Abstract

Optical interband excitonic absorption of semiconductor quantum wells (QW’s) driven by a coherent pump field is investigated on the basis of semiconductor Bloch equations. The pump field has a photon energy close to the intersubband spacing between the first two conduction subbands in the QW’s. An external weak optical field probes the interband transition. The excitonic effects and pump-induced population redistribution within the conduction subbands in the QW system are included. When the density of the electron–hole pairs in the QW structure is low, the pump field induces an Autler–Townes splitting of the exciton absorption spectrum. The split size and the peak positions of the absorption doublet depend not only on the pump frequency and intensity but also on the carrier density. As the density of the electron–hole pairs is increased, the split contrast (the ratio between the maximum and the minimum values) is decreased, because the exciton effect is suppressed at higher densities owing to the many-body screening.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhao, D. Huang, and C. Wu, “Electric-field-induced quantum coherence of the intersubband transition in semiconductor quantum wells,” Opt. Lett. 19, 816–819 (1994).
    [Crossref] [PubMed]
  2. A. Imamoglu and R. J. Ram, “Semiconductor lasers without population inversion,” Opt. Lett. 19, 1744–1746 (1994).
    [Crossref] [PubMed]
  3. D. Huang, C. Wu, and Y. Zhao, “Coulomb and light-induced electronic renormalization in quantum wells for electromagnetically induced transparency and light amplification without inversion,” J. Opt. Soc. Am. B 11, 2258–2265 (1994).
    [Crossref]
  4. D. S. Lee and K. J. Malloy, “Analysis of reduced interband absorption mechanism in semiconductor quantum wells,” IEEE J. Quantum Electron. QE-30, 85–92 (1994).
    [Crossref]
  5. Y. Zhao, D. Huang, and C. Wu, “Field-induced quantum interference in semiconductor quantum wells for lasing without inversion and electromagnetically induced transparency,” J. Nonlinear Opt. Phys. Mater. 4, 261–282 (1995).
    [Crossref]
  6. J. B. Khurgin and E. Rosencher, “Practical aspects of lasing without inversion in various media,” IEEE J. Quantum Electron. QE-32, 1882–1896 (1996).
    [Crossref]
  7. D. S. Lee and K. J. Malloy, “Gain without inversion in interband transitions of semiconductor quantum wells from a single-particle perspective,” Phys. Rev. B 53, 15749–15755 (1996).
    [Crossref]
  8. A. Liu, “Light control of optical intersubband absorption and amplification in a quantum well inside a cavity,” Phys. Rev. A 56, 3206–3212 (1997).
    [Crossref]
  9. A. Neogi, Y. Takahashi, and H. Kawaguchi, “Analysis of transient interband light modulation by ultrashort intersubband resonant light pulses in semiconductor quantum wells,” IEEE J. Quantum Electron. QE-33, 2060–2070 (1997).
    [Crossref]
  10. A. Liu, “Self-consistent theory of optical gain with and without inversion in semiconductor quantum wells,” J. Opt. Soc. Am. B 15, 1741–1748 (1998).
    [Crossref]
  11. See, for example, K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [Crossref] [PubMed]
  12. A. Nottlemann, C. Peters, and W. Lange, “Inversionless amplification of picosecond pulse due to Zeeman coherence,” Phys. Rev. Lett. 70, 1783–1786 (1993).
    [Crossref]
  13. E. S. Fry, X. Li, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S.-Y. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993).
    [Crossref] [PubMed]
  14. W. E. van der Veer, R. J. van Diest, A. Donszelmann, and H. B. van Linden van den Heuvell, “Experimental demonstration of light amplification without population inversion,” Phys. Rev. Lett. 70, 3243–3246 (1993).
    [Crossref] [PubMed]
  15. A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
    [Crossref] [PubMed]
  16. S. Schmitt-Rink and D. S. Chemla, “Collective excitations and the dynamical Stark effect in a coherently driven exciton system,” Phys. Rev. Lett. 57, 2752–2755 (1986); S. Schmitt-Rink, D. S. Chemla, and H. Haug, “Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors,” Phys. Rev. B 37, 941–955 (1988).
    [Crossref] [PubMed]
  17. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 2nd ed. (World Scientific, Singapore, 1993).
  18. W. W. Chow, S. W. Koch, and M. Sargent, Semiconductor-Laser Physics (World Scientific, Singapore, 1995).
  19. O. Gauthier-Lafaye, F. H. Julien, S. Cabaret, J. M. Lourtioz, G. Strasser, E. Gornik, M. Helm, and P. Bois, “High-power GaAs/AlGaAs quantum fountain unipolar laser emitting at 14.5 µm with 2.5% tunability,” Appl. Phys. Lett. 74, 1537–1539 (1999).
    [Crossref]
  20. J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, S. J. Allen, and H. Sakaki, “Resonant terahertz optical sideband generation from confined magnetoexcitons,” Phys. Rev. Lett. 79, 1758–1761 (1997).
    [Crossref]

1999 (1)

O. Gauthier-Lafaye, F. H. Julien, S. Cabaret, J. M. Lourtioz, G. Strasser, E. Gornik, M. Helm, and P. Bois, “High-power GaAs/AlGaAs quantum fountain unipolar laser emitting at 14.5 µm with 2.5% tunability,” Appl. Phys. Lett. 74, 1537–1539 (1999).
[Crossref]

1998 (1)

1997 (3)

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, S. J. Allen, and H. Sakaki, “Resonant terahertz optical sideband generation from confined magnetoexcitons,” Phys. Rev. Lett. 79, 1758–1761 (1997).
[Crossref]

A. Liu, “Light control of optical intersubband absorption and amplification in a quantum well inside a cavity,” Phys. Rev. A 56, 3206–3212 (1997).
[Crossref]

A. Neogi, Y. Takahashi, and H. Kawaguchi, “Analysis of transient interband light modulation by ultrashort intersubband resonant light pulses in semiconductor quantum wells,” IEEE J. Quantum Electron. QE-33, 2060–2070 (1997).
[Crossref]

1996 (2)

J. B. Khurgin and E. Rosencher, “Practical aspects of lasing without inversion in various media,” IEEE J. Quantum Electron. QE-32, 1882–1896 (1996).
[Crossref]

D. S. Lee and K. J. Malloy, “Gain without inversion in interband transitions of semiconductor quantum wells from a single-particle perspective,” Phys. Rev. B 53, 15749–15755 (1996).
[Crossref]

1995 (2)

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

Y. Zhao, D. Huang, and C. Wu, “Field-induced quantum interference in semiconductor quantum wells for lasing without inversion and electromagnetically induced transparency,” J. Nonlinear Opt. Phys. Mater. 4, 261–282 (1995).
[Crossref]

1994 (4)

1993 (3)

A. Nottlemann, C. Peters, and W. Lange, “Inversionless amplification of picosecond pulse due to Zeeman coherence,” Phys. Rev. Lett. 70, 1783–1786 (1993).
[Crossref]

E. S. Fry, X. Li, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S.-Y. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993).
[Crossref] [PubMed]

W. E. van der Veer, R. J. van Diest, A. Donszelmann, and H. B. van Linden van den Heuvell, “Experimental demonstration of light amplification without population inversion,” Phys. Rev. Lett. 70, 3243–3246 (1993).
[Crossref] [PubMed]

1991 (1)

See, for example, K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref] [PubMed]

1986 (1)

S. Schmitt-Rink and D. S. Chemla, “Collective excitations and the dynamical Stark effect in a coherently driven exciton system,” Phys. Rev. Lett. 57, 2752–2755 (1986); S. Schmitt-Rink, D. S. Chemla, and H. Haug, “Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors,” Phys. Rev. B 37, 941–955 (1988).
[Crossref] [PubMed]

Allen, S. J.

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, S. J. Allen, and H. Sakaki, “Resonant terahertz optical sideband generation from confined magnetoexcitons,” Phys. Rev. Lett. 79, 1758–1761 (1997).
[Crossref]

Bois, P.

O. Gauthier-Lafaye, F. H. Julien, S. Cabaret, J. M. Lourtioz, G. Strasser, E. Gornik, M. Helm, and P. Bois, “High-power GaAs/AlGaAs quantum fountain unipolar laser emitting at 14.5 µm with 2.5% tunability,” Appl. Phys. Lett. 74, 1537–1539 (1999).
[Crossref]

Boller, K. J.

See, for example, K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref] [PubMed]

Cabaret, S.

O. Gauthier-Lafaye, F. H. Julien, S. Cabaret, J. M. Lourtioz, G. Strasser, E. Gornik, M. Helm, and P. Bois, “High-power GaAs/AlGaAs quantum fountain unipolar laser emitting at 14.5 µm with 2.5% tunability,” Appl. Phys. Lett. 74, 1537–1539 (1999).
[Crossref]

Chemla, D. S.

S. Schmitt-Rink and D. S. Chemla, “Collective excitations and the dynamical Stark effect in a coherently driven exciton system,” Phys. Rev. Lett. 57, 2752–2755 (1986); S. Schmitt-Rink, D. S. Chemla, and H. Haug, “Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors,” Phys. Rev. B 37, 941–955 (1988).
[Crossref] [PubMed]

Chow, W. W.

W. W. Chow, S. W. Koch, and M. Sargent, Semiconductor-Laser Physics (World Scientific, Singapore, 1995).

Donszelmann, A.

W. E. van der Veer, R. J. van Diest, A. Donszelmann, and H. B. van Linden van den Heuvell, “Experimental demonstration of light amplification without population inversion,” Phys. Rev. Lett. 70, 3243–3246 (1993).
[Crossref] [PubMed]

Fry, E. S.

E. S. Fry, X. Li, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S.-Y. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993).
[Crossref] [PubMed]

Gauthier-Lafaye, O.

O. Gauthier-Lafaye, F. H. Julien, S. Cabaret, J. M. Lourtioz, G. Strasser, E. Gornik, M. Helm, and P. Bois, “High-power GaAs/AlGaAs quantum fountain unipolar laser emitting at 14.5 µm with 2.5% tunability,” Appl. Phys. Lett. 74, 1537–1539 (1999).
[Crossref]

Gornik, E.

O. Gauthier-Lafaye, F. H. Julien, S. Cabaret, J. M. Lourtioz, G. Strasser, E. Gornik, M. Helm, and P. Bois, “High-power GaAs/AlGaAs quantum fountain unipolar laser emitting at 14.5 µm with 2.5% tunability,” Appl. Phys. Lett. 74, 1537–1539 (1999).
[Crossref]

Harris, S. E.

See, for example, K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref] [PubMed]

Haug, H.

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 2nd ed. (World Scientific, Singapore, 1993).

Helm, M.

O. Gauthier-Lafaye, F. H. Julien, S. Cabaret, J. M. Lourtioz, G. Strasser, E. Gornik, M. Helm, and P. Bois, “High-power GaAs/AlGaAs quantum fountain unipolar laser emitting at 14.5 µm with 2.5% tunability,” Appl. Phys. Lett. 74, 1537–1539 (1999).
[Crossref]

Hollberg, L.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

Huang, D.

Imamoglu, A.

A. Imamoglu and R. J. Ram, “Semiconductor lasers without population inversion,” Opt. Lett. 19, 1744–1746 (1994).
[Crossref] [PubMed]

See, for example, K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref] [PubMed]

Inoshita, T.

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, S. J. Allen, and H. Sakaki, “Resonant terahertz optical sideband generation from confined magnetoexcitons,” Phys. Rev. Lett. 79, 1758–1761 (1997).
[Crossref]

Julien, F. H.

O. Gauthier-Lafaye, F. H. Julien, S. Cabaret, J. M. Lourtioz, G. Strasser, E. Gornik, M. Helm, and P. Bois, “High-power GaAs/AlGaAs quantum fountain unipolar laser emitting at 14.5 µm with 2.5% tunability,” Appl. Phys. Lett. 74, 1537–1539 (1999).
[Crossref]

Kawaguchi, H.

A. Neogi, Y. Takahashi, and H. Kawaguchi, “Analysis of transient interband light modulation by ultrashort intersubband resonant light pulses in semiconductor quantum wells,” IEEE J. Quantum Electron. QE-33, 2060–2070 (1997).
[Crossref]

Khurgin, J. B.

J. B. Khurgin and E. Rosencher, “Practical aspects of lasing without inversion in various media,” IEEE J. Quantum Electron. QE-32, 1882–1896 (1996).
[Crossref]

Koch, S. W.

W. W. Chow, S. W. Koch, and M. Sargent, Semiconductor-Laser Physics (World Scientific, Singapore, 1995).

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 2nd ed. (World Scientific, Singapore, 1993).

Kono, J.

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, S. J. Allen, and H. Sakaki, “Resonant terahertz optical sideband generation from confined magnetoexcitons,” Phys. Rev. Lett. 79, 1758–1761 (1997).
[Crossref]

Lange, W.

A. Nottlemann, C. Peters, and W. Lange, “Inversionless amplification of picosecond pulse due to Zeeman coherence,” Phys. Rev. Lett. 70, 1783–1786 (1993).
[Crossref]

Lee, D. S.

D. S. Lee and K. J. Malloy, “Gain without inversion in interband transitions of semiconductor quantum wells from a single-particle perspective,” Phys. Rev. B 53, 15749–15755 (1996).
[Crossref]

D. S. Lee and K. J. Malloy, “Analysis of reduced interband absorption mechanism in semiconductor quantum wells,” IEEE J. Quantum Electron. QE-30, 85–92 (1994).
[Crossref]

Li, X.

E. S. Fry, X. Li, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S.-Y. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993).
[Crossref] [PubMed]

Liu, A.

A. Liu, “Self-consistent theory of optical gain with and without inversion in semiconductor quantum wells,” J. Opt. Soc. Am. B 15, 1741–1748 (1998).
[Crossref]

A. Liu, “Light control of optical intersubband absorption and amplification in a quantum well inside a cavity,” Phys. Rev. A 56, 3206–3212 (1997).
[Crossref]

Lourtioz, J. M.

O. Gauthier-Lafaye, F. H. Julien, S. Cabaret, J. M. Lourtioz, G. Strasser, E. Gornik, M. Helm, and P. Bois, “High-power GaAs/AlGaAs quantum fountain unipolar laser emitting at 14.5 µm with 2.5% tunability,” Appl. Phys. Lett. 74, 1537–1539 (1999).
[Crossref]

Lukin, M. D.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

Malloy, K. J.

D. S. Lee and K. J. Malloy, “Gain without inversion in interband transitions of semiconductor quantum wells from a single-particle perspective,” Phys. Rev. B 53, 15749–15755 (1996).
[Crossref]

D. S. Lee and K. J. Malloy, “Analysis of reduced interband absorption mechanism in semiconductor quantum wells,” IEEE J. Quantum Electron. QE-30, 85–92 (1994).
[Crossref]

Neogi, A.

A. Neogi, Y. Takahashi, and H. Kawaguchi, “Analysis of transient interband light modulation by ultrashort intersubband resonant light pulses in semiconductor quantum wells,” IEEE J. Quantum Electron. QE-33, 2060–2070 (1997).
[Crossref]

Nikonov, D. E.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

E. S. Fry, X. Li, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S.-Y. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993).
[Crossref] [PubMed]

Noda, T.

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, S. J. Allen, and H. Sakaki, “Resonant terahertz optical sideband generation from confined magnetoexcitons,” Phys. Rev. Lett. 79, 1758–1761 (1997).
[Crossref]

Nottlemann, A.

A. Nottlemann, C. Peters, and W. Lange, “Inversionless amplification of picosecond pulse due to Zeeman coherence,” Phys. Rev. Lett. 70, 1783–1786 (1993).
[Crossref]

Padmabandu, G. G.

E. S. Fry, X. Li, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S.-Y. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993).
[Crossref] [PubMed]

Peters, C.

A. Nottlemann, C. Peters, and W. Lange, “Inversionless amplification of picosecond pulse due to Zeeman coherence,” Phys. Rev. Lett. 70, 1783–1786 (1993).
[Crossref]

Ram, R. J.

Robinson, H. G.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

Rosencher, E.

J. B. Khurgin and E. Rosencher, “Practical aspects of lasing without inversion in various media,” IEEE J. Quantum Electron. QE-32, 1882–1896 (1996).
[Crossref]

Sakaki, H.

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, S. J. Allen, and H. Sakaki, “Resonant terahertz optical sideband generation from confined magnetoexcitons,” Phys. Rev. Lett. 79, 1758–1761 (1997).
[Crossref]

Sargent, M.

W. W. Chow, S. W. Koch, and M. Sargent, Semiconductor-Laser Physics (World Scientific, Singapore, 1995).

Schmitt-Rink, S.

S. Schmitt-Rink and D. S. Chemla, “Collective excitations and the dynamical Stark effect in a coherently driven exciton system,” Phys. Rev. Lett. 57, 2752–2755 (1986); S. Schmitt-Rink, D. S. Chemla, and H. Haug, “Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors,” Phys. Rev. B 37, 941–955 (1988).
[Crossref] [PubMed]

Scully, M. O.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

E. S. Fry, X. Li, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S.-Y. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993).
[Crossref] [PubMed]

Sherwin, M. S.

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, S. J. Allen, and H. Sakaki, “Resonant terahertz optical sideband generation from confined magnetoexcitons,” Phys. Rev. Lett. 79, 1758–1761 (1997).
[Crossref]

Smith, A. V.

E. S. Fry, X. Li, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S.-Y. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993).
[Crossref] [PubMed]

Strasser, G.

O. Gauthier-Lafaye, F. H. Julien, S. Cabaret, J. M. Lourtioz, G. Strasser, E. Gornik, M. Helm, and P. Bois, “High-power GaAs/AlGaAs quantum fountain unipolar laser emitting at 14.5 µm with 2.5% tunability,” Appl. Phys. Lett. 74, 1537–1539 (1999).
[Crossref]

Su, M. Y.

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, S. J. Allen, and H. Sakaki, “Resonant terahertz optical sideband generation from confined magnetoexcitons,” Phys. Rev. Lett. 79, 1758–1761 (1997).
[Crossref]

Takahashi, Y.

A. Neogi, Y. Takahashi, and H. Kawaguchi, “Analysis of transient interband light modulation by ultrashort intersubband resonant light pulses in semiconductor quantum wells,” IEEE J. Quantum Electron. QE-33, 2060–2070 (1997).
[Crossref]

Tittel, F. K.

E. S. Fry, X. Li, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S.-Y. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993).
[Crossref] [PubMed]

van der Veer, W. E.

W. E. van der Veer, R. J. van Diest, A. Donszelmann, and H. B. van Linden van den Heuvell, “Experimental demonstration of light amplification without population inversion,” Phys. Rev. Lett. 70, 3243–3246 (1993).
[Crossref] [PubMed]

van Diest, R. J.

W. E. van der Veer, R. J. van Diest, A. Donszelmann, and H. B. van Linden van den Heuvell, “Experimental demonstration of light amplification without population inversion,” Phys. Rev. Lett. 70, 3243–3246 (1993).
[Crossref] [PubMed]

van Linden van den Heuvell, H. B.

W. E. van der Veer, R. J. van Diest, A. Donszelmann, and H. B. van Linden van den Heuvell, “Experimental demonstration of light amplification without population inversion,” Phys. Rev. Lett. 70, 3243–3246 (1993).
[Crossref] [PubMed]

Velichansky, V. L.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

Wang, C.

E. S. Fry, X. Li, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S.-Y. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993).
[Crossref] [PubMed]

Wilkinson, S. R.

E. S. Fry, X. Li, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S.-Y. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993).
[Crossref] [PubMed]

Wu, C.

Zhao, Y.

Zhu, S.-Y.

E. S. Fry, X. Li, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S.-Y. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993).
[Crossref] [PubMed]

Zibrov, A. S.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

O. Gauthier-Lafaye, F. H. Julien, S. Cabaret, J. M. Lourtioz, G. Strasser, E. Gornik, M. Helm, and P. Bois, “High-power GaAs/AlGaAs quantum fountain unipolar laser emitting at 14.5 µm with 2.5% tunability,” Appl. Phys. Lett. 74, 1537–1539 (1999).
[Crossref]

IEEE J. Quantum Electron. (3)

D. S. Lee and K. J. Malloy, “Analysis of reduced interband absorption mechanism in semiconductor quantum wells,” IEEE J. Quantum Electron. QE-30, 85–92 (1994).
[Crossref]

J. B. Khurgin and E. Rosencher, “Practical aspects of lasing without inversion in various media,” IEEE J. Quantum Electron. QE-32, 1882–1896 (1996).
[Crossref]

A. Neogi, Y. Takahashi, and H. Kawaguchi, “Analysis of transient interband light modulation by ultrashort intersubband resonant light pulses in semiconductor quantum wells,” IEEE J. Quantum Electron. QE-33, 2060–2070 (1997).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

Y. Zhao, D. Huang, and C. Wu, “Field-induced quantum interference in semiconductor quantum wells for lasing without inversion and electromagnetically induced transparency,” J. Nonlinear Opt. Phys. Mater. 4, 261–282 (1995).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Lett. (2)

Phys. Rev. A (1)

A. Liu, “Light control of optical intersubband absorption and amplification in a quantum well inside a cavity,” Phys. Rev. A 56, 3206–3212 (1997).
[Crossref]

Phys. Rev. B (1)

D. S. Lee and K. J. Malloy, “Gain without inversion in interband transitions of semiconductor quantum wells from a single-particle perspective,” Phys. Rev. B 53, 15749–15755 (1996).
[Crossref]

Phys. Rev. Lett. (7)

See, for example, K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[Crossref] [PubMed]

A. Nottlemann, C. Peters, and W. Lange, “Inversionless amplification of picosecond pulse due to Zeeman coherence,” Phys. Rev. Lett. 70, 1783–1786 (1993).
[Crossref]

E. S. Fry, X. Li, D. E. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S.-Y. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993).
[Crossref] [PubMed]

W. E. van der Veer, R. J. van Diest, A. Donszelmann, and H. B. van Linden van den Heuvell, “Experimental demonstration of light amplification without population inversion,” Phys. Rev. Lett. 70, 3243–3246 (1993).
[Crossref] [PubMed]

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[Crossref] [PubMed]

S. Schmitt-Rink and D. S. Chemla, “Collective excitations and the dynamical Stark effect in a coherently driven exciton system,” Phys. Rev. Lett. 57, 2752–2755 (1986); S. Schmitt-Rink, D. S. Chemla, and H. Haug, “Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors,” Phys. Rev. B 37, 941–955 (1988).
[Crossref] [PubMed]

J. Kono, M. Y. Su, T. Inoshita, T. Noda, M. S. Sherwin, S. J. Allen, and H. Sakaki, “Resonant terahertz optical sideband generation from confined magnetoexcitons,” Phys. Rev. Lett. 79, 1758–1761 (1997).
[Crossref]

Other (2)

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 2nd ed. (World Scientific, Singapore, 1993).

W. W. Chow, S. W. Koch, and M. Sargent, Semiconductor-Laser Physics (World Scientific, Singapore, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Pump–probe scheme in a three-subband (|1,k, |2,k, and |3,k) QW structure. The two conduction subbands are coupled by a coherent pump field of frequency ωp, and the interband transition is probed by a weak signal field with an angular frequency ω.

Fig. 2
Fig. 2

Probe absorption spectra of a GaAs/AlGaAs QW in the absence of the pump field for different exciton densities, i.e., 1×1010, 5×1010, 1×1011, and 2×1011 cm-2.

Fig. 3
Fig. 3

Probe absorption spectra of a GaAs/AlGaAs QW at a pump photon energy of ωp=E32 for different pump intensities, i.e., 0, 0.5, 1.0, 1.5, and 2 MW/cm2. The electron–hole density is 5×1010 cm-2.

Fig. 4
Fig. 4

Probe absorption coefficient as a function of the pump intensity at the probe photon energy equal to the exciton peak energy in the absence of the pump field. The pump photon energy is ωp=E32, and the electron–hole density is 5×1010 cm-2.

Fig. 5
Fig. 5

Split energy as a function of the pump intensity. The pump photon energy is ωp=E32. The electron–hole density is 5×1010 cm-2.

Fig. 6
Fig. 6

Heights of the Autler–Townes split exciton absorption peaks as a function of the pump intensity. The pump photon energy is ωp=E32. The electron–hole density is 5×1010 cm-2.

Fig. 7
Fig. 7

Probe absorption spectra of a GaAs/AlGaAs QW at a pump intensity of 1 MW/cm2 for different pump frequency detuning Δ=ωp-E32, i.e., Δ=-9, -6, -3, 0, 3, 6, and 9 meV. The electron–hole density is 5×1010 cm-2.

Fig. 8
Fig. 8

Probe absorption spectra of a GaAs/AlGaAs QW at a pump intensity of 1 MW/cm2 for different exciton densities, namely, 1×1010, 5×1010, 1×1011, and 2×1011 cm-2. The pump frequency is ωp=E32.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

[ω-E˜21(k)+iΓ12]ρ21ω(k)
+[1-f2(k)-f1(k)]kV21(|k-k|)ρ21ω(k)
=-μ21(k)·Eω[1-f2(k)-f1(k)]
-μ32*(k)·Ep*ρ31ω+ωp(k),
[(ω+ωp)-E˜31(k)+iΓ13]ρ31ω+ωp(k)
+[1-f3(k)-f1(k)]kV31(|k-k|)ρ31ω+ωp(k)
=-μ32(k)·Epρ21ω(k)+μ21(k)·Eωρ32ωp(k),
[ωp-E˜32(k)+iΓ23]ρ32ωp(k)
-[f2(k)-f3(k)]kV32(|k-k|)ρ32ωp(k)
=-μ32(k)·Ep[f2(k)-f3(k)],
-2Im[μ32*(k)·Ep*ρ32ωp(k)]
-f2(k)-f 2F(k)Tcc+f3(k)τ32=0,
2Im[μ32*(k)·Ep*ρ32ωp(k)]
-f3(k)-f 3F(k)Tcc-f3(k)τ32=0.
Vij (q)=e220B(q)qSψi2(z)×exp(-q|z-z|)ψj2(z)dzdz
E˜ij (k)=Ei(k)+Ej (k)-kVij (|k-k|)[fi(k)+fj (k)]-ΔEgCH,
E˜ij (k)=Ei(k)-Ej (k)-kVij (|k-k|)[fi(k)-fj (k)].
μij (k)=eOijPcvim0Eij (k),
f2F(k)=f2(0)(k)-Tccτ32f3(0)(k),
f3F(k)=1+Tccτ32f3(0)(k).
P(ω)=2Lw d2k(2π)2μ21*ρ21ω(k)=0χ(ω)·Eω,

Metrics