Abstract

High-quality three-dimensional polystyrene–air photonic crystal structures with particle diameters of 200, 270, and 340 nm were grown with a quasi-equilibrium evaporation technique. The effects of the removal of interval water were evident as a blueshift of peaks, enhancement of the transmission attenuation, and changes in the gap/midgap ratio. Frequency scaling and incidence-angle–dependent transmission were also investigated; both show good agreement with the numerical simulation.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vrij, “Polymers at interfaces and the interactions in colloidal dispersions,” Pure Appl. Chem. 48, 471–483 (1976).
    [Crossref]
  2. A. D. Dinsmore, A. G. Yodh, and D. J. Pine, “Phase diagrams of nearly hard-sphere binary colloids,” Phys. Rev. E 52, 4045–4057 (1995).
    [Crossref]
  3. R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
    [Crossref]
  4. Í. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315–318 (1996).
    [Crossref] [PubMed]
  5. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2063 (1987).
    [Crossref] [PubMed]
  6. For a review, see, for example, articles in C. Soukoulis, ed., Photonic Band Gap Materials, Vol. 315 of NATO ASI Series E (Kluwer, Dordrecht, 1996).
  7. E. Yablonovitch and T. G. Gmitter, “Photonic band structure: the face-centered cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
    [Crossref] [PubMed]
  8. K. Fukuda, H. Sun, S. Matsuo, and H. Misawa, “Self-organizing three-dimensional colloidal photonic crystal structure with augmented dielectric contrast,” Jpn. J. Appl. Phys.,  37, L508–L511 (1998).
    [Crossref]
  9. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, Y. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “Three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
    [Crossref]
  10. U. Grüning, V. Lehmann, and C. M. Engelhardt, “Two-dimensional infrared photonic band gap structure based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
    [Crossref]
  11. O. Hanaizumi, Y. Ohtera, T. Sato, and H. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: fabrication and observation,” Appl. Phys. Lett. 74, 777–779 (1999).
    [Crossref]
  12. H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
    [Crossref]
  13. H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev. 6, 396–398 (1999).
    [Crossref]
  14. P. N. Pusey and W. V. Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340–342 (1986).
    [Crossref]
  15. P. Pieranski, “Colloidal crystals,” Contemp. Phys. 24, 25–73 (1983).
    [Crossref]
  16. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
  17. See T. K. Gaylord, G. N. Henderson, and E. N. Glytsis, “Application of electromagnetic formalism to quantum-mechanical electron-wave propagation in semiconductors,” J. Opt. Soc. Am. B 10, 333–339 (1993).
    [Crossref]
  18. J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41, 209–229 (1993).
    [Crossref]
  19. P. M. Bell, J. B. Pendry, L. Martín-Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficient of complex structures,” Comput. Phys. Commun. 85, 306 (1995).
    [Crossref]

1999 (3)

O. Hanaizumi, Y. Ohtera, T. Sato, and H. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: fabrication and observation,” Appl. Phys. Lett. 74, 777–779 (1999).
[Crossref]

H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
[Crossref]

H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev. 6, 396–398 (1999).
[Crossref]

1998 (3)

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

K. Fukuda, H. Sun, S. Matsuo, and H. Misawa, “Self-organizing three-dimensional colloidal photonic crystal structure with augmented dielectric contrast,” Jpn. J. Appl. Phys.,  37, L508–L511 (1998).
[Crossref]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, Y. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “Three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

1996 (1)

Í. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315–318 (1996).
[Crossref] [PubMed]

1995 (3)

A. D. Dinsmore, A. G. Yodh, and D. J. Pine, “Phase diagrams of nearly hard-sphere binary colloids,” Phys. Rev. E 52, 4045–4057 (1995).
[Crossref]

U. Grüning, V. Lehmann, and C. M. Engelhardt, “Two-dimensional infrared photonic band gap structure based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
[Crossref]

P. M. Bell, J. B. Pendry, L. Martín-Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficient of complex structures,” Comput. Phys. Commun. 85, 306 (1995).
[Crossref]

1993 (2)

1989 (1)

E. Yablonovitch and T. G. Gmitter, “Photonic band structure: the face-centered cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[Crossref] [PubMed]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2063 (1987).
[Crossref] [PubMed]

1986 (1)

P. N. Pusey and W. V. Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340–342 (1986).
[Crossref]

1983 (1)

P. Pieranski, “Colloidal crystals,” Contemp. Phys. 24, 25–73 (1983).
[Crossref]

1976 (1)

A. Vrij, “Polymers at interfaces and the interactions in colloidal dispersions,” Pure Appl. Chem. 48, 471–483 (1976).
[Crossref]

Bell, P. M.

P. M. Bell, J. B. Pendry, L. Martín-Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficient of complex structures,” Comput. Phys. Commun. 85, 306 (1995).
[Crossref]

Biswas, R.

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

Biswas, Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, Y. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “Three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, Y. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “Three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Dinsmore, A. D.

A. D. Dinsmore, A. G. Yodh, and D. J. Pine, “Phase diagrams of nearly hard-sphere binary colloids,” Phys. Rev. E 52, 4045–4057 (1995).
[Crossref]

Engelhardt, C. M.

U. Grüning, V. Lehmann, and C. M. Engelhardt, “Two-dimensional infrared photonic band gap structure based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
[Crossref]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, Y. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “Three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Fukuda, K.

K. Fukuda, H. Sun, S. Matsuo, and H. Misawa, “Self-organizing three-dimensional colloidal photonic crystal structure with augmented dielectric contrast,” Jpn. J. Appl. Phys.,  37, L508–L511 (1998).
[Crossref]

Gaylord, T. K.

Glytsis, E. N.

Gmitter, T. G.

E. Yablonovitch and T. G. Gmitter, “Photonic band structure: the face-centered cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[Crossref] [PubMed]

Grüning, U.

U. Grüning, V. Lehmann, and C. M. Engelhardt, “Two-dimensional infrared photonic band gap structure based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
[Crossref]

Hanaizumi, O.

O. Hanaizumi, Y. Ohtera, T. Sato, and H. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: fabrication and observation,” Appl. Phys. Lett. 74, 777–779 (1999).
[Crossref]

Henderson, G. N.

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, Y. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “Three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, Y. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “Three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Ho, K.-M.

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

Joannopoulos, J.

J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Kawakami, H.

O. Hanaizumi, Y. Ohtera, T. Sato, and H. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: fabrication and observation,” Appl. Phys. Lett. 74, 777–779 (1999).
[Crossref]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, Y. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “Three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Lehmann, V.

U. Grüning, V. Lehmann, and C. M. Engelhardt, “Two-dimensional infrared photonic band gap structure based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
[Crossref]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, Y. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “Three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Martín-Moreno, L.

P. M. Bell, J. B. Pendry, L. Martín-Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficient of complex structures,” Comput. Phys. Commun. 85, 306 (1995).
[Crossref]

Matsuo, S.

H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
[Crossref]

H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev. 6, 396–398 (1999).
[Crossref]

K. Fukuda, H. Sun, S. Matsuo, and H. Misawa, “Self-organizing three-dimensional colloidal photonic crystal structure with augmented dielectric contrast,” Jpn. J. Appl. Phys.,  37, L508–L511 (1998).
[Crossref]

Meade, R.

J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Megen, W. V.

P. N. Pusey and W. V. Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340–342 (1986).
[Crossref]

Misawa, H.

H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev. 6, 396–398 (1999).
[Crossref]

H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
[Crossref]

K. Fukuda, H. Sun, S. Matsuo, and H. Misawa, “Self-organizing three-dimensional colloidal photonic crystal structure with augmented dielectric contrast,” Jpn. J. Appl. Phys.,  37, L508–L511 (1998).
[Crossref]

Ohtera, Y.

O. Hanaizumi, Y. Ohtera, T. Sato, and H. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: fabrication and observation,” Appl. Phys. Lett. 74, 777–779 (1999).
[Crossref]

Pendry, J. B.

P. M. Bell, J. B. Pendry, L. Martín-Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficient of complex structures,” Comput. Phys. Commun. 85, 306 (1995).
[Crossref]

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41, 209–229 (1993).
[Crossref]

Pieranski, P.

P. Pieranski, “Colloidal crystals,” Contemp. Phys. 24, 25–73 (1983).
[Crossref]

Pine, D. J.

A. D. Dinsmore, A. G. Yodh, and D. J. Pine, “Phase diagrams of nearly hard-sphere binary colloids,” Phys. Rev. E 52, 4045–4057 (1995).
[Crossref]

Pusey, P. N.

P. N. Pusey and W. V. Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340–342 (1986).
[Crossref]

Sato, T.

O. Hanaizumi, Y. Ohtera, T. Sato, and H. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: fabrication and observation,” Appl. Phys. Lett. 74, 777–779 (1999).
[Crossref]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, Y. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “Three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, Y. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “Three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Subramania, G.

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

Sun, H.

K. Fukuda, H. Sun, S. Matsuo, and H. Misawa, “Self-organizing three-dimensional colloidal photonic crystal structure with augmented dielectric contrast,” Jpn. J. Appl. Phys.,  37, L508–L511 (1998).
[Crossref]

Sun, H.-B.

H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
[Crossref]

H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev. 6, 396–398 (1999).
[Crossref]

Tarhan, Í.

Í. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315–318 (1996).
[Crossref] [PubMed]

Vrij, A.

A. Vrij, “Polymers at interfaces and the interactions in colloidal dispersions,” Pure Appl. Chem. 48, 471–483 (1976).
[Crossref]

Ward, A. J.

P. M. Bell, J. B. Pendry, L. Martín-Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficient of complex structures,” Comput. Phys. Commun. 85, 306 (1995).
[Crossref]

Watson, G. H.

Í. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315–318 (1996).
[Crossref] [PubMed]

Winn, J.

J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Xu, Y.

H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev. 6, 396–398 (1999).
[Crossref]

Yablonovitch, E.

E. Yablonovitch and T. G. Gmitter, “Photonic band structure: the face-centered cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2063 (1987).
[Crossref] [PubMed]

Yodh, A. G.

A. D. Dinsmore, A. G. Yodh, and D. J. Pine, “Phase diagrams of nearly hard-sphere binary colloids,” Phys. Rev. E 52, 4045–4057 (1995).
[Crossref]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, Y. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “Three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Appl. Phys. Lett. (3)

U. Grüning, V. Lehmann, and C. M. Engelhardt, “Two-dimensional infrared photonic band gap structure based on porous silicon,” Appl. Phys. Lett. 66, 3254–3256 (1995).
[Crossref]

O. Hanaizumi, Y. Ohtera, T. Sato, and H. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: fabrication and observation,” Appl. Phys. Lett. 74, 777–779 (1999).
[Crossref]

H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74, 786–788 (1999).
[Crossref]

Comput. Phys. Commun. (1)

P. M. Bell, J. B. Pendry, L. Martín-Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficient of complex structures,” Comput. Phys. Commun. 85, 306 (1995).
[Crossref]

Contemp. Phys. (1)

P. Pieranski, “Colloidal crystals,” Contemp. Phys. 24, 25–73 (1983).
[Crossref]

J. Mod. Opt. (1)

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41, 209–229 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Fukuda, H. Sun, S. Matsuo, and H. Misawa, “Self-organizing three-dimensional colloidal photonic crystal structure with augmented dielectric contrast,” Jpn. J. Appl. Phys.,  37, L508–L511 (1998).
[Crossref]

Nature (2)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, Y. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “Three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

P. N. Pusey and W. V. Megen, “Phase behavior of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340–342 (1986).
[Crossref]

Opt. Rev. (1)

H.-B. Sun, Y. Xu, S. Matsuo, and H. Misawa, “Microfabrication and characteristics of two-dimensional photonic crystal structures in vitreous silica,” Opt. Rev. 6, 396–398 (1999).
[Crossref]

Phys. Rev. B (1)

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal systems,” Phys. Rev. B 57, 3701–3705 (1998).
[Crossref]

Phys. Rev. E (1)

A. D. Dinsmore, A. G. Yodh, and D. J. Pine, “Phase diagrams of nearly hard-sphere binary colloids,” Phys. Rev. E 52, 4045–4057 (1995).
[Crossref]

Phys. Rev. Lett. (3)

Í. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315–318 (1996).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2063 (1987).
[Crossref] [PubMed]

E. Yablonovitch and T. G. Gmitter, “Photonic band structure: the face-centered cubic case,” Phys. Rev. Lett. 63, 1950–1953 (1989).
[Crossref] [PubMed]

Pure Appl. Chem. (1)

A. Vrij, “Polymers at interfaces and the interactions in colloidal dispersions,” Pure Appl. Chem. 48, 471–483 (1976).
[Crossref]

Other (2)

For a review, see, for example, articles in C. Soukoulis, ed., Photonic Band Gap Materials, Vol. 315 of NATO ASI Series E (Kluwer, Dordrecht, 1996).

J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Atomic-force microscope images of surfaces of colloidal-particle photonic crystal structures fabricated with a quasi-equilibrium evaporation process. A high crystal quality was achieved by control of the evaporation of supernatant and interval water. The microsphere diameters are (a) 200, (b) 270, and (c) 340 nm. For all samples the thickness was 50 layers, corresponding to a lattice periodicity of approximately 17.

Fig. 2
Fig. 2

Normalized transmission spectra of colloidal crystal structures (solid curve) before and (dashed curve) after the removal of water. To avoid disturbances in transportation, the sample was fixed in the light path beforehand; the experimental configuration was specially designed to permit this. A gradual variation of spectra from the solid to the dashed curve was observable.

Fig. 3
Fig. 3

Microsphere diameter-dependent transmission properties. (a) The leftmost, central, and rightmost spectral valleys correspond to particle diameters of 2r of 200, 270, and 340 nm, respectively. The solid curves are from measurements and the dashed curves from the simulation. (b) A comparison of measured and theoretical central wavelengths of transmission valleys of fcc photonic crystal structures. The open circles and open squares are from measurement and from numerical calculation by plane-wave expansion technique, respectively. The guiding dashed line is drawn according to Bragg’s law.

Fig. 4
Fig. 4

Incidence-angle–dependent bandgap effects (the microsphere diameter is 2r=270 nm). (a) The FBZ of fcc photonic lattices. The principal symmetrical points (Γ, L, K, W, and X) and axes are illustrated. (b) Transmission spectra, measured along the LW direction at various positions: L + 0°, L + 10°, L + 20°, L + 30°, and L + 40°. (c) Incidence-angle–dependent wavelength of transmission valley centers. The curve is from Bragg’s law, and filled circles are abstracted from (b).

Fig. 5
Fig. 5

Surface profile of a colloidal crystal consisting of multiple single-crystal domains. The cross section was chosen to cross the boundary of two single-crystal regions. Judging from the peaks’ spacing and height variation, the measured zone contains two single-crystal domains with different orientations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

×1(r)×H(r)=ωc2H(r),
F(z=0)=[Ex(z=0),Ey(z=0),
Hx(z=0),Hy(z=0)].
F(z=c)=T(c, 0)F(z=0).

Metrics