Abstract

Photorefractive properties of a 0.05-wt. % Ce2O3-doped Pb0.5Ba0.5Nb2O6 crystal are investigated at visible wavelengths. Compared with the performance of the undoped crystal, sensitivities as high as 3 cm/J represent an increase of almost two orders of magnitude, and a photorefractive gain of 25 cm-1 for extraordinary polarization exhibits a fourfold increase. The saturated diffraction efficiency varies with the intensity ratio of the incident beams owing to strong beam coupling. Photoconductivity at 514.5 nm and dark conductivity are also measured. The intensity dependence of these light-induced parameters suggests a nonsingle-photon behavior. We use a two-center model that involves both a shallow level and a deep level to explain the measured results.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Y. Liu, M. Lee, M. C. Bashaw, L. Hesselink, and R. S. Feigelson, “Observation and thermal fixing of holographic gratings in lead barium niobate crystal,” Opt. Lett. 22, 187–189 (1997).
    [CrossRef] [PubMed]
  2. M. Lee, R. Feigelson, A. Liu, and L. Hesselink, “Measurements of OH absorption and proton activation in Pb1−xBaxNb2O6 crystals with applications to holographic storage,” Phys. Rev. B 56, 7898–7904 (1997).
    [CrossRef]
  3. K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
    [CrossRef]
  4. K. Buse, U. Van Stevendaal, R. Pankrath, and E. Krätzig, “Light-induced charge-transport properties of Sr0.61Ba0.39Nb2O6:Ce crystals,” J. Opt. Soc. Am. B 13, 1461–1467 (1996).
    [CrossRef]
  5. S. Orlov, M. Segev, A. Yariv, and R. Neurgaonkar, “Light-induced absorption in photorefractive strontium barium niobate,” Opt. Lett. 19, 1293–1295 (1994).
    [CrossRef] [PubMed]
  6. A. Liu, M. Lee, L. Hesselink, S.-H. Lee, and K.-S. Lim, “Light-induced absorption of cerium-doped lead barium niobate crystals,” Opt. Lett. 23, 1618–1620 (1998).
    [CrossRef]
  7. R. A. Vazquez, R. R. Neurgaonkar, and M. D. Ewbank, “Photorefractive properties of SBN:60 systematically doped with rhodium,” J. Opt. Soc. Am. B 9, 1416–1427 (1992).
    [CrossRef]
  8. A. Liu, L. Hesselink, M. Lee, and R. Feigelson, “Electro-optic and photorefractive two beam coupling properties of lead barium niobate crystals,” J. Appl. Phys. 83, 2826–2830 (1998).
    [CrossRef]
  9. M. Jeganathan, M. C. Bashaw, and L. Hesselink, “Trapping the grating envelope in bulk photorefractive media,” Opt. Lett. 19, 1415–1417 (1994).
    [CrossRef] [PubMed]
  10. J. H. Hong and R. Saxena, “Diffraction efficiency of volume holograms written by coupled beams,” Opt. Lett. 16, 180–182 (1985).

1998 (2)

A. Liu, M. Lee, L. Hesselink, S.-H. Lee, and K.-S. Lim, “Light-induced absorption of cerium-doped lead barium niobate crystals,” Opt. Lett. 23, 1618–1620 (1998).
[CrossRef]

A. Liu, L. Hesselink, M. Lee, and R. Feigelson, “Electro-optic and photorefractive two beam coupling properties of lead barium niobate crystals,” J. Appl. Phys. 83, 2826–2830 (1998).
[CrossRef]

1997 (2)

A. Y. Liu, M. Lee, M. C. Bashaw, L. Hesselink, and R. S. Feigelson, “Observation and thermal fixing of holographic gratings in lead barium niobate crystal,” Opt. Lett. 22, 187–189 (1997).
[CrossRef] [PubMed]

M. Lee, R. Feigelson, A. Liu, and L. Hesselink, “Measurements of OH absorption and proton activation in Pb1−xBaxNb2O6 crystals with applications to holographic storage,” Phys. Rev. B 56, 7898–7904 (1997).
[CrossRef]

1996 (1)

1994 (2)

1992 (1)

1985 (1)

1977 (1)

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

Bashaw, M. C.

Buse, K.

Ewbank, M. D.

Feigelson, R.

A. Liu, L. Hesselink, M. Lee, and R. Feigelson, “Electro-optic and photorefractive two beam coupling properties of lead barium niobate crystals,” J. Appl. Phys. 83, 2826–2830 (1998).
[CrossRef]

M. Lee, R. Feigelson, A. Liu, and L. Hesselink, “Measurements of OH absorption and proton activation in Pb1−xBaxNb2O6 crystals with applications to holographic storage,” Phys. Rev. B 56, 7898–7904 (1997).
[CrossRef]

Feigelson, R. S.

Furuhata, Y.

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

Hesselink, L.

A. Liu, M. Lee, L. Hesselink, S.-H. Lee, and K.-S. Lim, “Light-induced absorption of cerium-doped lead barium niobate crystals,” Opt. Lett. 23, 1618–1620 (1998).
[CrossRef]

A. Liu, L. Hesselink, M. Lee, and R. Feigelson, “Electro-optic and photorefractive two beam coupling properties of lead barium niobate crystals,” J. Appl. Phys. 83, 2826–2830 (1998).
[CrossRef]

A. Y. Liu, M. Lee, M. C. Bashaw, L. Hesselink, and R. S. Feigelson, “Observation and thermal fixing of holographic gratings in lead barium niobate crystal,” Opt. Lett. 22, 187–189 (1997).
[CrossRef] [PubMed]

M. Lee, R. Feigelson, A. Liu, and L. Hesselink, “Measurements of OH absorption and proton activation in Pb1−xBaxNb2O6 crystals with applications to holographic storage,” Phys. Rev. B 56, 7898–7904 (1997).
[CrossRef]

M. Jeganathan, M. C. Bashaw, and L. Hesselink, “Trapping the grating envelope in bulk photorefractive media,” Opt. Lett. 19, 1415–1417 (1994).
[CrossRef] [PubMed]

Hong, J. H.

Jeganathan, M.

Kobayashi, M.

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

Kozuka, H.

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

Krätzig, E.

Lee, M.

A. Liu, M. Lee, L. Hesselink, S.-H. Lee, and K.-S. Lim, “Light-induced absorption of cerium-doped lead barium niobate crystals,” Opt. Lett. 23, 1618–1620 (1998).
[CrossRef]

A. Liu, L. Hesselink, M. Lee, and R. Feigelson, “Electro-optic and photorefractive two beam coupling properties of lead barium niobate crystals,” J. Appl. Phys. 83, 2826–2830 (1998).
[CrossRef]

A. Y. Liu, M. Lee, M. C. Bashaw, L. Hesselink, and R. S. Feigelson, “Observation and thermal fixing of holographic gratings in lead barium niobate crystal,” Opt. Lett. 22, 187–189 (1997).
[CrossRef] [PubMed]

M. Lee, R. Feigelson, A. Liu, and L. Hesselink, “Measurements of OH absorption and proton activation in Pb1−xBaxNb2O6 crystals with applications to holographic storage,” Phys. Rev. B 56, 7898–7904 (1997).
[CrossRef]

Lee, S.-H.

Lim, K.-S.

Liu, A.

A. Liu, M. Lee, L. Hesselink, S.-H. Lee, and K.-S. Lim, “Light-induced absorption of cerium-doped lead barium niobate crystals,” Opt. Lett. 23, 1618–1620 (1998).
[CrossRef]

A. Liu, L. Hesselink, M. Lee, and R. Feigelson, “Electro-optic and photorefractive two beam coupling properties of lead barium niobate crystals,” J. Appl. Phys. 83, 2826–2830 (1998).
[CrossRef]

M. Lee, R. Feigelson, A. Liu, and L. Hesselink, “Measurements of OH absorption and proton activation in Pb1−xBaxNb2O6 crystals with applications to holographic storage,” Phys. Rev. B 56, 7898–7904 (1997).
[CrossRef]

Liu, A. Y.

Megumi, K.

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

Neurgaonkar, R.

Neurgaonkar, R. R.

Orlov, S.

Pankrath, R.

Saxena, R.

Segev, M.

Van Stevendaal, U.

Vazquez, R. A.

Yariv, A.

Appl. Phys. Lett. (1)

K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, “High-sensitive holographic storage in Ce-doped SBN,” Appl. Phys. Lett. 30, 631 (1977).
[CrossRef]

J. Appl. Phys. (1)

A. Liu, L. Hesselink, M. Lee, and R. Feigelson, “Electro-optic and photorefractive two beam coupling properties of lead barium niobate crystals,” J. Appl. Phys. 83, 2826–2830 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (5)

Phys. Rev. B (1)

M. Lee, R. Feigelson, A. Liu, and L. Hesselink, “Measurements of OH absorption and proton activation in Pb1−xBaxNb2O6 crystals with applications to holographic storage,” Phys. Rev. B 56, 7898–7904 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Unpolarized absorption spectrum of an undoped and a 0.05-wt. % Ce2O3-doped PBN crystal.

Fig. 2
Fig. 2

Experimental setup for two-beam-coupling experiments: ND, neutral-density filter; WP, half-wave plate; P, polarizer; M, mirror; BS, beam splitter; SH, shutter; PD, photodiode.

Fig. 3
Fig. 3

(a) Gain coefficients as a function of external incident angles with ordinarily polarized (●) and extraordinarily polarized (○) light in a Ce-doped PBN crystal. (b) Gain coefficients as a function of external incident angles with extraordinarily polarized light in a Ce-doped PBN crystal (●) and an undoped PBN crystal (○). The pump-light intensity is 300 mW/cm2. The solid curves are the best fits according to Eq. (3).

Fig. 4
Fig. 4

Saturated diffraction efficiency η as a function of reference-to-signal-beam intensity ratios. Solid curves indicate the fitted curves according to Eq. (8).

Fig. 5
Fig. 5

Log–log plot of the initial grating buildup rate η/t at various writing intensities in a Ce-doped PBN crystal. (a) The writing wavelength is 514.5 nm; (b) the writing wavelength is 488 nm.

Fig. 6
Fig. 6

Gain coefficients at various external half-incident angles in a Ce-doped PBN crystal for the extraordinarily polarized light at 514.5 nm. (●) Gain coefficients at a pump intensity of 300 mW/cm2; (○) gain coefficients at a pump intensity of 10 mW/cm2. The solid curves are the best fits according to Eq. (3).

Fig. 7
Fig. 7

Temporal profile of the grating buildup and decay at 633 nm in a 0.05-wt. % Ce-doped PBN crystal. Shown in the inset is a time-expanded version of the initial grating decay showing the fast-decay component.

Fig. 8
Fig. 8

Current density j at various applied electric fields E in a Ce-doped PBN crystal. The illumination intensity is 500 mW/cm2 at 514.5 nm. The solid curve is a linear fit of the measured data.

Fig. 9
Fig. 9

Photoconductivity σph as a function of various illumination intensities at 514.5 nm in a Ce-doped PBN crystal. The externally applied electric field is 2 kV/cm. The solid curve is a best fit of the function Ix, where x=0.95.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S=ηIτd,
Γ=1dlnIwithpumpIwithoutpump,
Γ=A sin θ1+B sin2 θeˆ1·eˆ2cos θi,
A=reffξ 8π2n3kBTeλ2,
B=16π2e2λ20kBTNeff.
n(z)=nmaxm(z)=nmax sechγz-ln r02,
η=exp-αdcos θisin2πλ cos θi0dn(z)dz,
η=exp-αdcos θisin2tan-1tanh γd-ln r04+tan-1tanh ln r04.
Neff=N°NN,
Neff=N°NN+11+βsshallowIM°MM,
K02=e20kBTN°NN+M°MM.
σph=jE-σdark.

Metrics