Abstract

The pumping threshold of a Cr:forsterite laser is lowered by optimizing a double-pass pumping in a sufficiently short crystal. This solution for the first time allows nearly room-temperature Cr:forsterite cw operation with a threshold as low as 330-mW at 1064 nm and permits the laser to be pumped with a single transverse mode vanadate minilaser delivering only 900 mW.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Petricevic, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1043 (1988).
    [Crossref]
  2. V. Petricevic, S. K. Gayen, and R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
    [Crossref] [PubMed]
  3. V. Yanovsky, Y. Pang, F. Wise, and B. I. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group-delay dispersion,” Opt. Lett. 18, 1541–1543 (1993).
    [Crossref] [PubMed]
  4. A. Sennaroglu and B. Pekerten, “Determination of the optimum absorption coefficient in Cr4+:forsterite lasers under thermal loading,” Opt. Lett. 23, 361–363 (1998).
    [Crossref]
  5. B. Golubovic, B. E. Bouma, I. P. Bilinsky, and J. G. Fujimoto, “Thin crystal, room-temperature Cr4+:forsterite laser using near-infrared pumping,” Opt. Lett. 21, 1993–1995 (1996).
    [Crossref] [PubMed]
  6. L. Qian, X. Liu, and F. Wise, “Cr:forsterite laser pumped by broad-area laser diodes,” Opt. Lett. 22, 1707–1709 (1997).
    [Crossref]
  7. J. M. Evans, V. Petricevic, A. B. Bykov, A. Delgado, and R. R. Alfano, “Direct diode-pumped continuous-wave near-infrared tunable laser operation of Cr4+:forsterite and Cr4+:Ca2GeO4,” Opt. Lett. 22, 1171–1173 (1997).
    [Crossref] [PubMed]
  8. A. J. Alfrey, “Model of longitudinally pumped cw Ti:sapphire laser oscillators,” IEEE J. Quantum Electron. 25, 760–766 (1989).
    [Crossref]
  9. A. Sennaroglu, “Comparative experimental investigation of thermal loading in continuous-wave Cr4+:forsterite lasers,” Appl. Opt. 37, 1627–1634 (1998).
    [Crossref]
  10. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and M. A. Noginov, “Efficient continuous-wave TEM00 and femtosecond Kerr-lens mode-locked Cr:LiSrGaF laser,” Opt. Lett. 21, 204–206 (1996).
    [Crossref] [PubMed]
  11. H. R. Verdun and L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr:forsterite laser,” in Advanced Solid State Lasers, G. Dube and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 35–40.
  12. N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, and G. Huber, “Excited-state absorption measurements in Cr4+-doped Mg2SiO4 and Y2SiO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Series (Optical Society of America, Washington, D.C., 1996), pp. 85–89.

1998 (2)

1997 (2)

1996 (2)

1993 (1)

1989 (2)

V. Petricevic, S. K. Gayen, and R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
[Crossref] [PubMed]

A. J. Alfrey, “Model of longitudinally pumped cw Ti:sapphire laser oscillators,” IEEE J. Quantum Electron. 25, 760–766 (1989).
[Crossref]

1988 (1)

V. Petricevic, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1043 (1988).
[Crossref]

Alfano, R. R.

Alfrey, A. J.

A. J. Alfrey, “Model of longitudinally pumped cw Ti:sapphire laser oscillators,” IEEE J. Quantum Electron. 25, 760–766 (1989).
[Crossref]

Bilinsky, I. P.

Bouma, B. E.

Bykov, A. B.

Cassanho, A.

Danger, T.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, and G. Huber, “Excited-state absorption measurements in Cr4+-doped Mg2SiO4 and Y2SiO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Series (Optical Society of America, Washington, D.C., 1996), pp. 85–89.

Delgado, A.

Evans, J. M.

Fujimoto, J. G.

Gayen, S. K.

V. Petricevic, S. K. Gayen, and R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
[Crossref] [PubMed]

V. Petricevic, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1043 (1988).
[Crossref]

Golubovic, B.

Hartung, S.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, and G. Huber, “Excited-state absorption measurements in Cr4+-doped Mg2SiO4 and Y2SiO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Series (Optical Society of America, Washington, D.C., 1996), pp. 85–89.

Huber, G.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, and G. Huber, “Excited-state absorption measurements in Cr4+-doped Mg2SiO4 and Y2SiO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Series (Optical Society of America, Washington, D.C., 1996), pp. 85–89.

Jenssen, H. P.

Kuck, S.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, and G. Huber, “Excited-state absorption measurements in Cr4+-doped Mg2SiO4 and Y2SiO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Series (Optical Society of America, Washington, D.C., 1996), pp. 85–89.

Kuleshov, N. V.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, and G. Huber, “Excited-state absorption measurements in Cr4+-doped Mg2SiO4 and Y2SiO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Series (Optical Society of America, Washington, D.C., 1996), pp. 85–89.

Liu, X.

Merkle, L.

H. R. Verdun and L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr:forsterite laser,” in Advanced Solid State Lasers, G. Dube and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 35–40.

Mikhailov, V. P.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, and G. Huber, “Excited-state absorption measurements in Cr4+-doped Mg2SiO4 and Y2SiO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Series (Optical Society of America, Washington, D.C., 1996), pp. 85–89.

Minkov, B. I.

Noginov, M. A.

Pang, Y.

Pekerten, B.

Petermann, K.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, and G. Huber, “Excited-state absorption measurements in Cr4+-doped Mg2SiO4 and Y2SiO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Series (Optical Society of America, Washington, D.C., 1996), pp. 85–89.

Petricevic, V.

Qian, L.

Sennaroglu, A.

Shcherbitsky, V. G.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, and G. Huber, “Excited-state absorption measurements in Cr4+-doped Mg2SiO4 and Y2SiO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Series (Optical Society of America, Washington, D.C., 1996), pp. 85–89.

Sorokin, E.

Sorokina, I. T.

Verdun, H. R.

H. R. Verdun and L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr:forsterite laser,” in Advanced Solid State Lasers, G. Dube and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 35–40.

Wintner, E.

Wise, F.

Yanovsky, V.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

V. Petricevic, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1043 (1988).
[Crossref]

IEEE J. Quantum Electron. (1)

A. J. Alfrey, “Model of longitudinally pumped cw Ti:sapphire laser oscillators,” IEEE J. Quantum Electron. 25, 760–766 (1989).
[Crossref]

Opt. Lett. (7)

Other (2)

H. R. Verdun and L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr:forsterite laser,” in Advanced Solid State Lasers, G. Dube and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 35–40.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, and G. Huber, “Excited-state absorption measurements in Cr4+-doped Mg2SiO4 and Y2SiO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Series (Optical Society of America, Washington, D.C., 1996), pp. 85–89.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cr:forsterite laser layout. PL: pump laser at 1 µm; FI: Faraday isolator; L1, L2: antireflection-coated lenses; M4: high-reflectivity mirror at 1 µm; M1, M2, M3: high-reflectivity mirrors at 1.2–1.3 µm (M1 and M2 are concave, r=100 mm); OC: output coupler; Cr:Fo: laser crystal.

Fig. 2
Fig. 2

Numerical computations of (a) incident power threshold and (b) slope efficiency as a function of the crystal length. (Solid curve, single pass; dashed curve, double pass). The inset shows the power threshold for an all-reflective resonator.

Fig. 3
Fig. 3

Output power characteristics. SP, single pass; DP, double pass. Pi is the power incident on M1.

Fig. 4
Fig. 4

Tuning characteristics. Solid circles, 10-mm crystal, double pass at full pump power; open circles, 5–mm crystal, double pass with the minilaser pump.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Pp=(T+2αpl/FOM+L)hcπ28σλpαp0l u(z)Q(z)wcxwcywpxwpydz,
Q(z)=-+dx-+dy ×exp(-Axx2-Ayy2)1+4PoutπwcxwcyIsTexp(-Dxx2-Dyy2),
Ai=2 wpi2+wci2wpi2wci2,Di=2wci2,i=x, y.
u(z)=exp(-αpz)(singlepass)
u(z)=exp(-αpz)+R exp(-2αpl+αpz)
(doublepass),
Pth=Pp(Pout=0),
ηs=limpout0 dPoutdPp
Pth*=Pth1+σe(p)nthαp(1-nth/N0) 11-σe/σ,
ηs*=ηs1-σeσ1-σe(p)nthαp,
nth=T+L+2αpl/FOM2l(σ-σe),
Pout=ηs*(Pp-Pth*),

Metrics