Abstract

The possibility of a simple single-shot oxygen monitor for a float-glass plant by use of the Schumann–Runge absorption lines within the broadband lasing structure of an ArF excimer laser initiated this detailed study. We present the theoretical predictions and the experimental absorption profiles at temperatures from 76 to 2000 °F. Laboratory experiments predict that detection of a few to ten parts per million of oxygen in the float section of the plant is doable.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Loree, P. B. Scott, and R. C. Sze, “Spectroscopy and characteristics of a 50 mJ ArF double discharge laser,” Electronic Transition Lasers II, L. E. Wilson, S. N. Suchard, and J. I. Steinfeld (MIT, Cambridge, Mass., 1976), pp. 35–45).
  2. A. C. Allison, A. Dalgarno, and N. W. Pasachoff, “Absorption by vibrationally excited molecular oxygen in the Schumann–Runge continuum,” Planet. Space Sci. 19, 1463–1473 (1971).
    [CrossRef]
  3. C. A. Falleroni and C. K. Edge, “Float glass technology: the bath atmosphere system,” PPG Technol. J. 2(1), 61–70 (1996).
  4. M. P. Lee and R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986).
    [CrossRef]
  5. D. M. Creek and R. W. Nicholls, “A comprehensive reanalysis of the O2(B3Σu–X3Σg) Schumann–Runge band system,” Proc. R. Soc. London, Ser. A 341, 517–536 (1975).
    [CrossRef]
  6. J. B. Tatum, “Hönl–London factors for 3Σ±3Σ± transitions,” Can. J. Phys. 44, 2944–2946 (1966).
    [CrossRef]
  7. M. Versluis and G. Meijer, “Intracavity C atom absorption in the tuning range of the ArF excimer laser,” J. Chem. Phys. 96, 3350–3351 (1992).
    [CrossRef]
  8. G. W. Faris and M. J. Dyer, “Raman-shifting ArF excimer laser radiation for vacuum-ultraviolet multiphoton spectroscopy,” J. Opt. Soc. Am. B 10, 2273–2286 (1993).
    [CrossRef]
  9. M. Shimauchi, T. Miura, and H. Takuma, “Absorption lines of vibrationally excited O2 and HF in ArF laser systems,” Jpn. J. Appl. Phys., Part 1 33, 4628–4635 (1994).
    [CrossRef]
  10. W. R. Bennett, Jr., “A quantum mechanical evaluation of line breaths involved in tuned-laser absorption and stimulated emission spectroscopy,” Appl. Opt. 4, 78–80 (1965).
  11. M. W. P. Cann, J. B. Shin, and R. W. Nicholls, “Oxygen absorption in the spectral range 180–300 nm for temperatures to 3000 K and pressures to 50 atm.,” Can. J. Phys. 42, 1738–1751 (1984).
    [CrossRef]

1996 (1)

C. A. Falleroni and C. K. Edge, “Float glass technology: the bath atmosphere system,” PPG Technol. J. 2(1), 61–70 (1996).

1994 (1)

M. Shimauchi, T. Miura, and H. Takuma, “Absorption lines of vibrationally excited O2 and HF in ArF laser systems,” Jpn. J. Appl. Phys., Part 1 33, 4628–4635 (1994).
[CrossRef]

1993 (1)

1992 (1)

M. Versluis and G. Meijer, “Intracavity C atom absorption in the tuning range of the ArF excimer laser,” J. Chem. Phys. 96, 3350–3351 (1992).
[CrossRef]

1986 (1)

M. P. Lee and R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986).
[CrossRef]

1984 (1)

M. W. P. Cann, J. B. Shin, and R. W. Nicholls, “Oxygen absorption in the spectral range 180–300 nm for temperatures to 3000 K and pressures to 50 atm.,” Can. J. Phys. 42, 1738–1751 (1984).
[CrossRef]

1975 (1)

D. M. Creek and R. W. Nicholls, “A comprehensive reanalysis of the O2(B3Σu–X3Σg) Schumann–Runge band system,” Proc. R. Soc. London, Ser. A 341, 517–536 (1975).
[CrossRef]

1971 (1)

A. C. Allison, A. Dalgarno, and N. W. Pasachoff, “Absorption by vibrationally excited molecular oxygen in the Schumann–Runge continuum,” Planet. Space Sci. 19, 1463–1473 (1971).
[CrossRef]

1966 (1)

J. B. Tatum, “Hönl–London factors for 3Σ±3Σ± transitions,” Can. J. Phys. 44, 2944–2946 (1966).
[CrossRef]

1965 (1)

Allison, A. C.

A. C. Allison, A. Dalgarno, and N. W. Pasachoff, “Absorption by vibrationally excited molecular oxygen in the Schumann–Runge continuum,” Planet. Space Sci. 19, 1463–1473 (1971).
[CrossRef]

Bennett Jr., W. R.

Cann, M. W. P.

M. W. P. Cann, J. B. Shin, and R. W. Nicholls, “Oxygen absorption in the spectral range 180–300 nm for temperatures to 3000 K and pressures to 50 atm.,” Can. J. Phys. 42, 1738–1751 (1984).
[CrossRef]

Creek, D. M.

D. M. Creek and R. W. Nicholls, “A comprehensive reanalysis of the O2(B3Σu–X3Σg) Schumann–Runge band system,” Proc. R. Soc. London, Ser. A 341, 517–536 (1975).
[CrossRef]

Dalgarno, A.

A. C. Allison, A. Dalgarno, and N. W. Pasachoff, “Absorption by vibrationally excited molecular oxygen in the Schumann–Runge continuum,” Planet. Space Sci. 19, 1463–1473 (1971).
[CrossRef]

Dyer, M. J.

Edge, C. K.

C. A. Falleroni and C. K. Edge, “Float glass technology: the bath atmosphere system,” PPG Technol. J. 2(1), 61–70 (1996).

Falleroni, C. A.

C. A. Falleroni and C. K. Edge, “Float glass technology: the bath atmosphere system,” PPG Technol. J. 2(1), 61–70 (1996).

Faris, G. W.

Hanson, R. K.

M. P. Lee and R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986).
[CrossRef]

Lee, M. P.

M. P. Lee and R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986).
[CrossRef]

Meijer, G.

M. Versluis and G. Meijer, “Intracavity C atom absorption in the tuning range of the ArF excimer laser,” J. Chem. Phys. 96, 3350–3351 (1992).
[CrossRef]

Miura, T.

M. Shimauchi, T. Miura, and H. Takuma, “Absorption lines of vibrationally excited O2 and HF in ArF laser systems,” Jpn. J. Appl. Phys., Part 1 33, 4628–4635 (1994).
[CrossRef]

Nicholls, R. W.

M. W. P. Cann, J. B. Shin, and R. W. Nicholls, “Oxygen absorption in the spectral range 180–300 nm for temperatures to 3000 K and pressures to 50 atm.,” Can. J. Phys. 42, 1738–1751 (1984).
[CrossRef]

D. M. Creek and R. W. Nicholls, “A comprehensive reanalysis of the O2(B3Σu–X3Σg) Schumann–Runge band system,” Proc. R. Soc. London, Ser. A 341, 517–536 (1975).
[CrossRef]

Pasachoff, N. W.

A. C. Allison, A. Dalgarno, and N. W. Pasachoff, “Absorption by vibrationally excited molecular oxygen in the Schumann–Runge continuum,” Planet. Space Sci. 19, 1463–1473 (1971).
[CrossRef]

Shimauchi, M.

M. Shimauchi, T. Miura, and H. Takuma, “Absorption lines of vibrationally excited O2 and HF in ArF laser systems,” Jpn. J. Appl. Phys., Part 1 33, 4628–4635 (1994).
[CrossRef]

Shin, J. B.

M. W. P. Cann, J. B. Shin, and R. W. Nicholls, “Oxygen absorption in the spectral range 180–300 nm for temperatures to 3000 K and pressures to 50 atm.,” Can. J. Phys. 42, 1738–1751 (1984).
[CrossRef]

Takuma, H.

M. Shimauchi, T. Miura, and H. Takuma, “Absorption lines of vibrationally excited O2 and HF in ArF laser systems,” Jpn. J. Appl. Phys., Part 1 33, 4628–4635 (1994).
[CrossRef]

Tatum, J. B.

J. B. Tatum, “Hönl–London factors for 3Σ±3Σ± transitions,” Can. J. Phys. 44, 2944–2946 (1966).
[CrossRef]

Versluis, M.

M. Versluis and G. Meijer, “Intracavity C atom absorption in the tuning range of the ArF excimer laser,” J. Chem. Phys. 96, 3350–3351 (1992).
[CrossRef]

Appl. Opt. (1)

Can. J. Phys. (2)

J. B. Tatum, “Hönl–London factors for 3Σ±3Σ± transitions,” Can. J. Phys. 44, 2944–2946 (1966).
[CrossRef]

M. W. P. Cann, J. B. Shin, and R. W. Nicholls, “Oxygen absorption in the spectral range 180–300 nm for temperatures to 3000 K and pressures to 50 atm.,” Can. J. Phys. 42, 1738–1751 (1984).
[CrossRef]

J. Chem. Phys. (1)

M. Versluis and G. Meijer, “Intracavity C atom absorption in the tuning range of the ArF excimer laser,” J. Chem. Phys. 96, 3350–3351 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

M. P. Lee and R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

M. Shimauchi, T. Miura, and H. Takuma, “Absorption lines of vibrationally excited O2 and HF in ArF laser systems,” Jpn. J. Appl. Phys., Part 1 33, 4628–4635 (1994).
[CrossRef]

Planet. Space Sci. (1)

A. C. Allison, A. Dalgarno, and N. W. Pasachoff, “Absorption by vibrationally excited molecular oxygen in the Schumann–Runge continuum,” Planet. Space Sci. 19, 1463–1473 (1971).
[CrossRef]

PPG Technol. J. (1)

C. A. Falleroni and C. K. Edge, “Float glass technology: the bath atmosphere system,” PPG Technol. J. 2(1), 61–70 (1996).

Proc. R. Soc. London, Ser. A (1)

D. M. Creek and R. W. Nicholls, “A comprehensive reanalysis of the O2(B3Σu–X3Σg) Schumann–Runge band system,” Proc. R. Soc. London, Ser. A 341, 517–536 (1975).
[CrossRef]

Other (1)

T. R. Loree, P. B. Scott, and R. C. Sze, “Spectroscopy and characteristics of a 50 mJ ArF double discharge laser,” Electronic Transition Lasers II, L. E. Wilson, S. N. Suchard, and J. I. Steinfeld (MIT, Cambridge, Mass., 1976), pp. 35–45).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Fractional populations of vibrational and rotational states of the ground electronic state of oxygen at 76 and 2000 °F.

Fig. 2
Fig. 2

Fractional population comparisons for (a) v=0 and (b) v=1 vibrational states of the ground electronic state of oxygen at 76 and 2000 °F.

Fig. 3
Fig. 3

Calculated theoretical absorption spectra in the ArF wavelength region for a constant wavelength-independent input field at room temperature (76 °F) for 10-Torr oxygen, 15-cm absorption length, and 1.35-cm-1 instrumental resolution. Each vibrational state is run separately.

Fig. 4
Fig. 4

Calculated theoretical absorption spectra in the ArF wavelength region for a constant wavelength-independent input field at 2000 °F for 50-Torr oxygen, 15-cm absorption length, and 1-cm-1 instrumental resolution. The numbers in the spectra indicate the lower-state vibrational quantum numbers. Each vibrational state is run separately.

Fig. 5
Fig. 5

Calculated theoretical vibrational spectra in the ArF wavelength region are compared for 50-Torr oxygen, 15-cm absorption length, and 1-cm-1 instrumental resolution at (a) 2000 °F, (b) 1500 °F, and (c) 1000 °F. All vibrational states are integrated into a single run.

Fig. 6
Fig. 6

(a) Experimental ArF laser spectra for the case when all intracavity and external path lengths are pumped to vacuum conditions. (b) Calculated theoretical spectra at 2000 °F, 50-Torr oxygen, 22-cm absorption length, and 1-cm-1 instrumental resolution incorporating ArF spectra of (a) as input field.

Fig. 7
Fig. 7

Schematic of experimental setup for single-shot detection of oxygen absorption at ArF wavelengths.

Fig. 8
Fig. 8

Experimental ArF absorption spectra at 2000 °F for 5–50-Torr oxygen pressure through a 22-cm absorption cell. Prominent absorption lines are identified.

Fig. 9
Fig. 9

Experimental ArF absorption spectra at 1000 °F for 5–50-Torr oxygen pressure through a 22-cm absorption cell.

Fig. 10
Fig. 10

Expanded ArF absorption spectra at regions of (210)P17 and R17 transitions at 2000 °F for 0.1–5-Torr oxygen pressure through a 22-cm absorption cell.

Fig. 11
Fig. 11

Expanded ArF absorption spectra at regions of (210)P17 and (210)R17 transitions at 1000 °F for 0.1–5-Torr oxygen pressure through a 22-cm absorption cell.

Fig. 12
Fig. 12

Experimental ArF absorption spectra at 2000 °F for different pressures of N2(50800 Torr) buffer gas. Oxygen pressure is set at 10 Torr. Absorption is measured through a 22-cm cell.

Fig. 13
Fig. 13

Experimental ArF absorption for gas mixes including oxygen, hydrogen, and nitrogen. The oxygen pressure is set at 10 Torr and nitrogen at 300 Torr. O2:H2:N2 ratios are (1:4:30), (1:2:30), and (1:1, 30). Data are compared with vacuum and 10-Torr oxygen-only conditions.

Fig. 14
Fig. 14

Comparison of ArF spectra under conditions where both intracavity and extracavity path lengths are under vacuum and when they are filled with air.

Fig. 15
Fig. 15

Experimental ArF absorption spectra at 2000 °F for 5–50-Torr oxygen pressure through a 22-cm absorption under conditions in which both intracavity and extracavity path lengths are in air.

Fig. 16
Fig. 16

Data of Fig. 15 expanded about the (210)P17 transition.

Fig. 17
Fig. 17

Expanded ArF absorption spectra at regions of (210)P17 and R17 transitions at 2000 °F for 0.1–5-Torr oxygen pressure through a 22-cm absorption cell under conditions in which both intracavity and extracavity path lengths are in air.

Tables (1)

Tables Icon

Table 1 Schumann–Runge Transitions within the ArF Laser Spectrum

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I(v)=I0(v)exp(-kvpiL),
kv(v)=ΣmkvJvJmϕm(v-vm).
kvJvJ=πe2mec2NvJpO2fvv SJJTJJ2J+1,
FvJ=2J+1Qe+Qv+Qr×exp-hckT[Te(n)+G(v)+F(J)],
NvJPO2=(FvJ/kT)1.013×106.
Φ(v)=Gm- exp[-4 ln(vm-v0)2/ΔvD2]1+[(v-v0)/ΔvL/2]2dv,
ΔvD=2λ02kTMln 2
R1=A1+nvq1¯,R2=A2=nvq2¯.
v¯=8R0Tπ1m+1M,
Pabs
=R2(R1+R2)|2v/|24(ω¯-ω¯0)2R1R2+(R1R2+|2V/|2)(R1+R2)2.
ΔvL=R1+R22π1+1R1+R2|2V/|,
ΔvLR1+R22π=A1+A22π+δvLP=ΔvN+δvLP(Pintorr),
δvL=1.95×1019×(2R0/πT)1m+1M1/2(q1¯+q2¯)/2π.
πσL2=(q1¯+q2¯)/2.
ΔνL=aP273.2Tηcm-1,
ΔvD=2v2kT ln 2mc21/2cm-1.

Metrics