Abstract

We perform optical magnetic-resonance (MR) imaging of Cs atoms that are polarized by the transfer from the polarized Xe or Rb atoms in a glass cell as well as by direct optical pumping. With MR images of Cs by alternate optical pumping and detection the distribution of polarized Xe or Rb of low gas pressure is observed in a weak magnetic field. We also discuss the effect of the spin-relaxation and the spin-exchange collisions between Cs, Xe, and Rb atoms on the spatial resolution of MR images of the diffusing Cs atoms.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Skalla, G. Wäckerle, M. Mehring, and A. Pines, “Optical magnetic resonance imaging of Rb vapor in low magnetic fields,” Phys. Lett. A 226, 69–74 (1997).
    [CrossRef]
  2. A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081–3038 (1997).
    [CrossRef]
  3. J. Skalla, G. Wäckerle, and M. Mehring, “Optical magnetic resonance imaging of atomic diffusion and laser beam spatial profiles,” Opt. Commun. 143, 209–213 (1997).
    [CrossRef]
  4. A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58, 2282–2294 (1998).
    [CrossRef]
  5. K. Ishikawa, Y. Anraku, Y. Takahashi, and T. Yabuzaki, “Optical magnetic-resonance imaging of laser-polarized Cs atoms,” J. Opt. Soc. Am. B 16, 31–37 (1999).
    [CrossRef]
  6. Ya. S. Greenberg, “Application of superconducting quantum interference devices to nuclear magnetic resonance,” Rev. Mod. Phys. 70, 175–222 (1998).
    [CrossRef]
  7. T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629–642 (1997); S. Appelt, A. B. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
    [CrossRef]
  8. References in W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
    [CrossRef]
  9. K. L. Sauer, R. J. Fitzgerald, and W. Happer, “Resonance technique to probe 129Xe surface interactions,” Phys. Rev. A 59, R1746–R1749 (1999).
    [CrossRef]
  10. D. Raftery, H. Long, T. Meersmann, P. J. Grandinetti, L. Reven, and A. Pines, “High-field NMR of adsorbed xenon polarized by laser pumping,” Phys. Rev. Lett. 66, 584–587 (1991).
    [CrossRef] [PubMed]
  11. R. Butscher, G. Wäckerle, and M. Mehring, “Nuclear quadrupole interaction of highly polarized gas phase 131Xe with a glass surface,” J. Chem. Phys. 100, 6923–6933 (1994).
    [CrossRef]
  12. For example, X. J. Chen, M. S. Chawla, L. W. Hedlund, H. E. Möller, and G. A. Johnson, “Hyperpolarized 3He NMR lineshape measurements in the live guinea pig lung,” Magn. Reson. Med. 40, 61–65 (1998).
    [CrossRef] [PubMed]
  13. C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, and R. L. Walsworth, “Low-field MRI of laser polarized noble gas,” Phys. Rev. Lett. 81, 3785–3788 (1998).
    [CrossRef]
  14. P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Clarendon, Oxford, UK, 1991).
  15. R. Freeman, A Handbook of Nuclear Magnetic Resonance (Longman Scientific & Technical, London, 1988).
  16. M. Frigo and S. Johnson, “FFTW: an adaptive software architecture for the FFT,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 1381–1384.
  17. B. S. Mathur, H. Y. Tang, and W. Happer, “Light propagation in optically pumped alkali vapors,” Phys. Rev. A 2, 648–660 (1970).
    [CrossRef]
  18. E. L. Cussler, Diffusion Mass Transfer in Fluid Systems (Cambridge U. Press, Cambridge, UK, 1997).
  19. H. Weickenmeier, U. Diemer, W. Demtröder, and M. Broyer, “Hyperfine interaction between the singlet and triplet ground state of Cs2: a textbook example of gerade–ungerade symmetry breaking,” Chem. Phys. Lett. 124, 470–477 (1986); K. Ishikawa, “Hyperfine structure of the NaK a3Σ+ state: interaction of an electron spin with the sodium and potassium nuclear spins,” J. Chem. Phys. 98, 1916–1924 (1993).
    [CrossRef]

1999 (2)

K. Ishikawa, Y. Anraku, Y. Takahashi, and T. Yabuzaki, “Optical magnetic-resonance imaging of laser-polarized Cs atoms,” J. Opt. Soc. Am. B 16, 31–37 (1999).
[CrossRef]

K. L. Sauer, R. J. Fitzgerald, and W. Happer, “Resonance technique to probe 129Xe surface interactions,” Phys. Rev. A 59, R1746–R1749 (1999).
[CrossRef]

1998 (4)

A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58, 2282–2294 (1998).
[CrossRef]

Ya. S. Greenberg, “Application of superconducting quantum interference devices to nuclear magnetic resonance,” Rev. Mod. Phys. 70, 175–222 (1998).
[CrossRef]

For example, X. J. Chen, M. S. Chawla, L. W. Hedlund, H. E. Möller, and G. A. Johnson, “Hyperpolarized 3He NMR lineshape measurements in the live guinea pig lung,” Magn. Reson. Med. 40, 61–65 (1998).
[CrossRef] [PubMed]

C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, and R. L. Walsworth, “Low-field MRI of laser polarized noble gas,” Phys. Rev. Lett. 81, 3785–3788 (1998).
[CrossRef]

1997 (3)

J. Skalla, G. Wäckerle, M. Mehring, and A. Pines, “Optical magnetic resonance imaging of Rb vapor in low magnetic fields,” Phys. Lett. A 226, 69–74 (1997).
[CrossRef]

A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081–3038 (1997).
[CrossRef]

J. Skalla, G. Wäckerle, and M. Mehring, “Optical magnetic resonance imaging of atomic diffusion and laser beam spatial profiles,” Opt. Commun. 143, 209–213 (1997).
[CrossRef]

1994 (1)

R. Butscher, G. Wäckerle, and M. Mehring, “Nuclear quadrupole interaction of highly polarized gas phase 131Xe with a glass surface,” J. Chem. Phys. 100, 6923–6933 (1994).
[CrossRef]

1991 (1)

D. Raftery, H. Long, T. Meersmann, P. J. Grandinetti, L. Reven, and A. Pines, “High-field NMR of adsorbed xenon polarized by laser pumping,” Phys. Rev. Lett. 66, 584–587 (1991).
[CrossRef] [PubMed]

1972 (1)

References in W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[CrossRef]

1970 (1)

B. S. Mathur, H. Y. Tang, and W. Happer, “Light propagation in optically pumped alkali vapors,” Phys. Rev. A 2, 648–660 (1970).
[CrossRef]

Anraku, Y.

Appelt, S.

A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58, 2282–2294 (1998).
[CrossRef]

A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081–3038 (1997).
[CrossRef]

Baranga, A. B.

A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58, 2282–2294 (1998).
[CrossRef]

A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081–3038 (1997).
[CrossRef]

Butscher, R.

R. Butscher, G. Wäckerle, and M. Mehring, “Nuclear quadrupole interaction of highly polarized gas phase 131Xe with a glass surface,” J. Chem. Phys. 100, 6923–6933 (1994).
[CrossRef]

Chawla, M. S.

For example, X. J. Chen, M. S. Chawla, L. W. Hedlund, H. E. Möller, and G. A. Johnson, “Hyperpolarized 3He NMR lineshape measurements in the live guinea pig lung,” Magn. Reson. Med. 40, 61–65 (1998).
[CrossRef] [PubMed]

Chen, X. J.

For example, X. J. Chen, M. S. Chawla, L. W. Hedlund, H. E. Möller, and G. A. Johnson, “Hyperpolarized 3He NMR lineshape measurements in the live guinea pig lung,” Magn. Reson. Med. 40, 61–65 (1998).
[CrossRef] [PubMed]

Cory, D. G.

C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, and R. L. Walsworth, “Low-field MRI of laser polarized noble gas,” Phys. Rev. Lett. 81, 3785–3788 (1998).
[CrossRef]

Erickson, C.

A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081–3038 (1997).
[CrossRef]

Erickson, C. J.

A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58, 2282–2294 (1998).
[CrossRef]

Fitzgerald, R. J.

K. L. Sauer, R. J. Fitzgerald, and W. Happer, “Resonance technique to probe 129Xe surface interactions,” Phys. Rev. A 59, R1746–R1749 (1999).
[CrossRef]

Grandinetti, P. J.

D. Raftery, H. Long, T. Meersmann, P. J. Grandinetti, L. Reven, and A. Pines, “High-field NMR of adsorbed xenon polarized by laser pumping,” Phys. Rev. Lett. 66, 584–587 (1991).
[CrossRef] [PubMed]

Greenberg, Ya. S.

Ya. S. Greenberg, “Application of superconducting quantum interference devices to nuclear magnetic resonance,” Rev. Mod. Phys. 70, 175–222 (1998).
[CrossRef]

Happer, W.

K. L. Sauer, R. J. Fitzgerald, and W. Happer, “Resonance technique to probe 129Xe surface interactions,” Phys. Rev. A 59, R1746–R1749 (1999).
[CrossRef]

A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58, 2282–2294 (1998).
[CrossRef]

A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081–3038 (1997).
[CrossRef]

References in W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[CrossRef]

B. S. Mathur, H. Y. Tang, and W. Happer, “Light propagation in optically pumped alkali vapors,” Phys. Rev. A 2, 648–660 (1970).
[CrossRef]

Hedlund, L. W.

For example, X. J. Chen, M. S. Chawla, L. W. Hedlund, H. E. Möller, and G. A. Johnson, “Hyperpolarized 3He NMR lineshape measurements in the live guinea pig lung,” Magn. Reson. Med. 40, 61–65 (1998).
[CrossRef] [PubMed]

Hersman, F. W.

C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, and R. L. Walsworth, “Low-field MRI of laser polarized noble gas,” Phys. Rev. Lett. 81, 3785–3788 (1998).
[CrossRef]

Hinton, D. P.

C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, and R. L. Walsworth, “Low-field MRI of laser polarized noble gas,” Phys. Rev. Lett. 81, 3785–3788 (1998).
[CrossRef]

Hoffmann, D.

C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, and R. L. Walsworth, “Low-field MRI of laser polarized noble gas,” Phys. Rev. Lett. 81, 3785–3788 (1998).
[CrossRef]

Ishikawa, K.

Johnson, G. A.

For example, X. J. Chen, M. S. Chawla, L. W. Hedlund, H. E. Möller, and G. A. Johnson, “Hyperpolarized 3He NMR lineshape measurements in the live guinea pig lung,” Magn. Reson. Med. 40, 61–65 (1998).
[CrossRef] [PubMed]

Long, H.

D. Raftery, H. Long, T. Meersmann, P. J. Grandinetti, L. Reven, and A. Pines, “High-field NMR of adsorbed xenon polarized by laser pumping,” Phys. Rev. Lett. 66, 584–587 (1991).
[CrossRef] [PubMed]

Mair, R. W.

C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, and R. L. Walsworth, “Low-field MRI of laser polarized noble gas,” Phys. Rev. Lett. 81, 3785–3788 (1998).
[CrossRef]

Mathur, B. S.

B. S. Mathur, H. Y. Tang, and W. Happer, “Light propagation in optically pumped alkali vapors,” Phys. Rev. A 2, 648–660 (1970).
[CrossRef]

Meersmann, T.

D. Raftery, H. Long, T. Meersmann, P. J. Grandinetti, L. Reven, and A. Pines, “High-field NMR of adsorbed xenon polarized by laser pumping,” Phys. Rev. Lett. 66, 584–587 (1991).
[CrossRef] [PubMed]

Mehring, M.

J. Skalla, G. Wäckerle, and M. Mehring, “Optical magnetic resonance imaging of atomic diffusion and laser beam spatial profiles,” Opt. Commun. 143, 209–213 (1997).
[CrossRef]

J. Skalla, G. Wäckerle, M. Mehring, and A. Pines, “Optical magnetic resonance imaging of Rb vapor in low magnetic fields,” Phys. Lett. A 226, 69–74 (1997).
[CrossRef]

R. Butscher, G. Wäckerle, and M. Mehring, “Nuclear quadrupole interaction of highly polarized gas phase 131Xe with a glass surface,” J. Chem. Phys. 100, 6923–6933 (1994).
[CrossRef]

Möller, H. E.

For example, X. J. Chen, M. S. Chawla, L. W. Hedlund, H. E. Möller, and G. A. Johnson, “Hyperpolarized 3He NMR lineshape measurements in the live guinea pig lung,” Magn. Reson. Med. 40, 61–65 (1998).
[CrossRef] [PubMed]

Pines, A.

J. Skalla, G. Wäckerle, M. Mehring, and A. Pines, “Optical magnetic resonance imaging of Rb vapor in low magnetic fields,” Phys. Lett. A 226, 69–74 (1997).
[CrossRef]

D. Raftery, H. Long, T. Meersmann, P. J. Grandinetti, L. Reven, and A. Pines, “High-field NMR of adsorbed xenon polarized by laser pumping,” Phys. Rev. Lett. 66, 584–587 (1991).
[CrossRef] [PubMed]

Pomeroy, V. R.

C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, and R. L. Walsworth, “Low-field MRI of laser polarized noble gas,” Phys. Rev. Lett. 81, 3785–3788 (1998).
[CrossRef]

Raftery, D.

D. Raftery, H. Long, T. Meersmann, P. J. Grandinetti, L. Reven, and A. Pines, “High-field NMR of adsorbed xenon polarized by laser pumping,” Phys. Rev. Lett. 66, 584–587 (1991).
[CrossRef] [PubMed]

Reven, L.

D. Raftery, H. Long, T. Meersmann, P. J. Grandinetti, L. Reven, and A. Pines, “High-field NMR of adsorbed xenon polarized by laser pumping,” Phys. Rev. Lett. 66, 584–587 (1991).
[CrossRef] [PubMed]

Sauer, K. L.

K. L. Sauer, R. J. Fitzgerald, and W. Happer, “Resonance technique to probe 129Xe surface interactions,” Phys. Rev. A 59, R1746–R1749 (1999).
[CrossRef]

Skalla, J.

J. Skalla, G. Wäckerle, M. Mehring, and A. Pines, “Optical magnetic resonance imaging of Rb vapor in low magnetic fields,” Phys. Lett. A 226, 69–74 (1997).
[CrossRef]

J. Skalla, G. Wäckerle, and M. Mehring, “Optical magnetic resonance imaging of atomic diffusion and laser beam spatial profiles,” Opt. Commun. 143, 209–213 (1997).
[CrossRef]

Stoner, R. E.

C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, and R. L. Walsworth, “Low-field MRI of laser polarized noble gas,” Phys. Rev. Lett. 81, 3785–3788 (1998).
[CrossRef]

Takahashi, Y.

Tang, H. Y.

B. S. Mathur, H. Y. Tang, and W. Happer, “Light propagation in optically pumped alkali vapors,” Phys. Rev. A 2, 648–660 (1970).
[CrossRef]

Tseng, C. H.

C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, and R. L. Walsworth, “Low-field MRI of laser polarized noble gas,” Phys. Rev. Lett. 81, 3785–3788 (1998).
[CrossRef]

Wäckerle, G.

J. Skalla, G. Wäckerle, and M. Mehring, “Optical magnetic resonance imaging of atomic diffusion and laser beam spatial profiles,” Opt. Commun. 143, 209–213 (1997).
[CrossRef]

J. Skalla, G. Wäckerle, M. Mehring, and A. Pines, “Optical magnetic resonance imaging of Rb vapor in low magnetic fields,” Phys. Lett. A 226, 69–74 (1997).
[CrossRef]

R. Butscher, G. Wäckerle, and M. Mehring, “Nuclear quadrupole interaction of highly polarized gas phase 131Xe with a glass surface,” J. Chem. Phys. 100, 6923–6933 (1994).
[CrossRef]

Walsworth, R. L.

C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, and R. L. Walsworth, “Low-field MRI of laser polarized noble gas,” Phys. Rev. Lett. 81, 3785–3788 (1998).
[CrossRef]

Wong, G. P.

C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, and R. L. Walsworth, “Low-field MRI of laser polarized noble gas,” Phys. Rev. Lett. 81, 3785–3788 (1998).
[CrossRef]

Yabuzaki, T.

Young, A. R.

A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58, 2282–2294 (1998).
[CrossRef]

A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081–3038 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

A. R. Young, S. Appelt, A. B. Baranga, C. Erickson, and W. Happer, “Three-dimensional imaging of spin polarization of alkali-metal vapor in optical pumping cells,” Appl. Phys. Lett. 70, 3081–3038 (1997).
[CrossRef]

J. Chem. Phys. (1)

R. Butscher, G. Wäckerle, and M. Mehring, “Nuclear quadrupole interaction of highly polarized gas phase 131Xe with a glass surface,” J. Chem. Phys. 100, 6923–6933 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Magn. Reson. Med. (1)

For example, X. J. Chen, M. S. Chawla, L. W. Hedlund, H. E. Möller, and G. A. Johnson, “Hyperpolarized 3He NMR lineshape measurements in the live guinea pig lung,” Magn. Reson. Med. 40, 61–65 (1998).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Skalla, G. Wäckerle, and M. Mehring, “Optical magnetic resonance imaging of atomic diffusion and laser beam spatial profiles,” Opt. Commun. 143, 209–213 (1997).
[CrossRef]

Phys. Lett. A (1)

J. Skalla, G. Wäckerle, M. Mehring, and A. Pines, “Optical magnetic resonance imaging of Rb vapor in low magnetic fields,” Phys. Lett. A 226, 69–74 (1997).
[CrossRef]

Phys. Rev. A (3)

B. S. Mathur, H. Y. Tang, and W. Happer, “Light propagation in optically pumped alkali vapors,” Phys. Rev. A 2, 648–660 (1970).
[CrossRef]

A. B. Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer, “Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells,” Phys. Rev. A 58, 2282–2294 (1998).
[CrossRef]

K. L. Sauer, R. J. Fitzgerald, and W. Happer, “Resonance technique to probe 129Xe surface interactions,” Phys. Rev. A 59, R1746–R1749 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

D. Raftery, H. Long, T. Meersmann, P. J. Grandinetti, L. Reven, and A. Pines, “High-field NMR of adsorbed xenon polarized by laser pumping,” Phys. Rev. Lett. 66, 584–587 (1991).
[CrossRef] [PubMed]

C. H. Tseng, G. P. Wong, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory, and R. L. Walsworth, “Low-field MRI of laser polarized noble gas,” Phys. Rev. Lett. 81, 3785–3788 (1998).
[CrossRef]

Rev. Mod. Phys. (2)

Ya. S. Greenberg, “Application of superconducting quantum interference devices to nuclear magnetic resonance,” Rev. Mod. Phys. 70, 175–222 (1998).
[CrossRef]

References in W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–249 (1972).
[CrossRef]

Other (6)

E. L. Cussler, Diffusion Mass Transfer in Fluid Systems (Cambridge U. Press, Cambridge, UK, 1997).

H. Weickenmeier, U. Diemer, W. Demtröder, and M. Broyer, “Hyperfine interaction between the singlet and triplet ground state of Cs2: a textbook example of gerade–ungerade symmetry breaking,” Chem. Phys. Lett. 124, 470–477 (1986); K. Ishikawa, “Hyperfine structure of the NaK a3Σ+ state: interaction of an electron spin with the sodium and potassium nuclear spins,” J. Chem. Phys. 98, 1916–1924 (1993).
[CrossRef]

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629–642 (1997); S. Appelt, A. B. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[CrossRef]

P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Clarendon, Oxford, UK, 1991).

R. Freeman, A Handbook of Nuclear Magnetic Resonance (Longman Scientific & Technical, London, 1988).

M. Frigo and S. Johnson, “FFTW: an adaptive software architecture for the FFT,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 1381–1384.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for the optical MRI of the polarized Cs atoms in a glass cell filled with Xe and N2 gas or with Rb and  4He gas. The pump beam irradiates the cell along the static magnetic field and along the z axis. The probe beam is propagated along the x axis. Both are circularly polarized and transmit twice the cell. The transmitted intensity of probe beam is detected by the avalanche photodiode, which is not shown here.

Fig. 2
Fig. 2

Nutation and recovery of Cs polarization transferred from the polarized Xe. This signal has been obtained with the different cell and experimental setup from those used for other signals. Both pump and probe lasers are circularly polarized and are propagated along the z axis. The pump laser irradiates the cell for 5 min. After the pumping a rf field is repeatedly applied to drive the spin of Cs atoms. The polarization of Cs nutates at several cycles and relaxes to zero. The polarization recovers after the rf field is turned off.

Fig. 3
Fig. 3

Typical FID signal and time chart of pump light pulse and rf field. A typical pulse width of pump light is 6 ms, and the repetition rate is 87 Hz. After the pump pulse the π/2 rf pulse is applied at the delay time TD, during which the polarization of optically pumped Cs relaxes to the equilibrium with the polarized Xe. The gradient field and the probe light are applied continuously. The FID signal shown here was obtained at TD=0.75 ms by averaging of the amplified photodiode output 1024 times. The inset shows the expanded signal where we observe clearly even its rising that is due to the rf field, which is difficult in the ordinary magnetic detection. The region indicated by a solid arrow is that used for FT. The start point of FT is selected, according to Eq. (4), so as to compensate the phase shift that is due to the field gradient. We also use the digital filter of the exponential with the time constant slightly longer than T2Cs to smooth the images.

Fig. 4
Fig. 4

Optical MR images of Cs in the polarized Xe. The images on the left-hand side show the two-dimensional distribution of Cs polarization at various values of the delay time TD of the rf π/2 pulse after the end of pump light pulse: (a) TD=0.0 ms, (b) 0.5 ms, (c) 1.0 ms, (d) 1.5 ms, (e) 2.0 ms, and (f) 5.0 ms. The diameter of the pump beam is 10 mm. The spin density is normalized by its peak intensity of each image. We have not used any slice selection; so the distribution along the z axis is summed up. The traces indicated by the bold solid curve on the right-hand side are the corresponding projections of two-dimensional images on the x axis (along the propagation of probe beam), where the polarization for the y axis has been summed in the region of glass cell (-11y11 mm). Note that the ordinate scales can be compared with one another. The light solid curve is the fitted profile of the pump beam, and the dashed curve is the fitting to the shape of the glass cell. When calculating the fitting curves, we convoluted the Lorentzian determined by the T2-limited resolution, δrt/2π(x2+δrt2/4), where δrt=2.0 mm.

Fig. 5
Fig. 5

Deconvolution of the observed image. Dotted curve, projection of polarization distribution of the delay time TD=0 ms, the same as the solid bold curve of Fig. 4(a). Solid curve, deconvoluted projection.

Fig. 6
Fig. 6

(a) Changes of FT amplitude of FID for Cs in the |F=3 (circle) and the |F=4 (triangle) levels, which are proportional to the polarization produced along the z axis by a pump pulse. The pump laser is tuned to a Cs D1 line, its pulse width is 0.5 ms, and the repetition rate is 8 Hz. The rf field oscillates linearly, and the frequency of the probe laser is tuned between the optical transitions for both hyperfine levels. Both MR lines are simultaneously observed, because there is no gradient field. The dotted curves are the fitting curves to the observed FT amplitudes: -124 exp(-t/4.2)+61 exp(-t/70) for the |F=3 level and 129 exp(-t/4.2)+81 exp(-t/70) for the |F=4 level. The solid curve is the function fitted to the average of both amplitudes, 72 exp(-t/70). The time T1Cs is slightly affected by the pumping of weak probe light. (b) Changes of FT amplitude of FID for Cs in the |F=3 (circle) and the |F=4 (triangle) levels. The pump laser is resonant with both  85Rb and  87Rb atoms. The width of pump pulse is 1 ms. The dotted curves are the fitting curves: 13 exp(-t/1.5)-34 exp(-t/14)+25 exp(-t/104) for the |F=3 level and -12 exp(-t/1.5)-9.0 exp(-t/14)+41 exp(-t/104) for the |F=4 level. The solid curve is the function fitted to the average, -21 exp(-t/14)+33 exp(-t/104). (c) MR images of Cs polarization transferred from optically pumped Rb. The rotating rf π/2 pulse is delayed by 3.5 ms from the end of the pump light. The repetition rate of the pump pulses is 50 Hz; so we can see the accumulation of Rb and Cs polarization out of the pumping area.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δ r02/γ GT2,
δ rd1.2π(D/3γ G)1/3,
ΔΩ0Ω2(cos Ωt-1), Ω0Ωsin Ωt, Δ2+Ω02 cos ΩtΩ2,
S(t)=ρ(r)exp[iγ G·r(t+0.6 tπ/2)]dr.
PCs,F=1F|m|FmρFm;Fm,

Metrics