Abstract

We have demonstrated sub-shot-noise FM spectroscopy on thermal cesium atoms, using amplitude-squeezed light from a semiconductor laser. The light source used in our experiment was a custom-made GaAs transverse junction stripe semiconductor laser featuring broadband amplitude squeezing and a large FM bandwidth. We have also developed a new technique by which a semiconductor laser can be frequency modulated with infinitesimally small residual AM and with complete preservation of the squeezed-amplitude fluctuations.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. V. Pound, Rev. Sci. Instrum. 17, 490–493 (1946).
    [CrossRef] [PubMed]
  2. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 1–3 (1980).
    [CrossRef]
  3. K. Chan, H. Ito, and H. Inaba, “Optical remote monitoring of CH4 gas using low-loss optical fiber link and InGaAsP light-emitting diode in 1.33-μm region,” Appl. Phys. Lett. 43, 635–637 (1983).
    [CrossRef]
  4. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
    [CrossRef]
  5. W. Lenth, C. Ortiz, and G. C. Bjorklund, “Pulsed frequency-modulation spectroscopy as a means for absorption measurements,” Opt. Lett. 6, 351–353 (1981).
    [CrossRef] [PubMed]
  6. M. D. Levenson, W. E. Moerner, and D. E. Horne, “FM spectroscopy detection of stimulated Raman gain,” Opt. Lett. 8, 108–110 (1983).
    [CrossRef] [PubMed]
  7. D. C. Kilper, A. C. Schaefer, J. Erland, and D. G. Steel, “Coherent nonlinear optical spectroscopy using photon-number squeezed light,” Phys. Rev. A 54, R1785–R1788 (1996).
    [CrossRef] [PubMed]
  8. N. Ph. Georgiades, R. J. Thompson, Q. Turchette, E. S. Polzik, and H. J. Kimble, “Spectroscopy with nonclassical light,” in International Quantum Electronics Conference, Vol. 9 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 222–223.
  9. E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Appl. Phys. B: 55, 279–290 (1992).
    [CrossRef]
  10. M. Xiao, L.-A. Wu, and H. Kimble, “Detection of amplitude modulation with squeezed light for sensitivity beyond the shot-noise limit,” Opt. Lett. 13, 476–478 (1988).
    [CrossRef] [PubMed]
  11. S. Machida and Y. Yamamoto, “Ultrabroadband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–794 (1988).
    [CrossRef] [PubMed]
  12. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B: 32, 145–152 (1983).
    [CrossRef]
  13. S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
    [CrossRef]
  14. J. P. Bouyer, “Spectral stabilization of an InGaAsP semiconductor laser by injection locking,” Ann. Phys. (Paris) 18, 89–239 (1993).
  15. S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal-mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 48, 2230–2234 (1993).
    [CrossRef] [PubMed]
  16. H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951–3954 (1993).
    [CrossRef] [PubMed]
  17. F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606–4608 (1995).
    [CrossRef] [PubMed]
  18. S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. QE-17, 681–686 (1981).
    [CrossRef]
  19. M. Romagnoli, M. D. Levenson, and G. C. Bjorklund, “Frequency-modulation-polarization spectroscopy,” Opt. Lett. 8, 635–637 (1983).
    [CrossRef] [PubMed]
  20. E. A. Whittaker, C. M. Shum, H. Grebel, and H. Lotem, “Reduction of residual amplitude modulation in frequency-modulated spectroscopy by using harmonic frequency modulation,” J. Opt. Soc. Am. B 4, 1253–1256 (1988).
    [CrossRef]
  21. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
    [CrossRef]
  22. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259–264 (1982).
    [CrossRef]
  23. W. Lenth, “Optical heterodyne spectroscopy with frequency- and amplitude-modulated semiconductor lasers,” Opt. Lett. 8, 575–577 (1983).
    [CrossRef] [PubMed]
  24. S. Kasapi, S. Lathi, and Y. Yamamoto, “Sub-shot-noise, frequency-modulated, diode-laser-based source for sub-shot-noise FM spectroscopy,” Opt. Lett. 22, 478–480 (1997).
    [CrossRef] [PubMed]
  25. E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Phys. Rev. Lett. 68, 3020–3022 (1992).
    [CrossRef] [PubMed]

1999 (1)

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

1997 (1)

1996 (1)

D. C. Kilper, A. C. Schaefer, J. Erland, and D. G. Steel, “Coherent nonlinear optical spectroscopy using photon-number squeezed light,” Phys. Rev. A 54, R1785–R1788 (1996).
[CrossRef] [PubMed]

1995 (1)

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606–4608 (1995).
[CrossRef] [PubMed]

1993 (3)

J. P. Bouyer, “Spectral stabilization of an InGaAsP semiconductor laser by injection locking,” Ann. Phys. (Paris) 18, 89–239 (1993).

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal-mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 48, 2230–2234 (1993).
[CrossRef] [PubMed]

H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951–3954 (1993).
[CrossRef] [PubMed]

1992 (2)

E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Appl. Phys. B: 55, 279–290 (1992).
[CrossRef]

E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Phys. Rev. Lett. 68, 3020–3022 (1992).
[CrossRef] [PubMed]

1988 (3)

E. A. Whittaker, C. M. Shum, H. Grebel, and H. Lotem, “Reduction of residual amplitude modulation in frequency-modulated spectroscopy by using harmonic frequency modulation,” J. Opt. Soc. Am. B 4, 1253–1256 (1988).
[CrossRef]

S. Machida and Y. Yamamoto, “Ultrabroadband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–794 (1988).
[CrossRef] [PubMed]

M. Xiao, L.-A. Wu, and H. Kimble, “Detection of amplitude modulation with squeezed light for sensitivity beyond the shot-noise limit,” Opt. Lett. 13, 476–478 (1988).
[CrossRef] [PubMed]

1985 (1)

1983 (5)

K. Chan, H. Ito, and H. Inaba, “Optical remote monitoring of CH4 gas using low-loss optical fiber link and InGaAsP light-emitting diode in 1.33-μm region,” Appl. Phys. Lett. 43, 635–637 (1983).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B: 32, 145–152 (1983).
[CrossRef]

M. D. Levenson, W. E. Moerner, and D. E. Horne, “FM spectroscopy detection of stimulated Raman gain,” Opt. Lett. 8, 108–110 (1983).
[CrossRef] [PubMed]

W. Lenth, “Optical heterodyne spectroscopy with frequency- and amplitude-modulated semiconductor lasers,” Opt. Lett. 8, 575–577 (1983).
[CrossRef] [PubMed]

M. Romagnoli, M. D. Levenson, and G. C. Bjorklund, “Frequency-modulation-polarization spectroscopy,” Opt. Lett. 8, 635–637 (1983).
[CrossRef] [PubMed]

1982 (1)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259–264 (1982).
[CrossRef]

1981 (3)

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. QE-17, 681–686 (1981).
[CrossRef]

W. Lenth, C. Ortiz, and G. C. Bjorklund, “Pulsed frequency-modulation spectroscopy as a means for absorption measurements,” Opt. Lett. 6, 351–353 (1981).
[CrossRef] [PubMed]

1980 (1)

1946 (1)

R. V. Pound, Rev. Sci. Instrum. 17, 490–493 (1946).
[CrossRef] [PubMed]

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Bjorklund, G. C.

Bouyer, J. P.

J. P. Bouyer, “Spectral stabilization of an InGaAsP semiconductor laser by injection locking,” Ann. Phys. (Paris) 18, 89–239 (1993).

Bramati, A.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606–4608 (1995).
[CrossRef] [PubMed]

Carri, J.

E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Phys. Rev. Lett. 68, 3020–3022 (1992).
[CrossRef] [PubMed]

E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Appl. Phys. B: 55, 279–290 (1992).
[CrossRef]

Chan, K.

K. Chan, H. Ito, and H. Inaba, “Optical remote monitoring of CH4 gas using low-loss optical fiber link and InGaAsP light-emitting diode in 1.33-μm region,” Appl. Phys. Lett. 43, 635–637 (1983).
[CrossRef]

Erland, J.

D. C. Kilper, A. C. Schaefer, J. Erland, and D. G. Steel, “Coherent nonlinear optical spectroscopy using photon-number squeezed light,” Phys. Rev. A 54, R1785–R1788 (1996).
[CrossRef] [PubMed]

Freeman, M. J.

H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951–3954 (1993).
[CrossRef] [PubMed]

Giacobino, E.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606–4608 (1995).
[CrossRef] [PubMed]

Grangier, P.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606–4608 (1995).
[CrossRef] [PubMed]

Grebel, H.

E. A. Whittaker, C. M. Shum, H. Grebel, and H. Lotem, “Reduction of residual amplitude modulation in frequency-modulated spectroscopy by using harmonic frequency modulation,” J. Opt. Soc. Am. B 4, 1253–1256 (1988).
[CrossRef]

Hall, J. L.

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259–264 (1982).
[CrossRef]

Hollberg, L.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Horne, D. E.

Inaba, H.

K. Chan, H. Ito, and H. Inaba, “Optical remote monitoring of CH4 gas using low-loss optical fiber link and InGaAsP light-emitting diode in 1.33-μm region,” Appl. Phys. Lett. 43, 635–637 (1983).
[CrossRef]

Inoue, S.

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal-mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 48, 2230–2234 (1993).
[CrossRef] [PubMed]

Ito, H.

K. Chan, H. Ito, and H. Inaba, “Optical remote monitoring of CH4 gas using low-loss optical fiber link and InGaAsP light-emitting diode in 1.33-μm region,” Appl. Phys. Lett. 43, 635–637 (1983).
[CrossRef]

Kan, H.

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

Kasapi, S.

Kilper, D. C.

D. C. Kilper, A. C. Schaefer, J. Erland, and D. G. Steel, “Coherent nonlinear optical spectroscopy using photon-number squeezed light,” Phys. Rev. A 54, R1785–R1788 (1996).
[CrossRef] [PubMed]

Kimble, H.

Kimble, H. J.

E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Phys. Rev. Lett. 68, 3020–3022 (1992).
[CrossRef] [PubMed]

E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Appl. Phys. B: 55, 279–290 (1992).
[CrossRef]

Kimura, T.

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. QE-17, 681–686 (1981).
[CrossRef]

Kobayashi, S.

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. QE-17, 681–686 (1981).
[CrossRef]

Lathi, S.

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

S. Kasapi, S. Lathi, and Y. Yamamoto, “Sub-shot-noise, frequency-modulated, diode-laser-based source for sub-shot-noise FM spectroscopy,” Opt. Lett. 22, 478–480 (1997).
[CrossRef] [PubMed]

Lenth, W.

Levenson, M. D.

Lotem, H.

E. A. Whittaker, C. M. Shum, H. Grebel, and H. Lotem, “Reduction of residual amplitude modulation in frequency-modulated spectroscopy by using harmonic frequency modulation,” J. Opt. Soc. Am. B 4, 1253–1256 (1988).
[CrossRef]

Machida, S.

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal-mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 48, 2230–2234 (1993).
[CrossRef] [PubMed]

S. Machida and Y. Yamamoto, “Ultrabroadband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–794 (1988).
[CrossRef] [PubMed]

Marin, F.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606–4608 (1995).
[CrossRef] [PubMed]

Moerner, W. E.

Morita, T.

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

Ohzu, H.

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal-mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 48, 2230–2234 (1993).
[CrossRef] [PubMed]

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B: 32, 145–152 (1983).
[CrossRef]

W. Lenth, C. Ortiz, and G. C. Bjorklund, “Pulsed frequency-modulation spectroscopy as a means for absorption measurements,” Opt. Lett. 6, 351–353 (1981).
[CrossRef] [PubMed]

Poizat, J.-Ph.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606–4608 (1995).
[CrossRef] [PubMed]

Polzik, E. S.

E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Phys. Rev. Lett. 68, 3020–3022 (1992).
[CrossRef] [PubMed]

E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Appl. Phys. B: 55, 279–290 (1992).
[CrossRef]

Pound, R. V.

R. V. Pound, Rev. Sci. Instrum. 17, 490–493 (1946).
[CrossRef] [PubMed]

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Roch, J.-F.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606–4608 (1995).
[CrossRef] [PubMed]

Romagnoli, M.

Schaefer, A. C.

D. C. Kilper, A. C. Schaefer, J. Erland, and D. G. Steel, “Coherent nonlinear optical spectroscopy using photon-number squeezed light,” Phys. Rev. A 54, R1785–R1788 (1996).
[CrossRef] [PubMed]

Shum, C. M.

E. A. Whittaker, C. M. Shum, H. Grebel, and H. Lotem, “Reduction of residual amplitude modulation in frequency-modulated spectroscopy by using harmonic frequency modulation,” J. Opt. Soc. Am. B 4, 1253–1256 (1988).
[CrossRef]

Steel, D. G.

D. C. Kilper, A. C. Schaefer, J. Erland, and D. G. Steel, “Coherent nonlinear optical spectroscopy using photon-number squeezed light,” Phys. Rev. A 54, R1785–R1788 (1996).
[CrossRef] [PubMed]

H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951–3954 (1993).
[CrossRef] [PubMed]

Tanaka, K.

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

Wang, H.

H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951–3954 (1993).
[CrossRef] [PubMed]

Whittaker, E. A.

E. A. Whittaker, C. M. Shum, H. Grebel, and H. Lotem, “Reduction of residual amplitude modulation in frequency-modulated spectroscopy by using harmonic frequency modulation,” J. Opt. Soc. Am. B 4, 1253–1256 (1988).
[CrossRef]

Wong, N. C.

Wu, L.-A.

Xiao, M.

Yamamoto, Y.

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

S. Kasapi, S. Lathi, and Y. Yamamoto, “Sub-shot-noise, frequency-modulated, diode-laser-based source for sub-shot-noise FM spectroscopy,” Opt. Lett. 22, 478–480 (1997).
[CrossRef] [PubMed]

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal-mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 48, 2230–2234 (1993).
[CrossRef] [PubMed]

S. Machida and Y. Yamamoto, “Ultrabroadband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–794 (1988).
[CrossRef] [PubMed]

Zhang, T.-C.

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606–4608 (1995).
[CrossRef] [PubMed]

Ann. Phys. (Paris) (1)

J. P. Bouyer, “Spectral stabilization of an InGaAsP semiconductor laser by injection locking,” Ann. Phys. (Paris) 18, 89–239 (1993).

Appl. Phys. B: (2)

E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Appl. Phys. B: 55, 279–290 (1992).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B: 32, 145–152 (1983).
[CrossRef]

Appl. Phys. Lett. (2)

K. Chan, H. Ito, and H. Inaba, “Optical remote monitoring of CH4 gas using low-loss optical fiber link and InGaAsP light-emitting diode in 1.33-μm region,” Appl. Phys. Lett. 43, 635–637 (1983).
[CrossRef]

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. Lathi, K. Tanaka, T. Morita, S. Inoue, H. Kan, and Y. Yamamoto, “Transverse-junction-stripe GaAs–AlGaAs lasers for squeezed light generation,” IEEE J. Quantum Electron. 35, 387–394 (1999).
[CrossRef]

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. QE-17, 681–686 (1981).
[CrossRef]

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259–264 (1982).
[CrossRef]

J. Opt. Soc. Am. B (2)

N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
[CrossRef]

E. A. Whittaker, C. M. Shum, H. Grebel, and H. Lotem, “Reduction of residual amplitude modulation in frequency-modulated spectroscopy by using harmonic frequency modulation,” J. Opt. Soc. Am. B 4, 1253–1256 (1988).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. A (2)

S. Inoue, H. Ohzu, S. Machida, and Y. Yamamoto, “Quantum correlation between longitudinal-mode intensities in a multimode squeezed semiconductor laser,” Phys. Rev. A 48, 2230–2234 (1993).
[CrossRef] [PubMed]

D. C. Kilper, A. C. Schaefer, J. Erland, and D. G. Steel, “Coherent nonlinear optical spectroscopy using photon-number squeezed light,” Phys. Rev. A 54, R1785–R1788 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

S. Machida and Y. Yamamoto, “Ultrabroadband amplitude squeezing in a semiconductor laser,” Phys. Rev. Lett. 60, 792–794 (1988).
[CrossRef] [PubMed]

H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed light from injection-locked quantum well lasers,” Phys. Rev. Lett. 71, 3951–3954 (1993).
[CrossRef] [PubMed]

F. Marin, A. Bramati, E. Giacobino, T.-C. Zhang, J.-Ph. Poizat, J.-F. Roch, and P. Grangier, “Squeezing and intermode correlations in laser diodes,” Phys. Rev. Lett. 75, 4606–4608 (1995).
[CrossRef] [PubMed]

E. S. Polzik, J. Carri, and H. J. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Phys. Rev. Lett. 68, 3020–3022 (1992).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

R. V. Pound, Rev. Sci. Instrum. 17, 490–493 (1946).
[CrossRef] [PubMed]

Other (1)

N. Ph. Georgiades, R. J. Thompson, Q. Turchette, E. S. Polzik, and H. J. Kimble, “Spectroscopy with nonclassical light,” in International Quantum Electronics Conference, Vol. 9 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 222–223.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Diagram showing the basic principle of FM spectroscopy. (b) Relevant D2 transitions of a cesium atom. The lines indicate the oscillator strengths. (c) Experimental setup for sub-shot-noise FM spectroscopy of thermal cesium with semiconductor lasers. The output power of the master laser was 90 mW. Two percent of the master laser light (1.8 mW) was picked off by the polarizing beam-splitter (PBS) cube and was used to injection lock the slave laser. PD, photodiode; AMP, amplifier.

Fig. 2
Fig. 2

Longitudinal-mode spectra of (a) a free-running and (b) an injection-locked TJS semiconductor laser. Ith=2.25 mA, T=143 K, λ=852.6 nm, Pinj=1.8 mW, Pout=26 mW. The resolution bandwidth (RBW) was 300 kHz.

Fig. 3
Fig. 3

(a) Experimental setup for feedforward current modulation suppression of residual AM. (b) Amplitude spectra of the slave laser without and with feedforward modulation of the slave laser as measured by the sum signal of the homodyne detector. (c) Spectrum of the purely frequency-modulated slave laser showing the 10% modulation sidebands as measured by a Fabry–Perot optical spectrum analyzer. The residual AM was ≈5 dB below the laser amplitude noise for a RBW of 300 kHz.

Fig. 4
Fig. 4

Sub-shot-noise FM spectroscopy trace (solid curve) of thermal cesium. The dotted curve is the expected signal, neglecting the effect of optical pumping among the hyperfine ground-state levels. The horizontal trace is the shot-noise level that is taken by monitoring of the difference port of the hybrid mixer of the double-balanced detector. The laser noise was 1.5 dB below the shot-noise level. The RBW was 300 kHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I(t)-M(δ-1-δ+1)cos(ωmt)+M(ϕ+1+ϕ-1-2ϕ0)sin(ωmt).
is2=(1/2)I02(Δδ2+Δϕ2)M2,
in2={2eI0η[1-γ(ωm)]+2eI0η(1-η)}Δf,
is2in2=I0(Δδ2+Δϕ2)M24e{η[1-γ(ωm)]+η(1-η)}Δf.

Metrics