Abstract

The nonlinear optical coefficients of YCa4O(BO3)3 (YCOB) have been calculated for the first time to the authors’ knowledge by use of the revised Gaussian 92 program on the basis of the anionic group theory. The d11, d12, d32, and d33 coefficients of the crystal were determined by the Maker fringes method at λ=1064 nm, and d13, and d31 were also evaluated by measurement of the Maker fringes. The coefficients determined by the Maker fringes are in agreement with the theoretical values. On the basis of the dij coefficients and the Sellmeier equations, the effective second-harmonic generation (SHG) coefficient deff of YCOB as a function of phase-matching angles θ and Φ was determined. It is interesting that the maximum effective SHG coefficient deff of YCOB is not in the principal plane but is located out of the XZ plane in the positions θ=65.9°, Φ=36.5° and θ=66.3°, Φ=143.5°. It is also worth noting that the largest deff of YCOB in the region of 0°<θ<90°, 90°<Φ<180° is larger than that in 0°<θ<90°, 0°<Φ<90°. These calculated results have been proved by the effective SHG coefficient measurements of YCOB and conversion-efficiency measurements of frequency-doubling experiments on Nd:YCOB.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelence, and J. P. Damelet, “Linear-and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
    [CrossRef]
  2. M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, “Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material,” Jpn. J. Appl. Phys., 36, 276–279 (1997).
    [CrossRef]
  3. F. Auge, F. Mougel, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, A. Brun, “New efficient self-frequency doubling Nd-doped crystal for diode-pumped green laser,” in Conference on Lasers and Electro-Optics (CLEO/US), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 324, paper CThA5.
  4. Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197, 228–235 (1999).
    [CrossRef]
  5. J. M. Eichenholz, D. A. Hammons, L. Shah, Q. Ye, R. E. Peale, M. Richardson, and B. H. T. Chai, “Diode-pumped self-frequency doubling in a Nd3+:YCa4O(BO3)3 laser,” Appl. Phys. Lett. 74, 1954–1956 (1999).
    [CrossRef]
  6. M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binbley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baber, J. J. P. Stewart, and J. A. Pople, Gaussian 92 program, Revision A (Gaussian, Inc., Pittsburgh, Pa. 1992).
  7. C. T. Chen, in Development of New Nonlinear Optical Crys-tals in the Borate Series, V. S. Letokhov, C. V. Shank, Y. R. Shen, and H. Walther, eds., Vol. 15 of Laser Science and Technology International Handbook (Harwood Academic, Chur, Switzerland, 1993), p. 60.
  8. F. Mougel, G. Aka, F. Salin, D. Pelenc, B. Ferrand, A. Kahn-Harari, and D. Vivien, “Accurate second harmonic generation phase matching angles prediction and evaluation of nonlinear coefficients of YCa4(BO3)3(YCOB) crystal,” in Advanced Solid State Lasers, M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1999), pp. 709–714.
  9. D. A. Kleinman, “Nonlinear dielectric polarization in optical media,” Phys. Rev. 126, 1977–1979 (1962).
    [CrossRef]
  10. C. T. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R.-K. Li, and S.-J. Lin, “New nonlinear-optical crystal; LiB3O5,” J. Opt. Soc. Am. B 6, 616–621 (1989).
    [CrossRef]
  11. Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
    [CrossRef]
  12. C. T. Chen, N. Ye, J. Lin, J. Jiang, W. Zeng, and B. Wu, “Computer assisted search for nonlinear optical crystals,” Adv. Mater. 11, 1071–1078 (1999).
    [CrossRef]
  13. S. H. Wemple and M. Didomenico, Jr., “Oxygen-octahedra ferroelectrics. II. Electro-optical and nonlinear-optical device applications,” J. Appl. Phys. 40, 735–751 (1969).
    [CrossRef]
  14. P. S. Bechthold, and S. Haussuhl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977).
    [CrossRef]
  15. J. Q. Yao, W. Sheng, and W. Shi, “Accurate calculation of the optimum phase-matching parameters in three-wave interactions with biaxial nonlinear-optical crystals,” J. Opt. Soc. Am. B 9, 891–902 (1992).
    [CrossRef]
  16. V. G. Dmitrie, G. C. Gurzadyn, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997).
  17. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922–933 (1990).
    [CrossRef]

1999 (3)

Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197, 228–235 (1999).
[CrossRef]

J. M. Eichenholz, D. A. Hammons, L. Shah, Q. Ye, R. E. Peale, M. Richardson, and B. H. T. Chai, “Diode-pumped self-frequency doubling in a Nd3+:YCa4O(BO3)3 laser,” Appl. Phys. Lett. 74, 1954–1956 (1999).
[CrossRef]

C. T. Chen, N. Ye, J. Lin, J. Jiang, W. Zeng, and B. Wu, “Computer assisted search for nonlinear optical crystals,” Adv. Mater. 11, 1071–1078 (1999).
[CrossRef]

1997 (2)

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelence, and J. P. Damelet, “Linear-and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14, 2238–2247 (1997).
[CrossRef]

M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, “Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material,” Jpn. J. Appl. Phys., 36, 276–279 (1997).
[CrossRef]

1993 (1)

Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
[CrossRef]

1992 (1)

1990 (1)

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

1989 (1)

1977 (1)

P. S. Bechthold, and S. Haussuhl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977).
[CrossRef]

1969 (1)

S. H. Wemple and M. Didomenico, Jr., “Oxygen-octahedra ferroelectrics. II. Electro-optical and nonlinear-optical device applications,” J. Appl. Phys. 40, 735–751 (1969).
[CrossRef]

1962 (1)

D. A. Kleinman, “Nonlinear dielectric polarization in optical media,” Phys. Rev. 126, 1977–1979 (1962).
[CrossRef]

Aka, G.

Bechthold, P. S.

P. S. Bechthold, and S. Haussuhl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977).
[CrossRef]

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Chai, B. H. T.

Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197, 228–235 (1999).
[CrossRef]

J. M. Eichenholz, D. A. Hammons, L. Shah, Q. Ye, R. E. Peale, M. Richardson, and B. H. T. Chai, “Diode-pumped self-frequency doubling in a Nd3+:YCa4O(BO3)3 laser,” Appl. Phys. Lett. 74, 1954–1956 (1999).
[CrossRef]

Chen, C. T.

C. T. Chen, N. Ye, J. Lin, J. Jiang, W. Zeng, and B. Wu, “Computer assisted search for nonlinear optical crystals,” Adv. Mater. 11, 1071–1078 (1999).
[CrossRef]

Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
[CrossRef]

C. T. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R.-K. Li, and S.-J. Lin, “New nonlinear-optical crystal; LiB3O5,” J. Opt. Soc. Am. B 6, 616–621 (1989).
[CrossRef]

Colin, P.

Coquelin, P.

Damelet, J. P.

Didomenico Jr., M.

S. H. Wemple and M. Didomenico, Jr., “Oxygen-octahedra ferroelectrics. II. Electro-optical and nonlinear-optical device applications,” J. Appl. Phys. 40, 735–751 (1969).
[CrossRef]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Eichenholz, J. M.

J. M. Eichenholz, D. A. Hammons, L. Shah, Q. Ye, R. E. Peale, M. Richardson, and B. H. T. Chai, “Diode-pumped self-frequency doubling in a Nd3+:YCa4O(BO3)3 laser,” Appl. Phys. Lett. 74, 1954–1956 (1999).
[CrossRef]

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Furuya, H.

M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, “Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material,” Jpn. J. Appl. Phys., 36, 276–279 (1997).
[CrossRef]

Hammons, D. A.

J. M. Eichenholz, D. A. Hammons, L. Shah, Q. Ye, R. E. Peale, M. Richardson, and B. H. T. Chai, “Diode-pumped self-frequency doubling in a Nd3+:YCa4O(BO3)3 laser,” Appl. Phys. Lett. 74, 1954–1956 (1999).
[CrossRef]

Haussuhl, S.

P. S. Bechthold, and S. Haussuhl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977).
[CrossRef]

Iwai, M.

M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, “Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material,” Jpn. J. Appl. Phys., 36, 276–279 (1997).
[CrossRef]

Jiang, A.

Jiang, J.

C. T. Chen, N. Ye, J. Lin, J. Jiang, W. Zeng, and B. Wu, “Computer assisted search for nonlinear optical crystals,” Adv. Mater. 11, 1071–1078 (1999).
[CrossRef]

Kahn-Harari, A.

Kleinman, D. A.

D. A. Kleinman, “Nonlinear dielectric polarization in optical media,” Phys. Rev. 126, 1977–1979 (1962).
[CrossRef]

Kobayashi, T.

M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, “Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material,” Jpn. J. Appl. Phys., 36, 276–279 (1997).
[CrossRef]

Li, R.-K.

Lin, J.

C. T. Chen, N. Ye, J. Lin, J. Jiang, W. Zeng, and B. Wu, “Computer assisted search for nonlinear optical crystals,” Adv. Mater. 11, 1071–1078 (1999).
[CrossRef]

Lin, S.-J.

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Mori, Y.

M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, “Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material,” Jpn. J. Appl. Phys., 36, 276–279 (1997).
[CrossRef]

Mougel, F.

Nakai, S.

Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
[CrossRef]

Peale, R. E.

J. M. Eichenholz, D. A. Hammons, L. Shah, Q. Ye, R. E. Peale, M. Richardson, and B. H. T. Chai, “Diode-pumped self-frequency doubling in a Nd3+:YCa4O(BO3)3 laser,” Appl. Phys. Lett. 74, 1954–1956 (1999).
[CrossRef]

Pelence, D.

Richardson, M.

J. M. Eichenholz, D. A. Hammons, L. Shah, Q. Ye, R. E. Peale, M. Richardson, and B. H. T. Chai, “Diode-pumped self-frequency doubling in a Nd3+:YCa4O(BO3)3 laser,” Appl. Phys. Lett. 74, 1954–1956 (1999).
[CrossRef]

Salin, F.

Sasaki, T.

M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, “Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material,” Jpn. J. Appl. Phys., 36, 276–279 (1997).
[CrossRef]

Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
[CrossRef]

Shah, L.

J. M. Eichenholz, D. A. Hammons, L. Shah, Q. Ye, R. E. Peale, M. Richardson, and B. H. T. Chai, “Diode-pumped self-frequency doubling in a Nd3+:YCa4O(BO3)3 laser,” Appl. Phys. Lett. 74, 1954–1956 (1999).
[CrossRef]

Sheng, W.

Shi, W.

Tang, H.

Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
[CrossRef]

Vivien, D.

Wemple, S. H.

S. H. Wemple and M. Didomenico, Jr., “Oxygen-octahedra ferroelectrics. II. Electro-optical and nonlinear-optical device applications,” J. Appl. Phys. 40, 735–751 (1969).
[CrossRef]

Wu, B.

C. T. Chen, N. Ye, J. Lin, J. Jiang, W. Zeng, and B. Wu, “Computer assisted search for nonlinear optical crystals,” Adv. Mater. 11, 1071–1078 (1999).
[CrossRef]

C. T. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R.-K. Li, and S.-J. Lin, “New nonlinear-optical crystal; LiB3O5,” J. Opt. Soc. Am. B 6, 616–621 (1989).
[CrossRef]

Wu, Y.

Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
[CrossRef]

C. T. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R.-K. Li, and S.-J. Lin, “New nonlinear-optical crystal; LiB3O5,” J. Opt. Soc. Am. B 6, 616–621 (1989).
[CrossRef]

Yao, J. Q.

Ye, N.

C. T. Chen, N. Ye, J. Lin, J. Jiang, W. Zeng, and B. Wu, “Computer assisted search for nonlinear optical crystals,” Adv. Mater. 11, 1071–1078 (1999).
[CrossRef]

Ye, Q.

J. M. Eichenholz, D. A. Hammons, L. Shah, Q. Ye, R. E. Peale, M. Richardson, and B. H. T. Chai, “Diode-pumped self-frequency doubling in a Nd3+:YCa4O(BO3)3 laser,” Appl. Phys. Lett. 74, 1954–1956 (1999).
[CrossRef]

Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197, 228–235 (1999).
[CrossRef]

Yokotani, A.

Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
[CrossRef]

You, G.

Zeng, W.

C. T. Chen, N. Ye, J. Lin, J. Jiang, W. Zeng, and B. Wu, “Computer assisted search for nonlinear optical crystals,” Adv. Mater. 11, 1071–1078 (1999).
[CrossRef]

Adv. Mater. (1)

C. T. Chen, N. Ye, J. Lin, J. Jiang, W. Zeng, and B. Wu, “Computer assisted search for nonlinear optical crystals,” Adv. Mater. 11, 1071–1078 (1999).
[CrossRef]

Appl. Phys. (1)

P. S. Bechthold, and S. Haussuhl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
[CrossRef]

J. M. Eichenholz, D. A. Hammons, L. Shah, Q. Ye, R. E. Peale, M. Richardson, and B. H. T. Chai, “Diode-pumped self-frequency doubling in a Nd3+:YCa4O(BO3)3 laser,” Appl. Phys. Lett. 74, 1954–1956 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

J. Appl. Phys. (1)

S. H. Wemple and M. Didomenico, Jr., “Oxygen-octahedra ferroelectrics. II. Electro-optical and nonlinear-optical device applications,” J. Appl. Phys. 40, 735–751 (1969).
[CrossRef]

J. Cryst. Growth (1)

Q. Ye and B. H. T. Chai, “Crystal growth of YCa4O(BO3)3 and its orientation,” J. Cryst. Growth 197, 228–235 (1999).
[CrossRef]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, and T. Sasaki, “Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material,” Jpn. J. Appl. Phys., 36, 276–279 (1997).
[CrossRef]

Phys. Rev. (1)

D. A. Kleinman, “Nonlinear dielectric polarization in optical media,” Phys. Rev. 126, 1977–1979 (1962).
[CrossRef]

Other (5)

F. Auge, F. Mougel, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, A. Brun, “New efficient self-frequency doubling Nd-doped crystal for diode-pumped green laser,” in Conference on Lasers and Electro-Optics (CLEO/US), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 324, paper CThA5.

M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binbley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baber, J. J. P. Stewart, and J. A. Pople, Gaussian 92 program, Revision A (Gaussian, Inc., Pittsburgh, Pa. 1992).

C. T. Chen, in Development of New Nonlinear Optical Crys-tals in the Borate Series, V. S. Letokhov, C. V. Shank, Y. R. Shen, and H. Walther, eds., Vol. 15 of Laser Science and Technology International Handbook (Harwood Academic, Chur, Switzerland, 1993), p. 60.

F. Mougel, G. Aka, F. Salin, D. Pelenc, B. Ferrand, A. Kahn-Harari, and D. Vivien, “Accurate second harmonic generation phase matching angles prediction and evaluation of nonlinear coefficients of YCa4(BO3)3(YCOB) crystal,” in Advanced Solid State Lasers, M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1999), pp. 709–714.

V. G. Dmitrie, G. C. Gurzadyn, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 2nd ed. (Springer-Verlag, Berlin, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Arrangements for the determination of d11, d33, and d32 of YCOB and d31 of LBO: (a) d11 (YCOB), (b) d33 (YCOB), (c) d32 (YCOB), (d) d31 (LBO).

Fig. 2
Fig. 2

Typical recorded Maker fringe curves of (a) d33 (YCOB) and (b) d32 (YCOB).

Fig. 3
Fig. 3

(a) Three-dimensional space relationships between the deff coefficient and phase-matching angle (θ, φ) of YCOB with (a) dij coefficients calculated by the Gaussian 92 program and (b) d33 and d32 coefficients measured by the Maker fringes method and d12, d11, d13, and d31 coefficients calculated by the Gaussian 92 program.

Fig. 4
Fig. 4

Experimental setup for measuring the SHG conversion efficiencies of YCOB and Nd:YCOB in different phase-matching directions. 1, Q-switched Nd:YAG laser; 2, STOP; 3, YCOB and Nd:YCOB crystals; 4, filters; 5, energy meter.

Tables (4)

Tables Icon

Table 1 SHG Coefficients of YCOB Calculated by Gaussian 92 and CNDO Programs and Measured by the Maker Fringes Methoda

Tables Icon

Table 2 Experimental and Calculated Angular Positions in Degrees of the Minimum of the Measured and Theoretical Maker Fringes for d33 and d32 of YCOB

Tables Icon

Table 3 Relationship between the Effective SHG Coefficients and Phase-Matching Angles (θ, ϕ) of YCOBa

Tables Icon

Table 4 SHG Conversion Efficiency Measurements of Nd:YCOB Crystals with Different (θ, φ) Anglesa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Y2O3+8CaCO3+3B2O3=2YCa4(BO3)3+8CO2.
dil=d11d12d130d150000d240d26d31d32d330d350.

Metrics