Abstract

We developed a bit-oriented three-dimensional recording with a Ce-doped Sr0.75Ba0.25Nb2O6 (SBN:75) crystal. The ferroelectric polarization was reversed by a focused laser beam in a crystal with a temperature of 38 °C to form bit data. The recorded domain was stable at 15 °C. The data were read as the refractive-index change induced by spontaneous polarization through the Pockels effect. We wrote a single datum in SBN:75 crystal with ferroelectric-domain reversal and observed the domain image with a phase-contrast microscope. Numerical calculations to estimate the domain image were also performed. The observed results were in good agreement with the numerical expectations.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawata, T. Tanaka, Y. Hashimoto, and Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” Proc. SPIE 2042, 314–325 (1993).
    [CrossRef]
  2. T. Tanaka and S. Kawata, “Comparison of recording densities in three-dimensional optical storage system: multilayered bit recording versus angularity multiplexed holographic recording,” J. Opt. Soc. Am. A 13, 935–943 (1996).
    [CrossRef]
  3. Y. Kawata, H. Ueki, Y. Hashimoto, and S. Kawata, “Three-dimensional optical memory with a photorefractive crystal,” Appl. Opt. 34, 4105–4110 (1995).
    [CrossRef] [PubMed]
  4. H. Ueki, Y. Kawata, and S. Kawata, “Three-dimensional optical bit-memory recording and reading with a photorefractive crystal: analysis and experiment,” Appl. Opt. 35, 2457–2465 (1996).
    [CrossRef] [PubMed]
  5. Y. Kawata, H. Ishitobi, and S. Kawata, “Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory,” Opt. Lett. 23, 756–758 (1998).
    [CrossRef]
  6. M. Hisaka, Y. Kawata, and S. Kawata, “Three-dimensional optical recording by the ferroelectric domain reversal technique in a Ce-doped SBN:75 crystal,” Proceedings of 1997 Topical Meeting on Photofractive Materials, Effects, and Devices (PR ’97) (International Commission for Optics, Chiba, Japan, 1997), pp. 614–617.
  7. A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1179 (1994).
    [CrossRef] [PubMed]

1998

1996

1995

1994

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1179 (1994).
[CrossRef] [PubMed]

1993

S. Kawata, T. Tanaka, Y. Hashimoto, and Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” Proc. SPIE 2042, 314–325 (1993).
[CrossRef]

Hashimoto, Y.

Y. Kawata, H. Ueki, Y. Hashimoto, and S. Kawata, “Three-dimensional optical memory with a photorefractive crystal,” Appl. Opt. 34, 4105–4110 (1995).
[CrossRef] [PubMed]

S. Kawata, T. Tanaka, Y. Hashimoto, and Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” Proc. SPIE 2042, 314–325 (1993).
[CrossRef]

Ishitobi, H.

Kawata, S.

Kawata, Y.

Kewitsch, A. S.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1179 (1994).
[CrossRef] [PubMed]

Neurgaonkar, R. R.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1179 (1994).
[CrossRef] [PubMed]

Salamo, G. J.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1179 (1994).
[CrossRef] [PubMed]

Segev, M.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1179 (1994).
[CrossRef] [PubMed]

Sharp, E. J.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1179 (1994).
[CrossRef] [PubMed]

Tanaka, T.

Towe, T. W.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1179 (1994).
[CrossRef] [PubMed]

Ueki, H.

Yariv, A.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1179 (1994).
[CrossRef] [PubMed]

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Lett.

Phys. Rev. Lett.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1179 (1994).
[CrossRef] [PubMed]

Proc. SPIE

S. Kawata, T. Tanaka, Y. Hashimoto, and Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” Proc. SPIE 2042, 314–325 (1993).
[CrossRef]

Other

M. Hisaka, Y. Kawata, and S. Kawata, “Three-dimensional optical recording by the ferroelectric domain reversal technique in a Ce-doped SBN:75 crystal,” Proceedings of 1997 Topical Meeting on Photofractive Materials, Effects, and Devices (PR ’97) (International Commission for Optics, Chiba, Japan, 1997), pp. 614–617.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Reversing mechanism of bit-oriented shape for a single datum and a readout mechanism of a recorded single datum: (a) A light-intensity distribution with a focused laser beam is formed in a photorefractive crystal. (b) Photoexcited carriers are recombined after drift and diffusion, as shown in the energy-level model. (c) A charge distribution is formed by redistribution of the carriers. (d) An electric field is formed through the charge distribution. (e) The coercive field of the crystal is decreased by heating of the crystal, and in some regions the photoinduced electric field exceeds the coercive field. (f) A domain is formed, in which the direction of the c axis is changed. (g) A refractive-index distribution formed by domain reversal is visualized with a phase-contrast microscope.

Fig. 2
Fig. 2

Recording system for a bit-oriented single datum with ferroelectric-domain reversal.

Fig. 3
Fig. 3

Experimental results for a recorded single datum by means of the photorefractive effect and the domain effect in the photorefractive crystal; dimensions of the images are 10 mm × 10 mm: (a) experimental photorefractive image recorded with the photorefractive effect; (b) the schematic of (a); (c) the experimental domain image recorded with ferroelectric-domain reversal; (d) the schematic of (c).

Fig. 4
Fig. 4

Calculated result for a recorded single datum with the ferroelectric-domain effect and the photorefractive effect: (a) cross-sectional image of the refractive-index change corresponding to the experimental image shown in Fig. 3(a); (b) a cross-sectional image corresponding to the experimental image of Fig. 3(c).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

nt+Ndt=1qdiv J,
Ndt=nτ-ακIqLph+β NdNmd,
J=qμnEsc+qD grad n+ακI NdNmdec,
Vsc(x)=-q4πV [(Nmd-Nd)-n]|x-x|dx.
Esc=-grad(Vsc).
δ=-Esc2n0e*[r][r][r]e,

Metrics