Abstract

We report on an intense mid-infrared light source that provides femtosecond pulses on a microjoule energy level, broadly tunable in the 3–20-µm wavelength range with pulse durations as short as 50 fs at 5 µm. The pulses are generated by phase-matched difference-frequency mixing in GaSe of near-infrared signal and idler pulses of a parametric device based on a 1-kHz Ti:sapphire amplifier system. Pulse durations are characterized with different techniques including autocorrelation measurements in AgGaS2, two-photon absorption in InSb, and cross-correlation measurements with near-infrared pulses in a thin GaSe crystal. A subsequent zero-dispersion stretcher of high transmission allows for optimum pulse compression, a more detailed amplitude and phase characterization and, ultimately, amplitude shaping of the mid-infrared pulses.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Elsaesser, J. G. Fujimoto, D. A. Wiersma, and W. Zinth, eds., Ultrafast Phenomena XI (Springer-Verlag, Berlin, 1998).
  2. C. Chudoba, E. T. J. Nibbering, and T. Elsaesser, “Site-specific excited-state solute–solvent interactions probed by femtosecond vibrational spectroscopy,” Phys. Rev. Lett. 81, 3010–3013 (1998).
    [CrossRef]
  3. E. J. Heilweil, “Ultrafast glimpses at water and ice,” Science 283, 1467–1468 (1999).
    [CrossRef]
  4. S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump–probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
    [CrossRef]
  5. P. Hamm, M. Lim, and R. Hochstrasser, “Non-Markovian dynamics of the vibrations of ions in water from femtosecond infrared three-pulse photon echoes,” Phys. Rev. Lett. 81, 5326–5329 (1998).
    [CrossRef]
  6. R. M. Hochstrasser, P. Hamm, and M. Lim, “Femtosecond Dynamics, two-dimensional infrared spectroscopy and echoes of protein vibrations,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. A. Wiersma, and W. Zinth, eds. (Springer-Verlag, Berlin, 1998), pp. 653–657.
  7. T. Elsaesser and M. Woerner, “Femtosecond infrared spectroscopy of semiconductors and semiconductor nanostructures,” Phys. Rep. 321, 253–305 (1999).
    [CrossRef]
  8. R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, “Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma,” Phys. Rev. Lett. 80, 3575–3578 (1998).
    [CrossRef]
  9. S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77, 3657–3660 (1996).
    [CrossRef] [PubMed]
  10. R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, “Ultrafast mid-infrared response of YBa2Cu3O7−δ,” Science 287, 470–473 (2000).
    [CrossRef] [PubMed]
  11. A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, “Optical pulse compression to 5 fs at a 1-MHz repetition rate,” Opt. Lett. 22, 102–104 (1997).
    [CrossRef] [PubMed]
  12. M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
    [CrossRef] [PubMed]
  13. R. L. Fork, C. H. BritoCruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
    [CrossRef] [PubMed]
  14. D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
    [CrossRef]
  15. C. McGowan, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Femtosecond pulses tunable beyond 4 μm from a KTA-based optical parametric oscillator,” Opt. Commun. 134, 186–190 (1997).
    [CrossRef]
  16. V. Petrov and F. Noack, “Tunable femtosecond optical parametric amplifier in the mid-infrared with narrow-band seeding,” J. Opt. Soc. Am. B 12, 2214–2221 (1995).
    [CrossRef]
  17. G. M. Gale, G. Gallot, F. Hache, and R. Sander, “Generation of intense highly coherent femtosecond pulses in the mid-infrared,” Opt. Lett. 22, 1253–1255 (1997).
    [CrossRef] [PubMed]
  18. A. Lohner, P. Kruck, and W. W. Rühle, “Generation of 200 femtosecond pulses tunable between 2.5 and 5.5 μm,” Appl. Phys. 59, 211–213 (1994).
    [CrossRef]
  19. T. Elsaesser and M. C. Nuss, “Femtosecond pulses in the mid-infrared generated by downconversion of a traveling-wave dye laser,” Opt. Lett. 16, 411–413 (1991).
    [CrossRef] [PubMed]
  20. C. Ludwig, W. Frey, M. Woerner, and T. Elsaesser, “Generation of synchronized femtosecond pulses independently tunable in the mid-infrared,” Opt. Commun. 102, 447–451 (1993).
    [CrossRef]
  21. M. R. X. de Barros, R. S. Miranda, T. M. Jedju, and P. C. Becker, “High-repetition rate femtosecond mid-infrared pulse generation,” Opt. Lett. 20, 480–482 (1995).
    [CrossRef] [PubMed]
  22. V. Petrov, F. Rotermund, and F. Noack, “Femtosecond parametric generation in ZnGeP2,” Opt. Lett. 24, 414–416 (1999).
    [CrossRef]
  23. F. Seifert, V. Petrov, and M. Woerner, “Solid state laser system for the generation of mid-infrared femtosecond pulses tunable from 3.3 to 10 μm,” Opt. Lett. 19, 2009–2011 (1994).
    [CrossRef] [PubMed]
  24. P. Hamm, M. Lim, and R. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107, 10523–10531 (1997).
    [CrossRef]
  25. J. M. Fraser, D. Wang, A. Haché, G. R. Allan, and H. M. van Driel, “Generation of high-repetition rate femtosecond pulses from 8 to 18 μm,” Appl. Opt. 36, 5044–5047 (1997).
    [CrossRef] [PubMed]
  26. S. Ehret and H. Schneider, “Generation of subpicosecond infrared pulses tunable between 5.2 and 18 μm at a repetition rate of 76 MHz,” Appl. Phys. 66, 27–30 (1998).
    [CrossRef]
  27. R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phasematched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999).
    [CrossRef]
  28. I. M. Bayanov, R. Danielus, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 μm and 20 μm,” Opt. Commun. 113, 99–104 (1994).
    [CrossRef]
  29. T. Dahinten, U. Plödereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
    [CrossRef]
  30. A. Dhirani and P. Guyot-Sionnest, “Efficient generation of infrared picosecond pulses from 10 to 20 μm,” Opt. Lett. 20, 1104–1106 (1995).
    [CrossRef] [PubMed]
  31. P. Y. Han and X.-C. Zhang, “Coherent broadband mid-infrared terahertz beam sensors,” Appl. Phys. Lett. 73, 3049–3051 (1998).
    [CrossRef]
  32. A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
    [CrossRef]
  33. M. Joffre, A. Bonvalet, A. Migus, and J. L. Martin, “Femtosecond diffracting Fourier-transform infrared interferometer,” Opt. Lett. 21, 964–966 (1996).
    [CrossRef] [PubMed]
  34. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
    [CrossRef]
  35. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer-Verlag, Heidelberg, Germany, 1997).
  36. G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” JETP Lett. 16, 90–92 (1972).
  37. One type of these dichroic mirrors has high reflection at the pump wavelength (i.e., from 750 to 850 nm) and high transmission at the signal (1200–1620 nm). The other type has high reflection for the s-polarized signal and high transmission for the p-polarized idler (1620–2500 nm).
  38. D. R. Suhre, N. B. Singh, V. Balakrishna, N. C. Fernelius, and F. K. Hopkins, “Improved crystal quality and harmonic generation in GaSe doped with indium,” Opt. Lett. 22, 775–777 (1997).
    [CrossRef] [PubMed]
  39. S. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
    [CrossRef]
  40. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988).
    [CrossRef]
  41. O. E. Martinez, “3000-times grating compressor with positive group velocity dispersion,” IEEE J. Quantum Electron. 23, 59–64 (1987).
    [CrossRef]
  42. J.-C. Diels and W. Rudoph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Timescale (Academic, San Diego, Calif., 1996).
  43. The adjustment is uncritical, because displacements of lens or grating necessary to induce a lengthening of a 100-fs pulse by a factor of 1.4 (i.e., one dispersion length) are of the order of 1 cm for a 150 line/mm grating and thus are easily controlled.
  44. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
    [CrossRef] [PubMed]
  45. J. P. Heritage, A. M. Weiner, and R. N. Thurston, “Picosecond pulse shaping by spectral phase and amplitude modulation,” Opt. Lett. 10, 609–611 (1985).
    [CrossRef] [PubMed]
  46. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
    [CrossRef] [PubMed]
  47. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]

2000 (2)

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, “Ultrafast mid-infrared response of YBa2Cu3O7−δ,” Science 287, 470–473 (2000).
[CrossRef] [PubMed]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

1999 (5)

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[CrossRef]

T. Elsaesser and M. Woerner, “Femtosecond infrared spectroscopy of semiconductors and semiconductor nanostructures,” Phys. Rep. 321, 253–305 (1999).
[CrossRef]

E. J. Heilweil, “Ultrafast glimpses at water and ice,” Science 283, 1467–1468 (1999).
[CrossRef]

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phasematched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999).
[CrossRef]

V. Petrov, F. Rotermund, and F. Noack, “Femtosecond parametric generation in ZnGeP2,” Opt. Lett. 24, 414–416 (1999).
[CrossRef]

1998 (5)

P. Y. Han and X.-C. Zhang, “Coherent broadband mid-infrared terahertz beam sensors,” Appl. Phys. Lett. 73, 3049–3051 (1998).
[CrossRef]

S. Ehret and H. Schneider, “Generation of subpicosecond infrared pulses tunable between 5.2 and 18 μm at a repetition rate of 76 MHz,” Appl. Phys. 66, 27–30 (1998).
[CrossRef]

C. Chudoba, E. T. J. Nibbering, and T. Elsaesser, “Site-specific excited-state solute–solvent interactions probed by femtosecond vibrational spectroscopy,” Phys. Rev. Lett. 81, 3010–3013 (1998).
[CrossRef]

P. Hamm, M. Lim, and R. Hochstrasser, “Non-Markovian dynamics of the vibrations of ions in water from femtosecond infrared three-pulse photon echoes,” Phys. Rev. Lett. 81, 5326–5329 (1998).
[CrossRef]

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, “Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma,” Phys. Rev. Lett. 80, 3575–3578 (1998).
[CrossRef]

1997 (8)

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump–probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
[CrossRef]

P. Hamm, M. Lim, and R. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107, 10523–10531 (1997).
[CrossRef]

C. McGowan, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Femtosecond pulses tunable beyond 4 μm from a KTA-based optical parametric oscillator,” Opt. Commun. 134, 186–190 (1997).
[CrossRef]

A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, “Optical pulse compression to 5 fs at a 1-MHz repetition rate,” Opt. Lett. 22, 102–104 (1997).
[CrossRef] [PubMed]

M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
[CrossRef] [PubMed]

D. R. Suhre, N. B. Singh, V. Balakrishna, N. C. Fernelius, and F. K. Hopkins, “Improved crystal quality and harmonic generation in GaSe doped with indium,” Opt. Lett. 22, 775–777 (1997).
[CrossRef] [PubMed]

G. M. Gale, G. Gallot, F. Hache, and R. Sander, “Generation of intense highly coherent femtosecond pulses in the mid-infrared,” Opt. Lett. 22, 1253–1255 (1997).
[CrossRef] [PubMed]

J. M. Fraser, D. Wang, A. Haché, G. R. Allan, and H. M. van Driel, “Generation of high-repetition rate femtosecond pulses from 8 to 18 μm,” Appl. Opt. 36, 5044–5047 (1997).
[CrossRef] [PubMed]

1996 (3)

M. Joffre, A. Bonvalet, A. Migus, and J. L. Martin, “Femtosecond diffracting Fourier-transform infrared interferometer,” Opt. Lett. 21, 964–966 (1996).
[CrossRef] [PubMed]

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77, 3657–3660 (1996).
[CrossRef] [PubMed]

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[CrossRef]

1995 (4)

1994 (3)

I. M. Bayanov, R. Danielus, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 μm and 20 μm,” Opt. Commun. 113, 99–104 (1994).
[CrossRef]

A. Lohner, P. Kruck, and W. W. Rühle, “Generation of 200 femtosecond pulses tunable between 2.5 and 5.5 μm,” Appl. Phys. 59, 211–213 (1994).
[CrossRef]

F. Seifert, V. Petrov, and M. Woerner, “Solid state laser system for the generation of mid-infrared femtosecond pulses tunable from 3.3 to 10 μm,” Opt. Lett. 19, 2009–2011 (1994).
[CrossRef] [PubMed]

1993 (2)

C. Ludwig, W. Frey, M. Woerner, and T. Elsaesser, “Generation of synchronized femtosecond pulses independently tunable in the mid-infrared,” Opt. Commun. 102, 447–451 (1993).
[CrossRef]

T. Dahinten, U. Plödereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
[CrossRef]

1991 (1)

1990 (1)

1988 (1)

1987 (2)

1985 (1)

1984 (1)

1972 (1)

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” JETP Lett. 16, 90–92 (1972).

1968 (1)

S. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

Abdullaev, G. B.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” JETP Lett. 16, 90–92 (1972).

Akhmanov, S.

S. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

Allakhverdiev, K. R.

T. Dahinten, U. Plödereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
[CrossRef]

Allan, G. R.

Axt, V. M.

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, “Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma,” Phys. Rev. Lett. 80, 3575–3578 (1998).
[CrossRef]

Bakker, H. J.

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump–probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
[CrossRef]

Balakrishna, V.

Baltuska, A.

Bayanov, I. M.

I. M. Bayanov, R. Danielus, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 μm and 20 μm,” Opt. Commun. 113, 99–104 (1994).
[CrossRef]

Becker, P. C.

Bonvalet, A.

M. Joffre, A. Bonvalet, A. Migus, and J. L. Martin, “Femtosecond diffracting Fourier-transform infrared interferometer,” Opt. Lett. 21, 964–966 (1996).
[CrossRef] [PubMed]

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Bosshard, C.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[CrossRef]

BritoCruz, C. H.

Chirkin, A. S.

S. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

Chudoba, C.

C. Chudoba, E. T. J. Nibbering, and T. Elsaesser, “Site-specific excited-state solute–solvent interactions probed by femtosecond vibrational spectroscopy,” Phys. Rev. Lett. 81, 3010–3013 (1998).
[CrossRef]

Dahinten, T.

T. Dahinten, U. Plödereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
[CrossRef]

Danielus, R.

I. M. Bayanov, R. Danielus, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 μm and 20 μm,” Opt. Commun. 113, 99–104 (1994).
[CrossRef]

de Barros, M. R. X.

DeSilvestri, S.

Dhirani, A.

Drabovich, K. N.

S. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

Ebrahimzadeh, M.

C. McGowan, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Femtosecond pulses tunable beyond 4 μm from a KTA-based optical parametric oscillator,” Opt. Commun. 134, 186–190 (1997).
[CrossRef]

Ehret, S.

S. Ehret and H. Schneider, “Generation of subpicosecond infrared pulses tunable between 5.2 and 18 μm at a repetition rate of 76 MHz,” Appl. Phys. 66, 27–30 (1998).
[CrossRef]

Eickemeyer, F.

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phasematched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999).
[CrossRef]

Elsaesser, T.

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, “Ultrafast mid-infrared response of YBa2Cu3O7−δ,” Science 287, 470–473 (2000).
[CrossRef] [PubMed]

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phasematched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999).
[CrossRef]

T. Elsaesser and M. Woerner, “Femtosecond infrared spectroscopy of semiconductors and semiconductor nanostructures,” Phys. Rep. 321, 253–305 (1999).
[CrossRef]

C. Chudoba, E. T. J. Nibbering, and T. Elsaesser, “Site-specific excited-state solute–solvent interactions probed by femtosecond vibrational spectroscopy,” Phys. Rev. Lett. 81, 3010–3013 (1998).
[CrossRef]

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, “Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma,” Phys. Rev. Lett. 80, 3575–3578 (1998).
[CrossRef]

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77, 3657–3660 (1996).
[CrossRef] [PubMed]

C. Ludwig, W. Frey, M. Woerner, and T. Elsaesser, “Generation of synchronized femtosecond pulses independently tunable in the mid-infrared,” Opt. Commun. 102, 447–451 (1993).
[CrossRef]

T. Elsaesser and M. C. Nuss, “Femtosecond pulses in the mid-infrared generated by downconversion of a traveling-wave dye laser,” Opt. Lett. 16, 411–413 (1991).
[CrossRef] [PubMed]

Emmerichs, U.

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump–probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
[CrossRef]

Farnan, G. A.

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, “Ultrafast mid-infrared response of YBa2Cu3O7−δ,” Science 287, 470–473 (2000).
[CrossRef] [PubMed]

Ferencz, K.

Fernelius, N. C.

Fork, R. L.

Fraser, J. M.

Frey, W.

C. Ludwig, W. Frey, M. Woerner, and T. Elsaesser, “Generation of synchronized femtosecond pulses independently tunable in the mid-infrared,” Opt. Commun. 102, 447–451 (1993).
[CrossRef]

Gale, G. M.

Gallot, G.

Gordon, J. P.

Gulia, M.

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77, 3657–3660 (1996).
[CrossRef] [PubMed]

Günter, P.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[CrossRef]

Guyot-Sionnest, P.

Hache, F.

Haché, A.

Hamm, P.

P. Hamm, M. Lim, and R. Hochstrasser, “Non-Markovian dynamics of the vibrations of ions in water from femtosecond infrared three-pulse photon echoes,” Phys. Rev. Lett. 81, 5326–5329 (1998).
[CrossRef]

P. Hamm, M. Lim, and R. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107, 10523–10531 (1997).
[CrossRef]

Han, P. Y.

P. Y. Han and X.-C. Zhang, “Coherent broadband mid-infrared terahertz beam sensors,” Appl. Phys. Lett. 73, 3049–3051 (1998).
[CrossRef]

Hase, A.

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, “Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma,” Phys. Rev. Lett. 80, 3575–3578 (1998).
[CrossRef]

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77, 3657–3660 (1996).
[CrossRef] [PubMed]

Heilweil, E. J.

E. J. Heilweil, “Ultrafast glimpses at water and ice,” Science 283, 1467–1468 (1999).
[CrossRef]

Heinz, P.

I. M. Bayanov, R. Danielus, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 μm and 20 μm,” Opt. Commun. 113, 99–104 (1994).
[CrossRef]

Heritage, J. P.

Hochstrasser, R.

P. Hamm, M. Lim, and R. Hochstrasser, “Non-Markovian dynamics of the vibrations of ions in water from femtosecond infrared three-pulse photon echoes,” Phys. Rev. Lett. 81, 5326–5329 (1998).
[CrossRef]

P. Hamm, M. Lim, and R. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107, 10523–10531 (1997).
[CrossRef]

Hopkins, F. K.

Hunsche, S.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[CrossRef]

Ibragimov, Z. A.

T. Dahinten, U. Plödereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
[CrossRef]

Jedju, T. M.

Joffre, M.

M. Joffre, A. Bonvalet, A. Migus, and J. L. Martin, “Femtosecond diffracting Fourier-transform infrared interferometer,” Opt. Lett. 21, 964–966 (1996).
[CrossRef] [PubMed]

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Kaindl, R. A.

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, “Ultrafast mid-infrared response of YBa2Cu3O7−δ,” Science 287, 470–473 (2000).
[CrossRef] [PubMed]

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phasematched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999).
[CrossRef]

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, “Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma,” Phys. Rev. Lett. 80, 3575–3578 (1998).
[CrossRef]

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77, 3657–3660 (1996).
[CrossRef] [PubMed]

Khokhlov, R. V.

S. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

Kirschner, E. M.

Knox, W. H.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[CrossRef]

Kovrigin, A. I.

S. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

Krausz, F.

Kruck, P.

A. Lohner, P. Kruck, and W. W. Rühle, “Generation of 200 femtosecond pulses tunable between 2.5 and 5.5 μm,” Appl. Phys. 59, 211–213 (1994).
[CrossRef]

Kuhn, T.

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, “Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma,” Phys. Rev. Lett. 80, 3575–3578 (1998).
[CrossRef]

Kulevskii, L. A.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” JETP Lett. 16, 90–92 (1972).

Künzel, H.

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, “Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma,” Phys. Rev. Lett. 80, 3575–3578 (1998).
[CrossRef]

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77, 3657–3660 (1996).
[CrossRef] [PubMed]

Leaird, D. E.

Leitenstorfer, A.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[CrossRef]

Lim, M.

P. Hamm, M. Lim, and R. Hochstrasser, “Non-Markovian dynamics of the vibrations of ions in water from femtosecond infrared three-pulse photon echoes,” Phys. Rev. Lett. 81, 5326–5329 (1998).
[CrossRef]

P. Hamm, M. Lim, and R. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107, 10523–10531 (1997).
[CrossRef]

Lohner, A.

A. Lohner, P. Kruck, and W. W. Rühle, “Generation of 200 femtosecond pulses tunable between 2.5 and 5.5 μm,” Appl. Phys. 59, 211–213 (1994).
[CrossRef]

Ludwig, C.

C. Ludwig, W. Frey, M. Woerner, and T. Elsaesser, “Generation of synchronized femtosecond pulses independently tunable in the mid-infrared,” Opt. Commun. 102, 447–451 (1993).
[CrossRef]

Lugli, P.

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77, 3657–3660 (1996).
[CrossRef] [PubMed]

Lutgen, S.

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, “Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma,” Phys. Rev. Lett. 80, 3575–3578 (1998).
[CrossRef]

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77, 3657–3660 (1996).
[CrossRef] [PubMed]

Martin, J. L.

M. Joffre, A. Bonvalet, A. Migus, and J. L. Martin, “Femtosecond diffracting Fourier-transform infrared interferometer,” Opt. Lett. 21, 964–966 (1996).
[CrossRef] [PubMed]

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Martinez, O. E.

O. E. Martinez, “3000-times grating compressor with positive group velocity dispersion,” IEEE J. Quantum Electron. 23, 59–64 (1987).
[CrossRef]

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
[CrossRef] [PubMed]

McCurry, M. P.

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, “Ultrafast mid-infrared response of YBa2Cu3O7−δ,” Science 287, 470–473 (2000).
[CrossRef] [PubMed]

McGowan, C.

C. McGowan, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Femtosecond pulses tunable beyond 4 μm from a KTA-based optical parametric oscillator,” Opt. Commun. 134, 186–190 (1997).
[CrossRef]

Meglio, D.

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77, 3657–3660 (1996).
[CrossRef] [PubMed]

Migus, A.

M. Joffre, A. Bonvalet, A. Migus, and J. L. Martin, “Femtosecond diffracting Fourier-transform infrared interferometer,” Opt. Lett. 21, 964–966 (1996).
[CrossRef] [PubMed]

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Miranda, R. S.

Nibbering, E. T. J.

C. Chudoba, E. T. J. Nibbering, and T. Elsaesser, “Site-specific excited-state solute–solvent interactions probed by femtosecond vibrational spectroscopy,” Phys. Rev. Lett. 81, 3010–3013 (1998).
[CrossRef]

Nisoli, M.

Noack, F.

Nottelmann, B.

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, “Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma,” Phys. Rev. Lett. 80, 3575–3578 (1998).
[CrossRef]

Nuss, M. C.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[CrossRef]

T. Elsaesser and M. C. Nuss, “Femtosecond pulses in the mid-infrared generated by downconversion of a traveling-wave dye laser,” Opt. Lett. 16, 411–413 (1991).
[CrossRef] [PubMed]

Patel, J. S.

Petrov, V.

Plödereder, U.

T. Dahinten, U. Plödereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
[CrossRef]

Prokhorov, A. M.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” JETP Lett. 16, 90–92 (1972).

Pshenichnikov, M. S.

Reid, D. T.

C. McGowan, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Femtosecond pulses tunable beyond 4 μm from a KTA-based optical parametric oscillator,” Opt. Commun. 134, 186–190 (1997).
[CrossRef]

Rotermund, F.

Rühle, W. W.

A. Lohner, P. Kruck, and W. W. Rühle, “Generation of 200 femtosecond pulses tunable between 2.5 and 5.5 μm,” Appl. Phys. 59, 211–213 (1994).
[CrossRef]

Ryan, J. F.

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, “Ultrafast mid-infrared response of YBa2Cu3O7−δ,” Science 287, 470–473 (2000).
[CrossRef] [PubMed]

Salaev, E. Y.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” JETP Lett. 16, 90–92 (1972).

Sander, R.

Sartania, S.

Savel’ev, A. D.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” JETP Lett. 16, 90–92 (1972).

Schneider, H.

S. Ehret and H. Schneider, “Generation of subpicosecond infrared pulses tunable between 5.2 and 18 μm at a repetition rate of 76 MHz,” Appl. Phys. 66, 27–30 (1998).
[CrossRef]

Seifert, F.

Seilmeier, A.

I. M. Bayanov, R. Danielus, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 μm and 20 μm,” Opt. Commun. 113, 99–104 (1994).
[CrossRef]

T. Dahinten, U. Plödereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
[CrossRef]

Shah, J.

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[CrossRef]

Shank, C. V.

Sibbett, W.

C. McGowan, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Femtosecond pulses tunable beyond 4 μm from a KTA-based optical parametric oscillator,” Opt. Commun. 134, 186–190 (1997).
[CrossRef]

Singh, N. B.

Smirnov, V. V.

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” JETP Lett. 16, 90–92 (1972).

Smith, D. C.

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, “Ultrafast mid-infrared response of YBa2Cu3O7−δ,” Science 287, 470–473 (2000).
[CrossRef] [PubMed]

Spence, D. E.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[CrossRef]

Spielmann, Ch.

Suhre, D. R.

Sukhorukov, A. P.

S. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

Svelto, O.

Szipöcs, R.

Tang, C. L.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[CrossRef]

Thurston, R. N.

van Driel, H. M.

Vodopyanov, K. L.

T. Dahinten, U. Plödereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
[CrossRef]

Walmsley, D. G.

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, “Ultrafast mid-infrared response of YBa2Cu3O7−δ,” Science 287, 470–473 (2000).
[CrossRef] [PubMed]

Wang, D.

Wei, Z.

Weiner, A. M.

Wielandy, S.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[CrossRef]

Wiersma, D. A.

Woerner, M.

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, “Ultrafast mid-infrared response of YBa2Cu3O7−δ,” Science 287, 470–473 (2000).
[CrossRef] [PubMed]

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phasematched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999).
[CrossRef]

T. Elsaesser and M. Woerner, “Femtosecond infrared spectroscopy of semiconductors and semiconductor nanostructures,” Phys. Rep. 321, 253–305 (1999).
[CrossRef]

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, “Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma,” Phys. Rev. Lett. 80, 3575–3578 (1998).
[CrossRef]

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77, 3657–3660 (1996).
[CrossRef] [PubMed]

F. Seifert, V. Petrov, and M. Woerner, “Solid state laser system for the generation of mid-infrared femtosecond pulses tunable from 3.3 to 10 μm,” Opt. Lett. 19, 2009–2011 (1994).
[CrossRef] [PubMed]

C. Ludwig, W. Frey, M. Woerner, and T. Elsaesser, “Generation of synchronized femtosecond pulses independently tunable in the mid-infrared,” Opt. Commun. 102, 447–451 (1993).
[CrossRef]

Woutersen, S.

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump–probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
[CrossRef]

Wullert, J.

Zhang, X.-C.

P. Y. Han and X.-C. Zhang, “Coherent broadband mid-infrared terahertz beam sensors,” Appl. Phys. Lett. 73, 3049–3051 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (2)

S. Ehret and H. Schneider, “Generation of subpicosecond infrared pulses tunable between 5.2 and 18 μm at a repetition rate of 76 MHz,” Appl. Phys. 66, 27–30 (1998).
[CrossRef]

A. Lohner, P. Kruck, and W. W. Rühle, “Generation of 200 femtosecond pulses tunable between 2.5 and 5.5 μm,” Appl. Phys. 59, 211–213 (1994).
[CrossRef]

Appl. Phys. Lett. (5)

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[CrossRef]

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phasematched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999).
[CrossRef]

P. Y. Han and X.-C. Zhang, “Coherent broadband mid-infrared terahertz beam sensors,” Appl. Phys. Lett. 73, 3049–3051 (1998).
[CrossRef]

A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999).
[CrossRef]

IEEE J. Quantum Electron. (3)

T. Dahinten, U. Plödereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
[CrossRef]

S. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

O. E. Martinez, “3000-times grating compressor with positive group velocity dispersion,” IEEE J. Quantum Electron. 23, 59–64 (1987).
[CrossRef]

J. Chem. Phys. (1)

P. Hamm, M. Lim, and R. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107, 10523–10531 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

JETP Lett. (1)

G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” JETP Lett. 16, 90–92 (1972).

Opt. Commun. (3)

C. McGowan, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Femtosecond pulses tunable beyond 4 μm from a KTA-based optical parametric oscillator,” Opt. Commun. 134, 186–190 (1997).
[CrossRef]

I. M. Bayanov, R. Danielus, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 μm and 20 μm,” Opt. Commun. 113, 99–104 (1994).
[CrossRef]

C. Ludwig, W. Frey, M. Woerner, and T. Elsaesser, “Generation of synchronized femtosecond pulses independently tunable in the mid-infrared,” Opt. Commun. 102, 447–451 (1993).
[CrossRef]

Opt. Lett. (14)

M. R. X. de Barros, R. S. Miranda, T. M. Jedju, and P. C. Becker, “High-repetition rate femtosecond mid-infrared pulse generation,” Opt. Lett. 20, 480–482 (1995).
[CrossRef] [PubMed]

V. Petrov, F. Rotermund, and F. Noack, “Femtosecond parametric generation in ZnGeP2,” Opt. Lett. 24, 414–416 (1999).
[CrossRef]

F. Seifert, V. Petrov, and M. Woerner, “Solid state laser system for the generation of mid-infrared femtosecond pulses tunable from 3.3 to 10 μm,” Opt. Lett. 19, 2009–2011 (1994).
[CrossRef] [PubMed]

A. Dhirani and P. Guyot-Sionnest, “Efficient generation of infrared picosecond pulses from 10 to 20 μm,” Opt. Lett. 20, 1104–1106 (1995).
[CrossRef] [PubMed]

M. Joffre, A. Bonvalet, A. Migus, and J. L. Martin, “Femtosecond diffracting Fourier-transform infrared interferometer,” Opt. Lett. 21, 964–966 (1996).
[CrossRef] [PubMed]

A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, “Optical pulse compression to 5 fs at a 1-MHz repetition rate,” Opt. Lett. 22, 102–104 (1997).
[CrossRef] [PubMed]

M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
[CrossRef] [PubMed]

R. L. Fork, C. H. BritoCruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
[CrossRef] [PubMed]

G. M. Gale, G. Gallot, F. Hache, and R. Sander, “Generation of intense highly coherent femtosecond pulses in the mid-infrared,” Opt. Lett. 22, 1253–1255 (1997).
[CrossRef] [PubMed]

T. Elsaesser and M. C. Nuss, “Femtosecond pulses in the mid-infrared generated by downconversion of a traveling-wave dye laser,” Opt. Lett. 16, 411–413 (1991).
[CrossRef] [PubMed]

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
[CrossRef] [PubMed]

J. P. Heritage, A. M. Weiner, and R. N. Thurston, “Picosecond pulse shaping by spectral phase and amplitude modulation,” Opt. Lett. 10, 609–611 (1985).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
[CrossRef] [PubMed]

D. R. Suhre, N. B. Singh, V. Balakrishna, N. C. Fernelius, and F. K. Hopkins, “Improved crystal quality and harmonic generation in GaSe doped with indium,” Opt. Lett. 22, 775–777 (1997).
[CrossRef] [PubMed]

Phys. Rep. (1)

T. Elsaesser and M. Woerner, “Femtosecond infrared spectroscopy of semiconductors and semiconductor nanostructures,” Phys. Rep. 321, 253–305 (1999).
[CrossRef]

Phys. Rev. Lett. (4)

R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, “Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma,” Phys. Rev. Lett. 80, 3575–3578 (1998).
[CrossRef]

S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77, 3657–3660 (1996).
[CrossRef] [PubMed]

C. Chudoba, E. T. J. Nibbering, and T. Elsaesser, “Site-specific excited-state solute–solvent interactions probed by femtosecond vibrational spectroscopy,” Phys. Rev. Lett. 81, 3010–3013 (1998).
[CrossRef]

P. Hamm, M. Lim, and R. Hochstrasser, “Non-Markovian dynamics of the vibrations of ions in water from femtosecond infrared three-pulse photon echoes,” Phys. Rev. Lett. 81, 5326–5329 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Science (3)

E. J. Heilweil, “Ultrafast glimpses at water and ice,” Science 283, 1467–1468 (1999).
[CrossRef]

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump–probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
[CrossRef]

R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, “Ultrafast mid-infrared response of YBa2Cu3O7−δ,” Science 287, 470–473 (2000).
[CrossRef] [PubMed]

Other (6)

R. M. Hochstrasser, P. Hamm, and M. Lim, “Femtosecond Dynamics, two-dimensional infrared spectroscopy and echoes of protein vibrations,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. A. Wiersma, and W. Zinth, eds. (Springer-Verlag, Berlin, 1998), pp. 653–657.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer-Verlag, Heidelberg, Germany, 1997).

T. Elsaesser, J. G. Fujimoto, D. A. Wiersma, and W. Zinth, eds., Ultrafast Phenomena XI (Springer-Verlag, Berlin, 1998).

One type of these dichroic mirrors has high reflection at the pump wavelength (i.e., from 750 to 850 nm) and high transmission at the signal (1200–1620 nm). The other type has high reflection for the s-polarized signal and high transmission for the p-polarized idler (1620–2500 nm).

J.-C. Diels and W. Rudoph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Timescale (Academic, San Diego, Calif., 1996).

The adjustment is uncritical, because displacements of lens or grating necessary to induce a lengthening of a 100-fs pulse by a factor of 1.4 (i.e., one dispersion length) are of the order of 1 cm for a 150 line/mm grating and thus are easily controlled.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Two-stage OPA for the generation of tunable femtosecond signal and idler pulses in the near infrared (λ=12 µm). In the actual setup, the beams for the first and second stages are slightly displaced in height rather than sideways. CPA, chirped pulse amplification; other abbreviations defined in text.

Fig. 2
Fig. 2

Normalized spectra of signal and idler pulses generated in the 1-kHz two-stage type II BBO OPA. The spectra are acquired with a 0.22-m grating monochromator and a 300 line/mm grating. Inset, experimental tuning characteristics of idler (filled circles, extraordinary polarization) and signal (open circles, ordinary polarization) and calculated phase-matching curve (internal angles) for a Ti:sapphire pump wavelength of λ=795 nm.

Fig. 3
Fig. 3

Setup for DFM and subsequent compression and shaping of femtosecond MIR pulses. Broadband dichroic mirrors reflect the signal and transmit the idler pulses. The lenses in the telescope have focal lengths f=150 mm (L1) and f=-100 mm (L2) and a spacing of 100 mm. The generated MIR (Mid-IR) beam is collimated by mirror M1 and transmitted through a long-wave-pass filter (LWP). A KBr plate oriented at a 22° angle of incidence splits off ∼5% of the incident light and transmits it through two apertures (Ap’s). Optionally, a pulse compressor can be inserted, which is constructed from a gold-coated grating (75 lines/mm), a spherical gold-coated mirror (M3; diameter, 3; f=8), and a backfolding gold-coated mirror (M4). In the actual setup, M4 is located above the grating to minimize astigmatism.

Fig. 4
Fig. 4

(a) Spectra of 1-kHz MIR femtosecond pulses for several phase-matching angles. The spectra are acquired with a 0.22-m grating monochromator and HgCdTe detectors. Suitable gratings with 75, 100, and 300 lines/mm, depending on the spectral range, were used. The very broad tuning range is evident from the figure. In relevant spectral ranges, particularly near 6 µm, we remove CO2 and water absorption in air by purging the setup with N2. (b) Calculated phase-matching angles for DFM (OPA, 1.6-µm degeneracy point) of signal and idler and for SHG of the MIR pulses in GaSe.

Fig. 5
Fig. 5

Autocorrelation traces at (a) λ=5.5 µm, measured by SHG in AgGaS2, and at (b) λ=9.6 µm, measured by two-photon absorption in InSb. Symbols, experimental data; curves, sech2 fits with pulse width τp.

Fig. 6
Fig. 6

Setup for temporal characterization of femtosecond MIR pulses using upconversion. It is based on type II sum-frequency mixing of weak MIR and strong OPA signal (gate) pulses in a thin GaSe crystal. The gate pulses are preshaped in a zero-dispersion stretcher unit containing an appropriate slit to suppress background photons already present at the sum frequency. Pol.’s, polarizers; CPA, chirped pulse amplification; other abbreviations defined in text.

Fig. 7
Fig. 7

Cross-correlation traces of femtosecond MIR pulses (λ=12.5 µm) before the introduction (a) of the pulse shaper and (b) of optimally compressed pulses afterward. Insets, the corresponding pulse spectra, which show a bandwidth of ≈150 cm-1. The numbers denote the FWHM of the cross-correlation trace. Deconvolution with a 120-fs signal pulse duration yields MIR pulse durations of (a) 360 and (b) 115 fs, assuming Gaussian shaped pulses, yielding time–bandwidth products of ΔvΔt=0.5 with the pulse compressor and ΔvΔt=1.5 without.

Fig. 8
Fig. 8

Two-dimensional intensity profile of wavelength- and time-dependent upconversion signals. The gray scale of the contour plots goes linearly in equidistant steps from 0 (white) to the maximum (black) of the respective intensity profile. Spectral filtering is used with a slit inserted at the back mirror of the compressor. The slit width corresponds to a spectral resolution of Δv40 cm-1. Traces are given for (a) a nearly optimally compressed pulse and (b) a pulse with the compressor length XC significantly shortened by 600 µm.

Fig. 9
Fig. 9

Spectra (left) and cross-correlation measurements (right) of amplitude-shaped femtosecond MIR pulses with a center wavelength of λ=12.5 µm. Cross-correlation traces are obtained by upconversion (i.e., sum-frequency mixing) with near-infrared signal pulses (λ=1.5 µm) within a d=65-µm-thick GaSe crystal. The data are shown for frequency spacings of (a), (b) Δv=66 cm-1; (c), (d) Δv=33 cm-1; (e), (f) Δv=16.5 cm-1. A constant duty cycle of 1:1 between light and dark portions in the spectra is maintained for all measurements.

Tables (1)

Tables Icon

Table 1 Properties of Various Nonlinear Crystalsa,b

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Dω=-4π2cω3d2 cos2 β2Z,

Metrics