Abstract

We report precise quantification of the percentage of ion clusters in Er:ZBLAN fibers by measurement of nonsaturable optical absorption and fitting of these data to a simple theoretical model that includes the role of clustering. In particular, using this indirect measurement technique, we demonstrate that 51% of the ions are present in clusters in Er:ZBLAN fibers with an average doping density of 10,000 parts per million, whereas similar fibers with an average doping density of 1,000 parts per million show negligible effects of clustering. Application of this technique to the more precise design of 2.7-µm Er:ZBLAN fiber lasers, to the characterization of the fiber-drawing process, and to more precise determination of cross-relaxation parameters in Er:ZBLAN fibers are discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Auzel, D. Meichenin, and H. Poignant, “Tunable continuous-wave, room-temperature Er3+-doped ZrF4based glass laser between 2.69 and 2.78 μm,” Electron. Lett. 24, 1463–1464 (1988).
    [CrossRef]
  2. E. Poppe, B. Srinivasan, and R. K. Jain, “980nm Diode-pumped continuous-wave mid-IR (2.7 μm) fiber laser,” Electron. Lett. 34, 2340 (1998); B. Srinivasan, J. Tafoya, and R. K. Jain, “High power ‘watt-level’ cw operation of diode-pumped 2.7 μm fiber lasers using efficient cross correlation and energy-transfer mechanisms,” Opt. Express 4, 490–495 (1999).
    [CrossRef] [PubMed]
  3. K. F. Gibson and W. G. Kernohan, “Lasers in medicine: a review,” J. Med. Eng. Technol. 17, 51–57 (1993); R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Derm. Surg. Oncol. 20, 112–118 (1994).
    [CrossRef] [PubMed]
  4. R. S. Eng, J. F. Butler, and K. J. Linden, “Tunable diode-laser spectroscopy: an invited review,” Opt. Eng. 19, 945–960 (1980).
    [CrossRef]
  5. M. Pollnau, “The route toward a diode-pumped 1-W erbium 3-μm fiber laser,” IEEE J. Quantum Electron. 33, 1982–1990 (1997).
    [CrossRef]
  6. M. C. Brierley and P. W. France, “Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre,” Electron. Lett. 24, 935–937 (1988).
    [CrossRef]
  7. B. Srinivasan, E. Poppe, and R. K. Jain, “40-mW Single-transverse-mode mid-IR (2.7-μm) cw output from a simple mirror-free 780-nm diode-pumpable fiber laser,” Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 297.
  8. J. Y. Allain, M. Monerie, and H. Poignant, “Energy transfer in Er3+/Pr3+-doped fluoride flass fibres and application to lasing at 2.7 μm,” Electron. Lett. 27, 445–447 (1991).
    [CrossRef]
  9. M. Pollnau, Ch. Ghisler, C. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150-mW unsaturated output power at 3 μm from a single-mode fiber erbium cascade laser,” Appl. Phys. Lett. 66, 3564–3566 (1995).
    [CrossRef]
  10. V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun. 132, 73 (1996).
    [CrossRef]
  11. E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers,” Opt. Lett. 20, 2487–2489 (1995).
    [CrossRef] [PubMed]
  12. B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis of neodymiumdoped silica-based optical fiber,” Mater. Lett. 8, 204–208 (1989).
    [CrossRef]
  13. F. Auzel, D. Meichenin, and H. Poignant, “Laser cross section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass,” Electron. Lett. 24, 909–910 (1988).
    [CrossRef]
  14. R. S. Quimby and W. J. Miniscalco, “Continuous-wave lasing on a self-terminating transition,” Appl. Opt. 28, 14–16 (1989).
    [CrossRef] [PubMed]
  15. V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Energy exchange processes in Er3+-doped fluorozirconate glasses,” presented at the 11th International Symposium on Non-Oxide Glasses & New Optical Materials, Sheffield, UK, September 6–10, 1998.
  16. X. Zhao, B. Srinivasan, P. Pulaski, S. Gupta, and R. K. Jain, “Mirror-free, high power (~140 mW) diode-pumped 2.7 μm cw fiber laser,” Conference on Lasers and Electro-Optics (CLEO/Europe), 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), postdeadline paper.
  17. B. Srinivasan, E. Poppe, J. Tafoya, and R. K. Jain, “High-power (400-mW) diode-pumped 2.7 μm fiber lasers using enhanced Er–Er cross-relaxation processes,” Electron. Lett. 35, 1338–1340 (1999).
    [CrossRef]
  18. D. Bayart, B. Clesca, L. Hamon, and J. L. Beylat, “Experimental investigation of the gain flatness characteristics for 1.55-μm erbium-doped fluoride fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 613–615 (1994).
    [CrossRef]
  19. Y. Kimura and M. Nakazawa, “Gain characteristics of erbium-doped fiber amplifiers with high erbium concentration,” Jpn. J. Appl. Phys. 32, 1120–1125 (1993).
    [CrossRef]
  20. E. Maurice, G. Monnom, D. B. Ostrowsky, and G. W. Baxter, “High dynamic range temperature point sensor using green fluorescence intensity ratio in erbiumdoped silica fiber,” J. Lightwave Technol. 13, 1349–1353 (1995).
    [CrossRef]

1999 (1)

B. Srinivasan, E. Poppe, J. Tafoya, and R. K. Jain, “High-power (400-mW) diode-pumped 2.7 μm fiber lasers using enhanced Er–Er cross-relaxation processes,” Electron. Lett. 35, 1338–1340 (1999).
[CrossRef]

1997 (1)

M. Pollnau, “The route toward a diode-pumped 1-W erbium 3-μm fiber laser,” IEEE J. Quantum Electron. 33, 1982–1990 (1997).
[CrossRef]

1996 (1)

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun. 132, 73 (1996).
[CrossRef]

1995 (3)

E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers,” Opt. Lett. 20, 2487–2489 (1995).
[CrossRef] [PubMed]

M. Pollnau, Ch. Ghisler, C. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150-mW unsaturated output power at 3 μm from a single-mode fiber erbium cascade laser,” Appl. Phys. Lett. 66, 3564–3566 (1995).
[CrossRef]

E. Maurice, G. Monnom, D. B. Ostrowsky, and G. W. Baxter, “High dynamic range temperature point sensor using green fluorescence intensity ratio in erbiumdoped silica fiber,” J. Lightwave Technol. 13, 1349–1353 (1995).
[CrossRef]

1994 (1)

D. Bayart, B. Clesca, L. Hamon, and J. L. Beylat, “Experimental investigation of the gain flatness characteristics for 1.55-μm erbium-doped fluoride fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 613–615 (1994).
[CrossRef]

1993 (1)

Y. Kimura and M. Nakazawa, “Gain characteristics of erbium-doped fiber amplifiers with high erbium concentration,” Jpn. J. Appl. Phys. 32, 1120–1125 (1993).
[CrossRef]

1991 (1)

J. Y. Allain, M. Monerie, and H. Poignant, “Energy transfer in Er3+/Pr3+-doped fluoride flass fibres and application to lasing at 2.7 μm,” Electron. Lett. 27, 445–447 (1991).
[CrossRef]

1989 (2)

R. S. Quimby and W. J. Miniscalco, “Continuous-wave lasing on a self-terminating transition,” Appl. Opt. 28, 14–16 (1989).
[CrossRef] [PubMed]

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis of neodymiumdoped silica-based optical fiber,” Mater. Lett. 8, 204–208 (1989).
[CrossRef]

1988 (3)

F. Auzel, D. Meichenin, and H. Poignant, “Laser cross section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass,” Electron. Lett. 24, 909–910 (1988).
[CrossRef]

M. C. Brierley and P. W. France, “Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre,” Electron. Lett. 24, 935–937 (1988).
[CrossRef]

F. Auzel, D. Meichenin, and H. Poignant, “Tunable continuous-wave, room-temperature Er3+-doped ZrF4based glass laser between 2.69 and 2.78 μm,” Electron. Lett. 24, 1463–1464 (1988).
[CrossRef]

1980 (1)

R. S. Eng, J. F. Butler, and K. J. Linden, “Tunable diode-laser spectroscopy: an invited review,” Opt. Eng. 19, 945–960 (1980).
[CrossRef]

Ainslie, B. J.

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis of neodymiumdoped silica-based optical fiber,” Mater. Lett. 8, 204–208 (1989).
[CrossRef]

Allain, J. Y.

J. Y. Allain, M. Monerie, and H. Poignant, “Energy transfer in Er3+/Pr3+-doped fluoride flass fibres and application to lasing at 2.7 μm,” Electron. Lett. 27, 445–447 (1991).
[CrossRef]

Auzel, F.

F. Auzel, D. Meichenin, and H. Poignant, “Tunable continuous-wave, room-temperature Er3+-doped ZrF4based glass laser between 2.69 and 2.78 μm,” Electron. Lett. 24, 1463–1464 (1988).
[CrossRef]

F. Auzel, D. Meichenin, and H. Poignant, “Laser cross section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass,” Electron. Lett. 24, 909–910 (1988).
[CrossRef]

Baxter, G. W.

E. Maurice, G. Monnom, D. B. Ostrowsky, and G. W. Baxter, “High dynamic range temperature point sensor using green fluorescence intensity ratio in erbiumdoped silica fiber,” J. Lightwave Technol. 13, 1349–1353 (1995).
[CrossRef]

Bayart, D.

D. Bayart, B. Clesca, L. Hamon, and J. L. Beylat, “Experimental investigation of the gain flatness characteristics for 1.55-μm erbium-doped fluoride fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 613–615 (1994).
[CrossRef]

Beylat, J. L.

D. Bayart, B. Clesca, L. Hamon, and J. L. Beylat, “Experimental investigation of the gain flatness characteristics for 1.55-μm erbium-doped fluoride fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 613–615 (1994).
[CrossRef]

Bogdanov, V. K.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun. 132, 73 (1996).
[CrossRef]

Booth, D. J.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun. 132, 73 (1996).
[CrossRef]

Brierley, M. C.

M. C. Brierley and P. W. France, “Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre,” Electron. Lett. 24, 935–937 (1988).
[CrossRef]

Bunea, C.

M. Pollnau, Ch. Ghisler, C. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150-mW unsaturated output power at 3 μm from a single-mode fiber erbium cascade laser,” Appl. Phys. Lett. 66, 3564–3566 (1995).
[CrossRef]

Bunea, M.

M. Pollnau, Ch. Ghisler, C. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150-mW unsaturated output power at 3 μm from a single-mode fiber erbium cascade laser,” Appl. Phys. Lett. 66, 3564–3566 (1995).
[CrossRef]

Butler, J. F.

R. S. Eng, J. F. Butler, and K. J. Linden, “Tunable diode-laser spectroscopy: an invited review,” Opt. Eng. 19, 945–960 (1980).
[CrossRef]

Clesca, B.

D. Bayart, B. Clesca, L. Hamon, and J. L. Beylat, “Experimental investigation of the gain flatness characteristics for 1.55-μm erbium-doped fluoride fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 613–615 (1994).
[CrossRef]

Craig, S. P.

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis of neodymiumdoped silica-based optical fiber,” Mater. Lett. 8, 204–208 (1989).
[CrossRef]

Dussardier, B.

Eng, R. S.

R. S. Eng, J. F. Butler, and K. J. Linden, “Tunable diode-laser spectroscopy: an invited review,” Opt. Eng. 19, 945–960 (1980).
[CrossRef]

France, P. W.

M. C. Brierley and P. W. France, “Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre,” Electron. Lett. 24, 935–937 (1988).
[CrossRef]

Ghisler, Ch.

M. Pollnau, Ch. Ghisler, C. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150-mW unsaturated output power at 3 μm from a single-mode fiber erbium cascade laser,” Appl. Phys. Lett. 66, 3564–3566 (1995).
[CrossRef]

Gibbs, W. E. K.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun. 132, 73 (1996).
[CrossRef]

Hamon, L.

D. Bayart, B. Clesca, L. Hamon, and J. L. Beylat, “Experimental investigation of the gain flatness characteristics for 1.55-μm erbium-doped fluoride fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 613–615 (1994).
[CrossRef]

Jain, R. K.

B. Srinivasan, E. Poppe, J. Tafoya, and R. K. Jain, “High-power (400-mW) diode-pumped 2.7 μm fiber lasers using enhanced Er–Er cross-relaxation processes,” Electron. Lett. 35, 1338–1340 (1999).
[CrossRef]

Javorniczky, J. S.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun. 132, 73 (1996).
[CrossRef]

Kimura, Y.

Y. Kimura and M. Nakazawa, “Gain characteristics of erbium-doped fiber amplifiers with high erbium concentration,” Jpn. J. Appl. Phys. 32, 1120–1125 (1993).
[CrossRef]

Linden, K. J.

R. S. Eng, J. F. Butler, and K. J. Linden, “Tunable diode-laser spectroscopy: an invited review,” Opt. Eng. 19, 945–960 (1980).
[CrossRef]

Luthy, W.

M. Pollnau, Ch. Ghisler, C. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150-mW unsaturated output power at 3 μm from a single-mode fiber erbium cascade laser,” Appl. Phys. Lett. 66, 3564–3566 (1995).
[CrossRef]

MacFarlane, D. R.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun. 132, 73 (1996).
[CrossRef]

Maurice, E.

E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers,” Opt. Lett. 20, 2487–2489 (1995).
[CrossRef] [PubMed]

E. Maurice, G. Monnom, D. B. Ostrowsky, and G. W. Baxter, “High dynamic range temperature point sensor using green fluorescence intensity ratio in erbiumdoped silica fiber,” J. Lightwave Technol. 13, 1349–1353 (1995).
[CrossRef]

Meichenin, D.

F. Auzel, D. Meichenin, and H. Poignant, “Laser cross section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass,” Electron. Lett. 24, 909–910 (1988).
[CrossRef]

F. Auzel, D. Meichenin, and H. Poignant, “Tunable continuous-wave, room-temperature Er3+-doped ZrF4based glass laser between 2.69 and 2.78 μm,” Electron. Lett. 24, 1463–1464 (1988).
[CrossRef]

Miniscalco, W. J.

Monerie, M.

J. Y. Allain, M. Monerie, and H. Poignant, “Energy transfer in Er3+/Pr3+-doped fluoride flass fibres and application to lasing at 2.7 μm,” Electron. Lett. 27, 445–447 (1991).
[CrossRef]

Monnom, G.

E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers,” Opt. Lett. 20, 2487–2489 (1995).
[CrossRef] [PubMed]

E. Maurice, G. Monnom, D. B. Ostrowsky, and G. W. Baxter, “High dynamic range temperature point sensor using green fluorescence intensity ratio in erbiumdoped silica fiber,” J. Lightwave Technol. 13, 1349–1353 (1995).
[CrossRef]

Moulding, K.

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis of neodymiumdoped silica-based optical fiber,” Mater. Lett. 8, 204–208 (1989).
[CrossRef]

Nakazawa, M.

Y. Kimura and M. Nakazawa, “Gain characteristics of erbium-doped fiber amplifiers with high erbium concentration,” Jpn. J. Appl. Phys. 32, 1120–1125 (1993).
[CrossRef]

Newman, P. J.

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun. 132, 73 (1996).
[CrossRef]

Ostrowsky, D. B.

E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers,” Opt. Lett. 20, 2487–2489 (1995).
[CrossRef] [PubMed]

E. Maurice, G. Monnom, D. B. Ostrowsky, and G. W. Baxter, “High dynamic range temperature point sensor using green fluorescence intensity ratio in erbiumdoped silica fiber,” J. Lightwave Technol. 13, 1349–1353 (1995).
[CrossRef]

Poignant, H.

J. Y. Allain, M. Monerie, and H. Poignant, “Energy transfer in Er3+/Pr3+-doped fluoride flass fibres and application to lasing at 2.7 μm,” Electron. Lett. 27, 445–447 (1991).
[CrossRef]

F. Auzel, D. Meichenin, and H. Poignant, “Tunable continuous-wave, room-temperature Er3+-doped ZrF4based glass laser between 2.69 and 2.78 μm,” Electron. Lett. 24, 1463–1464 (1988).
[CrossRef]

F. Auzel, D. Meichenin, and H. Poignant, “Laser cross section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass,” Electron. Lett. 24, 909–910 (1988).
[CrossRef]

Pollnau, M.

M. Pollnau, “The route toward a diode-pumped 1-W erbium 3-μm fiber laser,” IEEE J. Quantum Electron. 33, 1982–1990 (1997).
[CrossRef]

M. Pollnau, Ch. Ghisler, C. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150-mW unsaturated output power at 3 μm from a single-mode fiber erbium cascade laser,” Appl. Phys. Lett. 66, 3564–3566 (1995).
[CrossRef]

Poppe, E.

B. Srinivasan, E. Poppe, J. Tafoya, and R. K. Jain, “High-power (400-mW) diode-pumped 2.7 μm fiber lasers using enhanced Er–Er cross-relaxation processes,” Electron. Lett. 35, 1338–1340 (1999).
[CrossRef]

Quimby, R. S.

Srinivasan, B.

B. Srinivasan, E. Poppe, J. Tafoya, and R. K. Jain, “High-power (400-mW) diode-pumped 2.7 μm fiber lasers using enhanced Er–Er cross-relaxation processes,” Electron. Lett. 35, 1338–1340 (1999).
[CrossRef]

Tafoya, J.

B. Srinivasan, E. Poppe, J. Tafoya, and R. K. Jain, “High-power (400-mW) diode-pumped 2.7 μm fiber lasers using enhanced Er–Er cross-relaxation processes,” Electron. Lett. 35, 1338–1340 (1999).
[CrossRef]

Weber, H. P.

M. Pollnau, Ch. Ghisler, C. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150-mW unsaturated output power at 3 μm from a single-mode fiber erbium cascade laser,” Appl. Phys. Lett. 66, 3564–3566 (1995).
[CrossRef]

Wyatt, R.

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis of neodymiumdoped silica-based optical fiber,” Mater. Lett. 8, 204–208 (1989).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Pollnau, Ch. Ghisler, C. Bunea, M. Bunea, W. Luthy, and H. P. Weber, “150-mW unsaturated output power at 3 μm from a single-mode fiber erbium cascade laser,” Appl. Phys. Lett. 66, 3564–3566 (1995).
[CrossRef]

Electron. Lett. (5)

M. C. Brierley and P. W. France, “Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre,” Electron. Lett. 24, 935–937 (1988).
[CrossRef]

F. Auzel, D. Meichenin, and H. Poignant, “Tunable continuous-wave, room-temperature Er3+-doped ZrF4based glass laser between 2.69 and 2.78 μm,” Electron. Lett. 24, 1463–1464 (1988).
[CrossRef]

J. Y. Allain, M. Monerie, and H. Poignant, “Energy transfer in Er3+/Pr3+-doped fluoride flass fibres and application to lasing at 2.7 μm,” Electron. Lett. 27, 445–447 (1991).
[CrossRef]

B. Srinivasan, E. Poppe, J. Tafoya, and R. K. Jain, “High-power (400-mW) diode-pumped 2.7 μm fiber lasers using enhanced Er–Er cross-relaxation processes,” Electron. Lett. 35, 1338–1340 (1999).
[CrossRef]

F. Auzel, D. Meichenin, and H. Poignant, “Laser cross section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass,” Electron. Lett. 24, 909–910 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Pollnau, “The route toward a diode-pumped 1-W erbium 3-μm fiber laser,” IEEE J. Quantum Electron. 33, 1982–1990 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Bayart, B. Clesca, L. Hamon, and J. L. Beylat, “Experimental investigation of the gain flatness characteristics for 1.55-μm erbium-doped fluoride fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 613–615 (1994).
[CrossRef]

J. Lightwave Technol. (1)

E. Maurice, G. Monnom, D. B. Ostrowsky, and G. W. Baxter, “High dynamic range temperature point sensor using green fluorescence intensity ratio in erbiumdoped silica fiber,” J. Lightwave Technol. 13, 1349–1353 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Kimura and M. Nakazawa, “Gain characteristics of erbium-doped fiber amplifiers with high erbium concentration,” Jpn. J. Appl. Phys. 32, 1120–1125 (1993).
[CrossRef]

Mater. Lett. (1)

B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis of neodymiumdoped silica-based optical fiber,” Mater. Lett. 8, 204–208 (1989).
[CrossRef]

Opt. Commun. (1)

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Fluorescence from highly-doped erbium fluorozirconate glasses pumped at 800 nm,” Opt. Commun. 132, 73 (1996).
[CrossRef]

Opt. Eng. (1)

R. S. Eng, J. F. Butler, and K. J. Linden, “Tunable diode-laser spectroscopy: an invited review,” Opt. Eng. 19, 945–960 (1980).
[CrossRef]

Opt. Lett. (1)

Other (5)

B. Srinivasan, E. Poppe, and R. K. Jain, “40-mW Single-transverse-mode mid-IR (2.7-μm) cw output from a simple mirror-free 780-nm diode-pumpable fiber laser,” Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 297.

E. Poppe, B. Srinivasan, and R. K. Jain, “980nm Diode-pumped continuous-wave mid-IR (2.7 μm) fiber laser,” Electron. Lett. 34, 2340 (1998); B. Srinivasan, J. Tafoya, and R. K. Jain, “High power ‘watt-level’ cw operation of diode-pumped 2.7 μm fiber lasers using efficient cross correlation and energy-transfer mechanisms,” Opt. Express 4, 490–495 (1999).
[CrossRef] [PubMed]

K. F. Gibson and W. G. Kernohan, “Lasers in medicine: a review,” J. Med. Eng. Technol. 17, 51–57 (1993); R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Derm. Surg. Oncol. 20, 112–118 (1994).
[CrossRef] [PubMed]

V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Energy exchange processes in Er3+-doped fluorozirconate glasses,” presented at the 11th International Symposium on Non-Oxide Glasses & New Optical Materials, Sheffield, UK, September 6–10, 1998.

X. Zhao, B. Srinivasan, P. Pulaski, S. Gupta, and R. K. Jain, “Mirror-free, high power (~140 mW) diode-pumped 2.7 μm cw fiber laser,” Conference on Lasers and Electro-Optics (CLEO/Europe), 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), postdeadline paper.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Energy-level diagram of Er showing energy transfer that is due to cross relaxation between two adjacent ions originally in the  4I13/2 or the  4I11/2 state.

Fig. 2
Fig. 2

(a) Plot of the measured and the calculated values of the absorption at 972-nm radiation as a function of launched power in two fibers, which correspond to significantly different mean Er concentrations (Nm equal to 1000 ppm and 10,000 ppm, respectively). (b) Plot of the measured and the calculated values of the absorption at 972-nm radiation as a function of launched power for an Er:ZBLAN fiber with Nm=20,000 ppm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α=10 log10PlaunchPoutdB,
n0t=-W02n0+(γ10+W11n1)n1+(γ20+W20+W22n2)n2+γ30n3,
n1t=-(γ10+2W11n1)n1+γ21n2+γ31n3,
n2t=-(γ2+W20+2W22n2+W23)n2+γ32n3+W02n0+W11n12,
n3t=-γ3n3+(W23+W22n2)n2,

Metrics