 161–165 (1993).
    [CrossRef]
  6. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
    [CrossRef]
  7. E. Krätzig, “Photorefractive effects and photoconductivity in LiNbO3:Fe,” Ferroelectrics 21, 635–636 (1978).
    [CrossRef]
  8. E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
    [CrossRef]
  9. K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
    [CrossRef]
  10. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
    [CrossRef]
  11. F. Jermann and J. Otten, “The light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
    [CrossRef]
  12. M. Simon, F. Jermann, and E. Krätzig, “Intrinsic photorefractive centers in LiNbO3:Fe,” Appl. Phys. B 61, 89–93 (1995).
    [CrossRef]
  13. O. Althoff and E. Krätzig, “Strong light-induced refractive index changes in LiNbO3,” in Nonlinear Optical Materials III, P. Günter, ed., Proc. SPIE 1273, 12–19 (1990).
    [CrossRef]
  14. O. Althoff, A. Erdmann, L. Wiskott, and P. Hertel, “The photorefractive effect in LiNbO3 at high light intensity,” Phys. Status Solidi A 128, K41–K46 (1991).
    [CrossRef]
  15. Y. S. Kim and R. T. Smith, “Thermal expansion of lithium niobate and lithium tantalate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
    [CrossRef]
  16. R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971).
    [CrossRef]
  17. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [CrossRef]
  18. A. Mansingh and A. Dhar, “The ac conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
    [CrossRef]
  19. T. Bartholomäus, K. Buse, C. Deuper, and E. Krätzig, “Py-roelectric coefficients of LiNbO3 crystals of different composition,” Phys. Status Solidi A 142, K55–K57 (1994).
    [CrossRef]
  20. K. Onuki, N. Uchida, and T. Saku, “Interferometric method for measuring electro-optic coefficients in crystals,” J. Opt. Soc. Am. 62, 1030–1032 (1972).
    [CrossRef]
  21. R. Sommerfeldt, L. Holtmann, E. Krätzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988).
    [CrossRef]
  22. A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Krätzig, “Light-induced charge-transport processes in photorefractive barium titanate doped with iron,” Appl. Phys. B 65, 481–487 (1997).
    [CrossRef]

1999 (1)

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

1997 (1)

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Krätzig, “Light-induced charge-transport processes in photorefractive barium titanate doped with iron,” Appl. Phys. B 65, 481–487 (1997).
[CrossRef]

1995 (1)

M. Simon, F. Jermann, and E. Krätzig, “Intrinsic photorefractive centers in LiNbO3:Fe,” Appl. Phys. B 61, 89–93 (1995).
[CrossRef]

1994 (1)

T. Bartholomäus, K. Buse, C. Deuper, and E. Krätzig, “Py-roelectric coefficients of LiNbO3 crystals of different composition,” Phys. Status Solidi A 142, K55–K57 (1994).
[CrossRef]

1993 (3)

1991 (1)

O. Althoff, A. Erdmann, L. Wiskott, and P. Hertel, “The photorefractive effect in LiNbO3 at high light intensity,” Phys. Status Solidi A 128, K41–K46 (1991).
[CrossRef]

1990 (1)

O. Althoff and E. Krätzig, “Strong light-induced refractive index changes in LiNbO3,” in Nonlinear Optical Materials III, P. Günter, ed., Proc. SPIE 1273, 12–19 (1990).
[CrossRef]

1988 (1)

R. Sommerfeldt, L. Holtmann, E. Krätzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988).
[CrossRef]

1985 (2)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

A. Mansingh and A. Dhar, “The ac conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

1980 (1)

E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[CrossRef]

1978 (1)

E. Krätzig, “Photorefractive effects and photoconductivity in LiNbO3:Fe,” Ferroelectrics 21, 635–636 (1978).
[CrossRef]

1977 (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

1974 (1)

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

1972 (2)

1971 (1)

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971).
[CrossRef]

1969 (1)

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium niobate and lithium tantalate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

1968 (1)

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–224 (1968).
[CrossRef]

Althoff, O.

O. Althoff, A. Erdmann, L. Wiskott, and P. Hertel, “The photorefractive effect in LiNbO3 at high light intensity,” Phys. Status Solidi A 128, K41–K46 (1991).
[CrossRef]

O. Althoff and E. Krätzig, “Strong light-induced refractive index changes in LiNbO3,” in Nonlinear Optical Materials III, P. Günter, ed., Proc. SPIE 1273, 12–19 (1990).
[CrossRef]

Amodei, J. J.

Bartholomäus, T.

T. Bartholomäus, K. Buse, C. Deuper, and E. Krätzig, “Py-roelectric coefficients of LiNbO3 crystals of different composition,” Phys. Status Solidi A 142, K55–K57 (1994).
[CrossRef]

Buse, K.

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Krätzig, “Light-induced charge-transport processes in photorefractive barium titanate doped with iron,” Appl. Phys. B 65, 481–487 (1997).
[CrossRef]

T. Bartholomäus, K. Buse, C. Deuper, and E. Krätzig, “Py-roelectric coefficients of LiNbO3 crystals of different composition,” Phys. Status Solidi A 142, K55–K57 (1994).
[CrossRef]

K. Buse, “Thermal gratings and pyroelectrically produced charge redistribution in BaTiO3 and KNbO3,” J. Opt. Soc. Am. B 10, 1266–1275 (1993).
[CrossRef]

K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A 57, 161–165 (1993).
[CrossRef]

Chen, F. S.

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–224 (1968).
[CrossRef]

Deuper, C.

T. Bartholomäus, K. Buse, C. Deuper, and E. Krätzig, “Py-roelectric coefficients of LiNbO3 crystals of different composition,” Phys. Status Solidi A 142, K55–K57 (1994).
[CrossRef]

Dhar, A.

A. Mansingh and A. Dhar, “The ac conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

Dischler, B.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Engelmann, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Erdmann, A.

O. Althoff, A. Erdmann, L. Wiskott, and P. Hertel, “The photorefractive effect in LiNbO3 at high light intensity,” Phys. Status Solidi A 128, K41–K46 (1991).
[CrossRef]

Fraser, D. B.

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–224 (1968).
[CrossRef]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Gonser, U.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Grabmaier, B. C.

R. Sommerfeldt, L. Holtmann, E. Krätzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988).
[CrossRef]

Hertel, P.

O. Althoff, A. Erdmann, L. Wiskott, and P. Hertel, “The photorefractive effect in LiNbO3 at high light intensity,” Phys. Status Solidi A 128, K41–K46 (1991).
[CrossRef]

Hesse, H.

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Krätzig, “Light-induced charge-transport processes in photorefractive barium titanate doped with iron,” Appl. Phys. B 65, 481–487 (1997).
[CrossRef]

Holtmann, L.

R. Sommerfeldt, L. Holtmann, E. Krätzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988).
[CrossRef]

Jermann, F.

M. Simon, F. Jermann, and E. Krätzig, “Intrinsic photorefractive centers in LiNbO3:Fe,” Appl. Phys. B 61, 89–93 (1995).
[CrossRef]

F. Jermann and J. Otten, “The light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
[CrossRef]

Keune, W.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Kim, Y. S.

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium niobate and lithium tantalate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

Krätzig, E.

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Krätzig, “Light-induced charge-transport processes in photorefractive barium titanate doped with iron,” Appl. Phys. B 65, 481–487 (1997).
[CrossRef]

M. Simon, F. Jermann, and E. Krätzig, “Intrinsic photorefractive centers in LiNbO3:Fe,” Appl. Phys. B 61, 89–93 (1995).
[CrossRef]

T. Bartholomäus, K. Buse, C. Deuper, and E. Krätzig, “Py-roelectric coefficients of LiNbO3 crystals of different composition,” Phys. Status Solidi A 142, K55–K57 (1994).
[CrossRef]

O. Althoff and E. Krätzig, “Strong light-induced refractive index changes in LiNbO3,” in Nonlinear Optical Materials III, P. Günter, ed., Proc. SPIE 1273, 12–19 (1990).
[CrossRef]

R. Sommerfeldt, L. Holtmann, E. Krätzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988).
[CrossRef]

E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[CrossRef]

E. Krätzig, “Photorefractive effects and photoconductivity in LiNbO3:Fe,” Ferroelectrics 21, 635–636 (1978).
[CrossRef]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Kurz, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

LaMacchia, J. T.

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–224 (1968).
[CrossRef]

Mansingh, A.

A. Mansingh and A. Dhar, “The ac conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

Mazur, A.

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Krätzig, “Light-induced charge-transport processes in photorefractive barium titanate doped with iron,” Appl. Phys. B 65, 481–487 (1997).
[CrossRef]

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Onuki, K.

Orlowski, R.

E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[CrossRef]

Otten, J.

Peithmann, K.

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

Phillips, W.

Räuber, A.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Ringhofer, K. H.

K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A 57, 161–165 (1993).
[CrossRef]

Saku, T.

Schirmer, O. F.

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Krätzig, “Light-induced charge-transport processes in photorefractive barium titanate doped with iron,” Appl. Phys. B 65, 481–487 (1997).
[CrossRef]

Simon, M.

M. Simon, F. Jermann, and E. Krätzig, “Intrinsic photorefractive centers in LiNbO3:Fe,” Appl. Phys. B 61, 89–93 (1995).
[CrossRef]

Smith, R. T.

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971).
[CrossRef]

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium niobate and lithium tantalate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

Sommerfeldt, R.

R. Sommerfeldt, L. Holtmann, E. Krätzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988).
[CrossRef]

Staebler, D. L.

Uchida, N.

van Stevendaal, U.

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Krätzig, “Light-induced charge-transport processes in photorefractive barium titanate doped with iron,” Appl. Phys. B 65, 481–487 (1997).
[CrossRef]

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Weber, M.

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Krätzig, “Light-induced charge-transport processes in photorefractive barium titanate doped with iron,” Appl. Phys. B 65, 481–487 (1997).
[CrossRef]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Welsh, F. S.

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971).
[CrossRef]

Wiebrock, A.

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

Wiskott, L.

O. Althoff, A. Erdmann, L. Wiskott, and P. Hertel, “The photorefractive effect in LiNbO3 at high light intensity,” Phys. Status Solidi A 128, K41–K46 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Appl. Phys. A (2)

K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A 57, 161–165 (1993).
[CrossRef]

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Appl. Phys. B (3)

M. Simon, F. Jermann, and E. Krätzig, “Intrinsic photorefractive centers in LiNbO3:Fe,” Appl. Phys. B 61, 89–93 (1995).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, “Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared,” Appl. Phys. B 68, 777–784 (1999).
[CrossRef]

A. Mazur, U. van Stevendaal, K. Buse, M. Weber, O. F. Schirmer, H. Hesse, and E. Krätzig, “Light-induced charge-transport processes in photorefractive barium titanate doped with iron,” Appl. Phys. B 65, 481–487 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–224 (1968).
[CrossRef]

Ferroelectrics (2)

E. Krätzig, “Photorefractive effects and photoconductivity in LiNbO3:Fe,” Ferroelectrics 21, 635–636 (1978).
[CrossRef]

E. Krätzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[CrossRef]

J. Appl. Phys. (2)

Y. S. Kim and R. T. Smith, “Thermal expansion of lithium niobate and lithium tantalate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

A. Mansingh and A. Dhar, “The ac conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

Phys. Status Solidi A (3)

T. Bartholomäus, K. Buse, C. Deuper, and E. Krätzig, “Py-roelectric coefficients of LiNbO3 crystals of different composition,” Phys. Status Solidi A 142, K55–K57 (1994).
[CrossRef]

O. Althoff, A. Erdmann, L. Wiskott, and P. Hertel, “The photorefractive effect in LiNbO3 at high light intensity,” Phys. Status Solidi A 128, K41–K46 (1991).
[CrossRef]

R. Sommerfeldt, L. Holtmann, E. Krätzig, and B. C. Grabmaier, “Influence of Mg doping and composition on the light-induced charge transport in LiNbO3,” Phys. Status Solidi A 106, 89–98 (1988).
[CrossRef]

Proc. SPIE (1)

O. Althoff and E. Krätzig, “Strong light-induced refractive index changes in LiNbO3,” in Nonlinear Optical Materials III, P. Günter, ed., Proc. SPIE 1273, 12–19 (1990).
[CrossRef]

Other (1)

P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications I and II, Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Michelson interferometer for measurements of surface deformations of the samples. The deformations are induced by illumination with a focused green laser beam.

Fig. 2
Fig. 2

Typical interference pattern obtained with the setup shown in Fig. 1. The focused light beam hits the sample in the middle. The solid black line indicates the line along which the measurement data are further evaluated.

Fig. 3
Fig. 3

Mach–Zehnder interferometer for the measurements of phase shifts ΔΦ. Phase shifts ΔΦ are induced by illumination with a focused green laser beam.

Fig. 4
Fig. 4

Surface deformations Δd versus spatial coordinate z for the sample DT1-10 and different focused light powers. Top, front surface; bottom, back surface.

Fig. 5
Fig. 5

Surface deformation Δd versus spatial coordinate z for the sample DT1-11 for a focused light power of 600 mW.

Fig. 6
Fig. 6

Phase shifts ΔΦ during illumination with the focused light versus spatial coordinate z, measured with sample DT1-11, for different focused light powers. Top, extraordinarily polarized probe light; bottom, ordinarily polarized probe light.

Fig. 7
Fig. 7

Refractive-index changes Δn versus spatial coordinate z after illumination and cooling to room temperature for different focused light powers, measured for sample DT1-10. Top, extraordinarily polarized probe light; bottom, ordinarily polarized probe light.

Fig. 8
Fig. 8

Refractive-index changes Δn versus spatial coordinate z after illumination and cooling to room temperature for different focused light powers, measured for sample DT1-11. Top, extraordinarily polarized probe light; bottom, ordinarily polarized probe light.

Tables (1)

Tables Icon

Table 1 Crystal Propertiesa

Metrics