Abstract

Transient changes in the complex conductivity of the high-temperature superconductor YBa2Cu3O7 have been measured with optical-pump THz-probe spectroscopy. Artifacts in the conductivity arise when optical excitation induces changes in the material response that occur on a time scale comparable with or faster than the THz pulse width. A model is presented that agrees with experiments and provides insight in distinguishing between artifacts and real features in transient conductivity measurements.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T.-I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997).
    [CrossRef]
  2. B. N. Flanders, R. A. Cheville, D. Grischkowsky, and N. F. Scherer, “Pulsed terahertz transmission spectroscopy of liquid CHCl3,  CCl4, and their mixtures,” J. Phys. Chem. 100, 11824–11835 (1996).
    [CrossRef]
  3. C. Rønne, P.-O. Åstrand, and S. R. Keiding, “THz spectroscopy of liquid H2O and D2O,” Phys. Rev. Lett. 82, 2888–2891 (1999).
    [CrossRef]
  4. R. H. M. Groeneveld and D. Grischkowsky, “Picosecond time-resolved far-infrared experiments on carriers and excitons in GaAs–AlGaAs multiple quantum wells,” J. Opt. Soc. Am. B 11, 2502–2507 (1994).
    [CrossRef]
  5. B. B. Hu, E. A. de Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, “Identifying the distinct phases of carrier transport in semiconductors with 10 fs resolution,” Phys. Rev. Lett. 74, 1689–1692 (1995).
    [CrossRef] [PubMed]
  6. S. S. Prabhu, S. E. Ralph, M. R. Melloch, and E. S. Harmon, “Carrier dynamics of low-temperature-grown GaAs observed via THz spectroscopy,” Appl. Phys. Lett. 70, 2419–2421 (1997).
    [CrossRef]
  7. J. L. W. Siders, R. N. Jacobs, C. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. A. Wiersma, and W. Zinth, eds. (Springer, New York, 1998).
  8. A. J. Taylor, G. Rodriguez, J. L. W. Siders, C. W. Siders, and S. A. Trugman, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7–δ,” Quantum Electronics and Laser Science Conference, Paper QWC1, Postconference ed., 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999) pp. 118–119.
  9. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
    [CrossRef]
  10. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
    [CrossRef]
  11. T. J. Carrig, G. Rodriguez, T. S. Clement, and A. J. Taylor, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66, 10–12 (1995).
    [CrossRef]
  12. Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
    [CrossRef]
  13. A. J. Berlinsky, C. Kallin, G. Rose, and A.-C. Shi, “Two-fluid interpretation of the conductivity of clean BCS superconductors,” Phys. Rev. B 48, 4074–4079 (1993).
    [CrossRef]
  14. S. D. Brorson, R. Buhleier, I. E. Trofimov, J. O. White, Ch. Ludwig, F. F. Balakirev, H.-U. Habermeier, and J. Kuhl, “Electrodynamics of high-temperature superconductors investigated with coherent terahertz pulse spectroscopy,” J. Opt. Soc. Am. B 13, 1979–1993 (1996).
    [CrossRef]
  15. A. Frenkel, F. Gao, Y. Liu, J. F. Whitaker, C. Uher, S. Y. Hou, and J. M. Phillips, “Conductivity peak, relaxation dynamics, and superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies,” Phys. Rev. B 54, 1355–1365 (1996).
    [CrossRef]
  16. J. R. Waldram, P. Theopistou, A. Porch, and H.-M. Cheah, “Two-fluid interpretation of the microwave conductivity of YBa2Cu3O7–δ,” Phys. Rev. B 55, 3222–3229 (1997).
    [CrossRef]
  17. A. Pimenov, A. Loidl, G. Jakob, and H. Adrian, “Optical conductivity in YBa2Cu3O7–δ thin films,” Phys. Rev. B 59, 4390–4393 (1999).
    [CrossRef]
  18. There is ambiguity in defining the relative arrival time between the optical and THz pulses: We define t=0 as when the optical pulse coincides with the trailing edge of the THz pulse as estimated a posteriori from the simulations.
  19. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974), also Zh. Eksp. Teor. Fiz. 66, 776–781 (1974).
  20. J. T. Kindt and C. A. Schmuttenmaer, “Theory for determination of the low-frequency time-dependent response function in liquids using time-resolved terahertz pulse spectroscopy,” J. Chem. Phys. 110, 8589–8596 (1999).
    [CrossRef]

1999 (3)

C. Rønne, P.-O. Åstrand, and S. R. Keiding, “THz spectroscopy of liquid H2O and D2O,” Phys. Rev. Lett. 82, 2888–2891 (1999).
[CrossRef]

A. Pimenov, A. Loidl, G. Jakob, and H. Adrian, “Optical conductivity in YBa2Cu3O7–δ thin films,” Phys. Rev. B 59, 4390–4393 (1999).
[CrossRef]

J. T. Kindt and C. A. Schmuttenmaer, “Theory for determination of the low-frequency time-dependent response function in liquids using time-resolved terahertz pulse spectroscopy,” J. Chem. Phys. 110, 8589–8596 (1999).
[CrossRef]

1997 (4)

J. R. Waldram, P. Theopistou, A. Porch, and H.-M. Cheah, “Two-fluid interpretation of the microwave conductivity of YBa2Cu3O7–δ,” Phys. Rev. B 55, 3222–3229 (1997).
[CrossRef]

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997).
[CrossRef]

S. S. Prabhu, S. E. Ralph, M. R. Melloch, and E. S. Harmon, “Carrier dynamics of low-temperature-grown GaAs observed via THz spectroscopy,” Appl. Phys. Lett. 70, 2419–2421 (1997).
[CrossRef]

1996 (4)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

B. N. Flanders, R. A. Cheville, D. Grischkowsky, and N. F. Scherer, “Pulsed terahertz transmission spectroscopy of liquid CHCl3,  CCl4, and their mixtures,” J. Phys. Chem. 100, 11824–11835 (1996).
[CrossRef]

S. D. Brorson, R. Buhleier, I. E. Trofimov, J. O. White, Ch. Ludwig, F. F. Balakirev, H.-U. Habermeier, and J. Kuhl, “Electrodynamics of high-temperature superconductors investigated with coherent terahertz pulse spectroscopy,” J. Opt. Soc. Am. B 13, 1979–1993 (1996).
[CrossRef]

A. Frenkel, F. Gao, Y. Liu, J. F. Whitaker, C. Uher, S. Y. Hou, and J. M. Phillips, “Conductivity peak, relaxation dynamics, and superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies,” Phys. Rev. B 54, 1355–1365 (1996).
[CrossRef]

1995 (3)

B. B. Hu, E. A. de Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, “Identifying the distinct phases of carrier transport in semiconductors with 10 fs resolution,” Phys. Rev. Lett. 74, 1689–1692 (1995).
[CrossRef] [PubMed]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

T. J. Carrig, G. Rodriguez, T. S. Clement, and A. J. Taylor, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66, 10–12 (1995).
[CrossRef]

1994 (1)

1993 (1)

A. J. Berlinsky, C. Kallin, G. Rose, and A.-C. Shi, “Two-fluid interpretation of the conductivity of clean BCS superconductors,” Phys. Rev. B 48, 4074–4079 (1993).
[CrossRef]

1974 (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974), also Zh. Eksp. Teor. Fiz. 66, 776–781 (1974).

Adrian, H.

A. Pimenov, A. Loidl, G. Jakob, and H. Adrian, “Optical conductivity in YBa2Cu3O7–δ thin films,” Phys. Rev. B 59, 4390–4393 (1999).
[CrossRef]

Anisimov, S. I.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974), also Zh. Eksp. Teor. Fiz. 66, 776–781 (1974).

Åstrand, P.-O.

C. Rønne, P.-O. Åstrand, and S. R. Keiding, “THz spectroscopy of liquid H2O and D2O,” Phys. Rev. Lett. 82, 2888–2891 (1999).
[CrossRef]

Balakirev, F. F.

Berlinsky, A. J.

A. J. Berlinsky, C. Kallin, G. Rose, and A.-C. Shi, “Two-fluid interpretation of the conductivity of clean BCS superconductors,” Phys. Rev. B 48, 4074–4079 (1993).
[CrossRef]

Brorson, S. D.

Buhleier, R.

Carrig, T. J.

T. J. Carrig, G. Rodriguez, T. S. Clement, and A. J. Taylor, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66, 10–12 (1995).
[CrossRef]

Cheah, H.-M.

J. R. Waldram, P. Theopistou, A. Porch, and H.-M. Cheah, “Two-fluid interpretation of the microwave conductivity of YBa2Cu3O7–δ,” Phys. Rev. B 55, 3222–3229 (1997).
[CrossRef]

Cheville, R. A.

B. N. Flanders, R. A. Cheville, D. Grischkowsky, and N. F. Scherer, “Pulsed terahertz transmission spectroscopy of liquid CHCl3,  CCl4, and their mixtures,” J. Phys. Chem. 100, 11824–11835 (1996).
[CrossRef]

Chuang, S. L.

B. B. Hu, E. A. de Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, “Identifying the distinct phases of carrier transport in semiconductors with 10 fs resolution,” Phys. Rev. Lett. 74, 1689–1692 (1995).
[CrossRef] [PubMed]

Clement, T. S.

T. J. Carrig, G. Rodriguez, T. S. Clement, and A. J. Taylor, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66, 10–12 (1995).
[CrossRef]

Cunningham, J. E.

B. B. Hu, E. A. de Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, “Identifying the distinct phases of carrier transport in semiconductors with 10 fs resolution,” Phys. Rev. Lett. 74, 1689–1692 (1995).
[CrossRef] [PubMed]

de Souza, E. A.

B. B. Hu, E. A. de Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, “Identifying the distinct phases of carrier transport in semiconductors with 10 fs resolution,” Phys. Rev. Lett. 74, 1689–1692 (1995).
[CrossRef] [PubMed]

Flanders, B. N.

B. N. Flanders, R. A. Cheville, D. Grischkowsky, and N. F. Scherer, “Pulsed terahertz transmission spectroscopy of liquid CHCl3,  CCl4, and their mixtures,” J. Phys. Chem. 100, 11824–11835 (1996).
[CrossRef]

Frenkel, A.

A. Frenkel, F. Gao, Y. Liu, J. F. Whitaker, C. Uher, S. Y. Hou, and J. M. Phillips, “Conductivity peak, relaxation dynamics, and superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies,” Phys. Rev. B 54, 1355–1365 (1996).
[CrossRef]

Gao, F.

A. Frenkel, F. Gao, Y. Liu, J. F. Whitaker, C. Uher, S. Y. Hou, and J. M. Phillips, “Conductivity peak, relaxation dynamics, and superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies,” Phys. Rev. B 54, 1355–1365 (1996).
[CrossRef]

Grischkowsky, D.

T.-I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997).
[CrossRef]

B. N. Flanders, R. A. Cheville, D. Grischkowsky, and N. F. Scherer, “Pulsed terahertz transmission spectroscopy of liquid CHCl3,  CCl4, and their mixtures,” J. Phys. Chem. 100, 11824–11835 (1996).
[CrossRef]

R. H. M. Groeneveld and D. Grischkowsky, “Picosecond time-resolved far-infrared experiments on carriers and excitons in GaAs–AlGaAs multiple quantum wells,” J. Opt. Soc. Am. B 11, 2502–2507 (1994).
[CrossRef]

Groeneveld, R. H. M.

Habermeier, H.-U.

Harmon, E. S.

S. S. Prabhu, S. E. Ralph, M. R. Melloch, and E. S. Harmon, “Carrier dynamics of low-temperature-grown GaAs observed via THz spectroscopy,” Appl. Phys. Lett. 70, 2419–2421 (1997).
[CrossRef]

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Hou, S. Y.

A. Frenkel, F. Gao, Y. Liu, J. F. Whitaker, C. Uher, S. Y. Hou, and J. M. Phillips, “Conductivity peak, relaxation dynamics, and superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies,” Phys. Rev. B 54, 1355–1365 (1996).
[CrossRef]

Hu, B. B.

B. B. Hu, E. A. de Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, “Identifying the distinct phases of carrier transport in semiconductors with 10 fs resolution,” Phys. Rev. Lett. 74, 1689–1692 (1995).
[CrossRef] [PubMed]

Jakob, G.

A. Pimenov, A. Loidl, G. Jakob, and H. Adrian, “Optical conductivity in YBa2Cu3O7–δ thin films,” Phys. Rev. B 59, 4390–4393 (1999).
[CrossRef]

Jeon, T.-I.

T.-I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997).
[CrossRef]

Kallin, C.

A. J. Berlinsky, C. Kallin, G. Rose, and A.-C. Shi, “Two-fluid interpretation of the conductivity of clean BCS superconductors,” Phys. Rev. B 48, 4074–4079 (1993).
[CrossRef]

Kapeliovich, B. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974), also Zh. Eksp. Teor. Fiz. 66, 776–781 (1974).

Keiding, S. R.

C. Rønne, P.-O. Åstrand, and S. R. Keiding, “THz spectroscopy of liquid H2O and D2O,” Phys. Rev. Lett. 82, 2888–2891 (1999).
[CrossRef]

Kindt, J. T.

J. T. Kindt and C. A. Schmuttenmaer, “Theory for determination of the low-frequency time-dependent response function in liquids using time-resolved terahertz pulse spectroscopy,” J. Chem. Phys. 110, 8589–8596 (1999).
[CrossRef]

Knox, W. H.

B. B. Hu, E. A. de Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, “Identifying the distinct phases of carrier transport in semiconductors with 10 fs resolution,” Phys. Rev. Lett. 74, 1689–1692 (1995).
[CrossRef] [PubMed]

Kuhl, J.

Kuznetsov, A. V.

B. B. Hu, E. A. de Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, “Identifying the distinct phases of carrier transport in semiconductors with 10 fs resolution,” Phys. Rev. Lett. 74, 1689–1692 (1995).
[CrossRef] [PubMed]

Liu, Y.

A. Frenkel, F. Gao, Y. Liu, J. F. Whitaker, C. Uher, S. Y. Hou, and J. M. Phillips, “Conductivity peak, relaxation dynamics, and superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies,” Phys. Rev. B 54, 1355–1365 (1996).
[CrossRef]

Loidl, A.

A. Pimenov, A. Loidl, G. Jakob, and H. Adrian, “Optical conductivity in YBa2Cu3O7–δ thin films,” Phys. Rev. B 59, 4390–4393 (1999).
[CrossRef]

Ludwig, Ch.

Melloch, M. R.

S. S. Prabhu, S. E. Ralph, M. R. Melloch, and E. S. Harmon, “Carrier dynamics of low-temperature-grown GaAs observed via THz spectroscopy,” Appl. Phys. Lett. 70, 2419–2421 (1997).
[CrossRef]

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Nuss, M. C.

B. B. Hu, E. A. de Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, “Identifying the distinct phases of carrier transport in semiconductors with 10 fs resolution,” Phys. Rev. Lett. 74, 1689–1692 (1995).
[CrossRef] [PubMed]

Perel’man, T. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974), also Zh. Eksp. Teor. Fiz. 66, 776–781 (1974).

Phillips, J. M.

A. Frenkel, F. Gao, Y. Liu, J. F. Whitaker, C. Uher, S. Y. Hou, and J. M. Phillips, “Conductivity peak, relaxation dynamics, and superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies,” Phys. Rev. B 54, 1355–1365 (1996).
[CrossRef]

Pimenov, A.

A. Pimenov, A. Loidl, G. Jakob, and H. Adrian, “Optical conductivity in YBa2Cu3O7–δ thin films,” Phys. Rev. B 59, 4390–4393 (1999).
[CrossRef]

Porch, A.

J. R. Waldram, P. Theopistou, A. Porch, and H.-M. Cheah, “Two-fluid interpretation of the microwave conductivity of YBa2Cu3O7–δ,” Phys. Rev. B 55, 3222–3229 (1997).
[CrossRef]

Prabhu, S. S.

S. S. Prabhu, S. E. Ralph, M. R. Melloch, and E. S. Harmon, “Carrier dynamics of low-temperature-grown GaAs observed via THz spectroscopy,” Appl. Phys. Lett. 70, 2419–2421 (1997).
[CrossRef]

Ralph, S. E.

S. S. Prabhu, S. E. Ralph, M. R. Melloch, and E. S. Harmon, “Carrier dynamics of low-temperature-grown GaAs observed via THz spectroscopy,” Appl. Phys. Lett. 70, 2419–2421 (1997).
[CrossRef]

Rodriguez, G.

T. J. Carrig, G. Rodriguez, T. S. Clement, and A. J. Taylor, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66, 10–12 (1995).
[CrossRef]

Rønne, C.

C. Rønne, P.-O. Åstrand, and S. R. Keiding, “THz spectroscopy of liquid H2O and D2O,” Phys. Rev. Lett. 82, 2888–2891 (1999).
[CrossRef]

Rose, G.

A. J. Berlinsky, C. Kallin, G. Rose, and A.-C. Shi, “Two-fluid interpretation of the conductivity of clean BCS superconductors,” Phys. Rev. B 48, 4074–4079 (1993).
[CrossRef]

Scherer, N. F.

B. N. Flanders, R. A. Cheville, D. Grischkowsky, and N. F. Scherer, “Pulsed terahertz transmission spectroscopy of liquid CHCl3,  CCl4, and their mixtures,” J. Phys. Chem. 100, 11824–11835 (1996).
[CrossRef]

Schmuttenmaer, C. A.

J. T. Kindt and C. A. Schmuttenmaer, “Theory for determination of the low-frequency time-dependent response function in liquids using time-resolved terahertz pulse spectroscopy,” J. Chem. Phys. 110, 8589–8596 (1999).
[CrossRef]

Shi, A.-C.

A. J. Berlinsky, C. Kallin, G. Rose, and A.-C. Shi, “Two-fluid interpretation of the conductivity of clean BCS superconductors,” Phys. Rev. B 48, 4074–4079 (1993).
[CrossRef]

Taylor, A. J.

T. J. Carrig, G. Rodriguez, T. S. Clement, and A. J. Taylor, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66, 10–12 (1995).
[CrossRef]

Theopistou, P.

J. R. Waldram, P. Theopistou, A. Porch, and H.-M. Cheah, “Two-fluid interpretation of the microwave conductivity of YBa2Cu3O7–δ,” Phys. Rev. B 55, 3222–3229 (1997).
[CrossRef]

Trofimov, I. E.

Uher, C.

A. Frenkel, F. Gao, Y. Liu, J. F. Whitaker, C. Uher, S. Y. Hou, and J. M. Phillips, “Conductivity peak, relaxation dynamics, and superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies,” Phys. Rev. B 54, 1355–1365 (1996).
[CrossRef]

Waldram, J. R.

J. R. Waldram, P. Theopistou, A. Porch, and H.-M. Cheah, “Two-fluid interpretation of the microwave conductivity of YBa2Cu3O7–δ,” Phys. Rev. B 55, 3222–3229 (1997).
[CrossRef]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Whitaker, J. F.

A. Frenkel, F. Gao, Y. Liu, J. F. Whitaker, C. Uher, S. Y. Hou, and J. M. Phillips, “Conductivity peak, relaxation dynamics, and superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies,” Phys. Rev. B 54, 1355–1365 (1996).
[CrossRef]

White, J. O.

Wu, Q.

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

Zhang, X.-C.

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

Appl. Phys. Lett. (5)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

T. J. Carrig, G. Rodriguez, T. S. Clement, and A. J. Taylor, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66, 10–12 (1995).
[CrossRef]

Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
[CrossRef]

S. S. Prabhu, S. E. Ralph, M. R. Melloch, and E. S. Harmon, “Carrier dynamics of low-temperature-grown GaAs observed via THz spectroscopy,” Appl. Phys. Lett. 70, 2419–2421 (1997).
[CrossRef]

J. Chem. Phys. (1)

J. T. Kindt and C. A. Schmuttenmaer, “Theory for determination of the low-frequency time-dependent response function in liquids using time-resolved terahertz pulse spectroscopy,” J. Chem. Phys. 110, 8589–8596 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

B. N. Flanders, R. A. Cheville, D. Grischkowsky, and N. F. Scherer, “Pulsed terahertz transmission spectroscopy of liquid CHCl3,  CCl4, and their mixtures,” J. Phys. Chem. 100, 11824–11835 (1996).
[CrossRef]

Phys. Rev. B (4)

A. J. Berlinsky, C. Kallin, G. Rose, and A.-C. Shi, “Two-fluid interpretation of the conductivity of clean BCS superconductors,” Phys. Rev. B 48, 4074–4079 (1993).
[CrossRef]

A. Frenkel, F. Gao, Y. Liu, J. F. Whitaker, C. Uher, S. Y. Hou, and J. M. Phillips, “Conductivity peak, relaxation dynamics, and superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies,” Phys. Rev. B 54, 1355–1365 (1996).
[CrossRef]

J. R. Waldram, P. Theopistou, A. Porch, and H.-M. Cheah, “Two-fluid interpretation of the microwave conductivity of YBa2Cu3O7–δ,” Phys. Rev. B 55, 3222–3229 (1997).
[CrossRef]

A. Pimenov, A. Loidl, G. Jakob, and H. Adrian, “Optical conductivity in YBa2Cu3O7–δ thin films,” Phys. Rev. B 59, 4390–4393 (1999).
[CrossRef]

Phys. Rev. Lett. (3)

T.-I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997).
[CrossRef]

C. Rønne, P.-O. Åstrand, and S. R. Keiding, “THz spectroscopy of liquid H2O and D2O,” Phys. Rev. Lett. 82, 2888–2891 (1999).
[CrossRef]

B. B. Hu, E. A. de Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, “Identifying the distinct phases of carrier transport in semiconductors with 10 fs resolution,” Phys. Rev. Lett. 74, 1689–1692 (1995).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974), also Zh. Eksp. Teor. Fiz. 66, 776–781 (1974).

Other (3)

J. L. W. Siders, R. N. Jacobs, C. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. A. Wiersma, and W. Zinth, eds. (Springer, New York, 1998).

A. J. Taylor, G. Rodriguez, J. L. W. Siders, C. W. Siders, and S. A. Trugman, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7–δ,” Quantum Electronics and Laser Science Conference, Paper QWC1, Postconference ed., 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999) pp. 118–119.

There is ambiguity in defining the relative arrival time between the optical and THz pulses: We define t=0 as when the optical pulse coincides with the trailing edge of the THz pulse as estimated a posteriori from the simulations.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. BS, beam splitter; P, polarizer; λ/4, quarter wave plate.

Fig. 2
Fig. 2

(a) Solid curve, experimental THz pulse; circles, modeled THz pulse used in calculations. (b) Corresponding magnitude spectra for pulses in (a). Dotted–dashed curve, detector response. (c) Diamonds, experimental σ2 at 500 GHz; circles, experimental σ1 at 500 GHz; solid curves, calculations that use a two-fluid model for the conductivity.

Fig. 3
Fig. 3

(a) Experimentally determined real transient conductivity versus frequency, and (b) imaginary transient conductivity at different values of the optical-pump THZ-probe delay.

Fig. 4
Fig. 4

(a) Experimental THz pulses at various pump–probe delays. (b) Theoretical THz pulses at various pump–probe delays calculated as described in text. The curves are displaced vertically for clarity.

Fig. 5
Fig. 5

(a) Calculated real transient conductivity versus frequency, and (b) calculated imaginary transient conductivity obtained from pulses in Fig. 4(b). These results should be compared with Fig. 3.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ(ω, T)=σ1+iσ2=ne2m*fn(T)τ(ω, T)-1-iω-fs(T)iω,
Φ(ω)=1+n31+n3+Zoσ(ω)dexp[i(ω/c)ΔL].
Eo(t, tp)=-tEi(τ)Φ(t-τ, t-tp)dτ.
Eo(ti, tp)=δ(t-ti)×-Ei(ω)Φ(ω, ti-tp)exp(iωt)dω,
Eo(t, tp)=i=1nEo(ti, tp).

Metrics