Abstract

Microwave sidebands of CO2 laser lines were used in a sub-Doppler spectrometer to observe sub-Doppler spectrum of the C—O stretching fundamental band (vCO=10) of methanol. Frequencies of more than 200 vibration-rotation lines were measured with an accuracy of better than 0.20 MHz. Sixty-one blended spectral lines in the Fourier-transform spectrum were resolved with a resolution of 0.2 MHz. For transitions involving A-species levels with K=2, 3, and 4 in the vt=0 state and K=2 in the vt=1 state, 64 doublet lines arising from asymmetry splittings were observed. From these observed asymmetry splittings and calculated ground-state splittings the asymmetry splittings and asymmetry-splitting constants for the vCO=1 state were determined. The R- and Q-branch transitions for the (vt, E, K)=(1, E, 2) and (1, E, 5) sequences were assigned by observation of their Stark effects and by use of the Ritz’s combination principle. Term values of the levels in the vCO=1 state for these two sequences were given, and their Taylor-series expansion coefficients were determined.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. D. Sun, F. Matsushima, S. Tsunekawa, and K. Takagi, “Infrared–microwave double-resonance spectroscopy of CH3OH by use of sidebands of CO2 laser lines,” J. Opt. Soc. Am. B 16, 1447–1454 (1999).
    [CrossRef]
  2. C. C. Lin and J. D. Swalen, “Internal rotation and microwave spectroscopy,” Rev. Mod. Phys. 31, 841–892 (1959).
    [CrossRef]
  3. R. M. Lees and J. G. Baker, “Torsion-vibration-rotation interactions in methanol. I. Millimeter wave spectrum,” J. Chem. Phys. 48, 5299–5319 (1968).
    [CrossRef]
  4. G. Moruzzi, F. Strumia, P. Carnesecchi, R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Fourier spectrum of CH3OH between 950 and 1100 cm−1,” Infrared Phys. 29, 583–606 (1989).
    [CrossRef]
  5. G. Moruzzi, B. P. Winnewisser, M. Winnewisser, I. Mukhopadhyay, and F. Strumia, Microwave, Infrared and Laser Transitions of Methanol (CRC, Boca Raton, Fla., 1995).
  6. T. Y. Chang, T. J. Bridges, and E. G. Burkhard, “CW submillimeter laser action in optically pumped methyl fluoride, methyl alcohol and vinyl chloride gases,” Appl. Phys. Lett. 17, 249–251 (1970).
    [CrossRef]
  7. J. O. Henningsen, “Molecular spectroscopy by far infrared laser emission,” Infrared and Millimeter Waves (Academic, New York, 1982), Vol. 5, Part I, pp. 29–128.
  8. L. H. Xu and J. T. Hougen, “Global fit of rotational transitions in the ground state of methanol,” J. Mol. Spectrosc. 169, 396–409 (1995), and references therein.
    [CrossRef]
  9. G. Moruzzi and L. H. Xu, “Resolution of multiple overlap-ping lines in the analysis of molecular spectra,” J. Mol. Spectrosc. 165, 233–248 (1994).
    [CrossRef]
  10. G. Magerl, W. Schupita, J. M. Frye, W. A. Kreiner, and T. Oka, “Sub-Doppler spectroscopy of the v2 band of NH3 using microwave modulation sidebands of CO2 laser lines,” J. Mol. Spectrosc. 107, 72–83 (1984).
    [CrossRef]
  11. A. Ainetschian, U. Häring, G. Spiegl, and W. A. Kreiner, “The v2/v4 diad of PH3,” J. Mol. Spectrosc. 181, 99–107 (1996).
    [CrossRef]
  12. G. Magerl, J. M. Frye, W. A. Kreiner, and T. Oka, “Inverse Lamp dip spectroscopy using microwave modulation sidebands of CO2 laser lines,” Appl. Phys. Lett. 42, 656–658 (1983).
    [CrossRef]
  13. W. Höhe, A. Ainetschian, W. A. Kreiner, and M. Loëte, “Double modulation sideband spectroscopy: μ0, μ24 and μ44 of 28SiH4,” J. Mol. Spectrosc. 153, 316–323 (1992).
    [CrossRef]
  14. R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Assignment of IR transitions and FIR laser lines from torsionally excited CH3OH,” Opt. Commun. 55, 127–130 (1985).
    [CrossRef]
  15. S. Petersen and J. O. Henningsen, “Saturated absorption Stark spectroscopy of CH3OH with CO2 lasers,” Infrared Phys. 26, 55–71 (1986).
    [CrossRef]
  16. P. K. Cheo, “Frequency synthesized and continuously tunable IR laser sources in 9–11 μm,” IEEE J. Quantum Electron. QE-20, 700–709 (1984).
    [CrossRef]
  17. F. Matsushima, H. Odashima, D. Wang, S. Tsunekawa, and K. Takagi, “Far-infrared spectroscopy of LiH using a tun-able far infrared spectrometer,” Jpn. J. Appl. Phys. 33, 315–318 (1994).
    [CrossRef]
  18. Y. T. Chen, J. M. Frye, and T. Oka, “Sub-Doppler spectroscopy using a multiple-reflection mirror system,” J. Opt. Soc. Am. B 3, 935–939 (1986).
    [CrossRef]
  19. J. Sakai and M. Katayama, “Observation of nonlinear molecular hyperfine level crossing in CD3I,” Chem. Phys. Lett. 35, 395–398 (1975).
    [CrossRef]
  20. K. Takagi, M. Kuse, T. Kido, and M. Furuta, “Infrared-radiofrequency double-resonance Stark spectroscopy of CH3OH using a CO2 laser,” J. Mol. Spectrosc. 153, 291–302 (1992).
    [CrossRef]
  21. H. W. Kroto, Molecular Rotation Spectra (Dover, New York, 1992), Chap. 7, pp. 164–178.
  22. T. Anderson, F. C. Delucia, and E. Herbst, “Additional measurements and a refined analysis of the millimeter- and submillimeter-wave spectrum of methanol,” Astrophys. J. Suppl. 72, 797–814 (1990).
    [CrossRef]
  23. Y. B. Duan, “Theoretical study of spectra for a molecule with internal rotation,” Ph.D. dissertation (Kanazawa University, Kanazawa, Japan, 1996).
  24. C. Freed, L. C. Bradley, and R. G. O’Donnell, “Absolute frequencies of lasing transitions in seven CO2 isotopic species,” IEEE J. Quantum Electron. QE-16, 1195–1206 (1980).
    [CrossRef]
  25. L. H. Xu, A. M. Andrews, and G. T. Fraser, “Study of the overtone C—O stretching band of methanol by multiple resonance spectroscopy,” J. Chem. Phys. 103, 14–19 (1995).
    [CrossRef]
  26. R. M. Lees, Department of Physics, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada (personal communication, 2000).

1999 (1)

1996 (1)

A. Ainetschian, U. Häring, G. Spiegl, and W. A. Kreiner, “The v2/v4 diad of PH3,” J. Mol. Spectrosc. 181, 99–107 (1996).
[CrossRef]

1995 (2)

L. H. Xu and J. T. Hougen, “Global fit of rotational transitions in the ground state of methanol,” J. Mol. Spectrosc. 169, 396–409 (1995), and references therein.
[CrossRef]

L. H. Xu, A. M. Andrews, and G. T. Fraser, “Study of the overtone C—O stretching band of methanol by multiple resonance spectroscopy,” J. Chem. Phys. 103, 14–19 (1995).
[CrossRef]

1994 (2)

G. Moruzzi and L. H. Xu, “Resolution of multiple overlap-ping lines in the analysis of molecular spectra,” J. Mol. Spectrosc. 165, 233–248 (1994).
[CrossRef]

F. Matsushima, H. Odashima, D. Wang, S. Tsunekawa, and K. Takagi, “Far-infrared spectroscopy of LiH using a tun-able far infrared spectrometer,” Jpn. J. Appl. Phys. 33, 315–318 (1994).
[CrossRef]

1992 (2)

K. Takagi, M. Kuse, T. Kido, and M. Furuta, “Infrared-radiofrequency double-resonance Stark spectroscopy of CH3OH using a CO2 laser,” J. Mol. Spectrosc. 153, 291–302 (1992).
[CrossRef]

W. Höhe, A. Ainetschian, W. A. Kreiner, and M. Loëte, “Double modulation sideband spectroscopy: μ0, μ24 and μ44 of 28SiH4,” J. Mol. Spectrosc. 153, 316–323 (1992).
[CrossRef]

1990 (1)

T. Anderson, F. C. Delucia, and E. Herbst, “Additional measurements and a refined analysis of the millimeter- and submillimeter-wave spectrum of methanol,” Astrophys. J. Suppl. 72, 797–814 (1990).
[CrossRef]

1989 (1)

G. Moruzzi, F. Strumia, P. Carnesecchi, R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Fourier spectrum of CH3OH between 950 and 1100 cm−1,” Infrared Phys. 29, 583–606 (1989).
[CrossRef]

1986 (2)

S. Petersen and J. O. Henningsen, “Saturated absorption Stark spectroscopy of CH3OH with CO2 lasers,” Infrared Phys. 26, 55–71 (1986).
[CrossRef]

Y. T. Chen, J. M. Frye, and T. Oka, “Sub-Doppler spectroscopy using a multiple-reflection mirror system,” J. Opt. Soc. Am. B 3, 935–939 (1986).
[CrossRef]

1985 (1)

R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Assignment of IR transitions and FIR laser lines from torsionally excited CH3OH,” Opt. Commun. 55, 127–130 (1985).
[CrossRef]

1984 (2)

P. K. Cheo, “Frequency synthesized and continuously tunable IR laser sources in 9–11 μm,” IEEE J. Quantum Electron. QE-20, 700–709 (1984).
[CrossRef]

G. Magerl, W. Schupita, J. M. Frye, W. A. Kreiner, and T. Oka, “Sub-Doppler spectroscopy of the v2 band of NH3 using microwave modulation sidebands of CO2 laser lines,” J. Mol. Spectrosc. 107, 72–83 (1984).
[CrossRef]

1983 (1)

G. Magerl, J. M. Frye, W. A. Kreiner, and T. Oka, “Inverse Lamp dip spectroscopy using microwave modulation sidebands of CO2 laser lines,” Appl. Phys. Lett. 42, 656–658 (1983).
[CrossRef]

1980 (1)

C. Freed, L. C. Bradley, and R. G. O’Donnell, “Absolute frequencies of lasing transitions in seven CO2 isotopic species,” IEEE J. Quantum Electron. QE-16, 1195–1206 (1980).
[CrossRef]

1975 (1)

J. Sakai and M. Katayama, “Observation of nonlinear molecular hyperfine level crossing in CD3I,” Chem. Phys. Lett. 35, 395–398 (1975).
[CrossRef]

1970 (1)

T. Y. Chang, T. J. Bridges, and E. G. Burkhard, “CW submillimeter laser action in optically pumped methyl fluoride, methyl alcohol and vinyl chloride gases,” Appl. Phys. Lett. 17, 249–251 (1970).
[CrossRef]

1968 (1)

R. M. Lees and J. G. Baker, “Torsion-vibration-rotation interactions in methanol. I. Millimeter wave spectrum,” J. Chem. Phys. 48, 5299–5319 (1968).
[CrossRef]

1959 (1)

C. C. Lin and J. D. Swalen, “Internal rotation and microwave spectroscopy,” Rev. Mod. Phys. 31, 841–892 (1959).
[CrossRef]

Ainetschian, A.

A. Ainetschian, U. Häring, G. Spiegl, and W. A. Kreiner, “The v2/v4 diad of PH3,” J. Mol. Spectrosc. 181, 99–107 (1996).
[CrossRef]

W. Höhe, A. Ainetschian, W. A. Kreiner, and M. Loëte, “Double modulation sideband spectroscopy: μ0, μ24 and μ44 of 28SiH4,” J. Mol. Spectrosc. 153, 316–323 (1992).
[CrossRef]

Anderson, T.

T. Anderson, F. C. Delucia, and E. Herbst, “Additional measurements and a refined analysis of the millimeter- and submillimeter-wave spectrum of methanol,” Astrophys. J. Suppl. 72, 797–814 (1990).
[CrossRef]

Andrews, A. M.

L. H. Xu, A. M. Andrews, and G. T. Fraser, “Study of the overtone C—O stretching band of methanol by multiple resonance spectroscopy,” J. Chem. Phys. 103, 14–19 (1995).
[CrossRef]

Baker, J. G.

R. M. Lees and J. G. Baker, “Torsion-vibration-rotation interactions in methanol. I. Millimeter wave spectrum,” J. Chem. Phys. 48, 5299–5319 (1968).
[CrossRef]

Bradley, L. C.

C. Freed, L. C. Bradley, and R. G. O’Donnell, “Absolute frequencies of lasing transitions in seven CO2 isotopic species,” IEEE J. Quantum Electron. QE-16, 1195–1206 (1980).
[CrossRef]

Bridges, T. J.

T. Y. Chang, T. J. Bridges, and E. G. Burkhard, “CW submillimeter laser action in optically pumped methyl fluoride, methyl alcohol and vinyl chloride gases,” Appl. Phys. Lett. 17, 249–251 (1970).
[CrossRef]

Burkhard, E. G.

T. Y. Chang, T. J. Bridges, and E. G. Burkhard, “CW submillimeter laser action in optically pumped methyl fluoride, methyl alcohol and vinyl chloride gases,” Appl. Phys. Lett. 17, 249–251 (1970).
[CrossRef]

Carnesecchi, P.

G. Moruzzi, F. Strumia, P. Carnesecchi, R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Fourier spectrum of CH3OH between 950 and 1100 cm−1,” Infrared Phys. 29, 583–606 (1989).
[CrossRef]

Chang, T. Y.

T. Y. Chang, T. J. Bridges, and E. G. Burkhard, “CW submillimeter laser action in optically pumped methyl fluoride, methyl alcohol and vinyl chloride gases,” Appl. Phys. Lett. 17, 249–251 (1970).
[CrossRef]

Chen, Y. T.

Cheo, P. K.

P. K. Cheo, “Frequency synthesized and continuously tunable IR laser sources in 9–11 μm,” IEEE J. Quantum Electron. QE-20, 700–709 (1984).
[CrossRef]

Delucia, F. C.

T. Anderson, F. C. Delucia, and E. Herbst, “Additional measurements and a refined analysis of the millimeter- and submillimeter-wave spectrum of methanol,” Astrophys. J. Suppl. 72, 797–814 (1990).
[CrossRef]

Fraser, G. T.

L. H. Xu, A. M. Andrews, and G. T. Fraser, “Study of the overtone C—O stretching band of methanol by multiple resonance spectroscopy,” J. Chem. Phys. 103, 14–19 (1995).
[CrossRef]

Freed, C.

C. Freed, L. C. Bradley, and R. G. O’Donnell, “Absolute frequencies of lasing transitions in seven CO2 isotopic species,” IEEE J. Quantum Electron. QE-16, 1195–1206 (1980).
[CrossRef]

Frye, J. M.

Y. T. Chen, J. M. Frye, and T. Oka, “Sub-Doppler spectroscopy using a multiple-reflection mirror system,” J. Opt. Soc. Am. B 3, 935–939 (1986).
[CrossRef]

G. Magerl, W. Schupita, J. M. Frye, W. A. Kreiner, and T. Oka, “Sub-Doppler spectroscopy of the v2 band of NH3 using microwave modulation sidebands of CO2 laser lines,” J. Mol. Spectrosc. 107, 72–83 (1984).
[CrossRef]

G. Magerl, J. M. Frye, W. A. Kreiner, and T. Oka, “Inverse Lamp dip spectroscopy using microwave modulation sidebands of CO2 laser lines,” Appl. Phys. Lett. 42, 656–658 (1983).
[CrossRef]

Furuta, M.

K. Takagi, M. Kuse, T. Kido, and M. Furuta, “Infrared-radiofrequency double-resonance Stark spectroscopy of CH3OH using a CO2 laser,” J. Mol. Spectrosc. 153, 291–302 (1992).
[CrossRef]

Häring, U.

A. Ainetschian, U. Häring, G. Spiegl, and W. A. Kreiner, “The v2/v4 diad of PH3,” J. Mol. Spectrosc. 181, 99–107 (1996).
[CrossRef]

Henningsen, J. O.

S. Petersen and J. O. Henningsen, “Saturated absorption Stark spectroscopy of CH3OH with CO2 lasers,” Infrared Phys. 26, 55–71 (1986).
[CrossRef]

Herbst, E.

T. Anderson, F. C. Delucia, and E. Herbst, “Additional measurements and a refined analysis of the millimeter- and submillimeter-wave spectrum of methanol,” Astrophys. J. Suppl. 72, 797–814 (1990).
[CrossRef]

Höhe, W.

W. Höhe, A. Ainetschian, W. A. Kreiner, and M. Loëte, “Double modulation sideband spectroscopy: μ0, μ24 and μ44 of 28SiH4,” J. Mol. Spectrosc. 153, 316–323 (1992).
[CrossRef]

Hougen, J. T.

L. H. Xu and J. T. Hougen, “Global fit of rotational transitions in the ground state of methanol,” J. Mol. Spectrosc. 169, 396–409 (1995), and references therein.
[CrossRef]

Johns, J. W. C.

G. Moruzzi, F. Strumia, P. Carnesecchi, R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Fourier spectrum of CH3OH between 950 and 1100 cm−1,” Infrared Phys. 29, 583–606 (1989).
[CrossRef]

R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Assignment of IR transitions and FIR laser lines from torsionally excited CH3OH,” Opt. Commun. 55, 127–130 (1985).
[CrossRef]

Katayama, M.

J. Sakai and M. Katayama, “Observation of nonlinear molecular hyperfine level crossing in CD3I,” Chem. Phys. Lett. 35, 395–398 (1975).
[CrossRef]

Kido, T.

K. Takagi, M. Kuse, T. Kido, and M. Furuta, “Infrared-radiofrequency double-resonance Stark spectroscopy of CH3OH using a CO2 laser,” J. Mol. Spectrosc. 153, 291–302 (1992).
[CrossRef]

Kreiner, W. A.

A. Ainetschian, U. Häring, G. Spiegl, and W. A. Kreiner, “The v2/v4 diad of PH3,” J. Mol. Spectrosc. 181, 99–107 (1996).
[CrossRef]

W. Höhe, A. Ainetschian, W. A. Kreiner, and M. Loëte, “Double modulation sideband spectroscopy: μ0, μ24 and μ44 of 28SiH4,” J. Mol. Spectrosc. 153, 316–323 (1992).
[CrossRef]

G. Magerl, W. Schupita, J. M. Frye, W. A. Kreiner, and T. Oka, “Sub-Doppler spectroscopy of the v2 band of NH3 using microwave modulation sidebands of CO2 laser lines,” J. Mol. Spectrosc. 107, 72–83 (1984).
[CrossRef]

G. Magerl, J. M. Frye, W. A. Kreiner, and T. Oka, “Inverse Lamp dip spectroscopy using microwave modulation sidebands of CO2 laser lines,” Appl. Phys. Lett. 42, 656–658 (1983).
[CrossRef]

Kuse, M.

K. Takagi, M. Kuse, T. Kido, and M. Furuta, “Infrared-radiofrequency double-resonance Stark spectroscopy of CH3OH using a CO2 laser,” J. Mol. Spectrosc. 153, 291–302 (1992).
[CrossRef]

Lees, R. M.

G. Moruzzi, F. Strumia, P. Carnesecchi, R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Fourier spectrum of CH3OH between 950 and 1100 cm−1,” Infrared Phys. 29, 583–606 (1989).
[CrossRef]

R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Assignment of IR transitions and FIR laser lines from torsionally excited CH3OH,” Opt. Commun. 55, 127–130 (1985).
[CrossRef]

R. M. Lees and J. G. Baker, “Torsion-vibration-rotation interactions in methanol. I. Millimeter wave spectrum,” J. Chem. Phys. 48, 5299–5319 (1968).
[CrossRef]

Lin, C. C.

C. C. Lin and J. D. Swalen, “Internal rotation and microwave spectroscopy,” Rev. Mod. Phys. 31, 841–892 (1959).
[CrossRef]

Loëte, M.

W. Höhe, A. Ainetschian, W. A. Kreiner, and M. Loëte, “Double modulation sideband spectroscopy: μ0, μ24 and μ44 of 28SiH4,” J. Mol. Spectrosc. 153, 316–323 (1992).
[CrossRef]

Magerl, G.

G. Magerl, W. Schupita, J. M. Frye, W. A. Kreiner, and T. Oka, “Sub-Doppler spectroscopy of the v2 band of NH3 using microwave modulation sidebands of CO2 laser lines,” J. Mol. Spectrosc. 107, 72–83 (1984).
[CrossRef]

G. Magerl, J. M. Frye, W. A. Kreiner, and T. Oka, “Inverse Lamp dip spectroscopy using microwave modulation sidebands of CO2 laser lines,” Appl. Phys. Lett. 42, 656–658 (1983).
[CrossRef]

Matsushima, F.

Z. D. Sun, F. Matsushima, S. Tsunekawa, and K. Takagi, “Infrared–microwave double-resonance spectroscopy of CH3OH by use of sidebands of CO2 laser lines,” J. Opt. Soc. Am. B 16, 1447–1454 (1999).
[CrossRef]

F. Matsushima, H. Odashima, D. Wang, S. Tsunekawa, and K. Takagi, “Far-infrared spectroscopy of LiH using a tun-able far infrared spectrometer,” Jpn. J. Appl. Phys. 33, 315–318 (1994).
[CrossRef]

Moruzzi, G.

G. Moruzzi and L. H. Xu, “Resolution of multiple overlap-ping lines in the analysis of molecular spectra,” J. Mol. Spectrosc. 165, 233–248 (1994).
[CrossRef]

G. Moruzzi, F. Strumia, P. Carnesecchi, R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Fourier spectrum of CH3OH between 950 and 1100 cm−1,” Infrared Phys. 29, 583–606 (1989).
[CrossRef]

Mukhopadhyay, I.

G. Moruzzi, F. Strumia, P. Carnesecchi, R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Fourier spectrum of CH3OH between 950 and 1100 cm−1,” Infrared Phys. 29, 583–606 (1989).
[CrossRef]

R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Assignment of IR transitions and FIR laser lines from torsionally excited CH3OH,” Opt. Commun. 55, 127–130 (1985).
[CrossRef]

O’Donnell, R. G.

C. Freed, L. C. Bradley, and R. G. O’Donnell, “Absolute frequencies of lasing transitions in seven CO2 isotopic species,” IEEE J. Quantum Electron. QE-16, 1195–1206 (1980).
[CrossRef]

Odashima, H.

F. Matsushima, H. Odashima, D. Wang, S. Tsunekawa, and K. Takagi, “Far-infrared spectroscopy of LiH using a tun-able far infrared spectrometer,” Jpn. J. Appl. Phys. 33, 315–318 (1994).
[CrossRef]

Oka, T.

Y. T. Chen, J. M. Frye, and T. Oka, “Sub-Doppler spectroscopy using a multiple-reflection mirror system,” J. Opt. Soc. Am. B 3, 935–939 (1986).
[CrossRef]

G. Magerl, W. Schupita, J. M. Frye, W. A. Kreiner, and T. Oka, “Sub-Doppler spectroscopy of the v2 band of NH3 using microwave modulation sidebands of CO2 laser lines,” J. Mol. Spectrosc. 107, 72–83 (1984).
[CrossRef]

G. Magerl, J. M. Frye, W. A. Kreiner, and T. Oka, “Inverse Lamp dip spectroscopy using microwave modulation sidebands of CO2 laser lines,” Appl. Phys. Lett. 42, 656–658 (1983).
[CrossRef]

Petersen, S.

S. Petersen and J. O. Henningsen, “Saturated absorption Stark spectroscopy of CH3OH with CO2 lasers,” Infrared Phys. 26, 55–71 (1986).
[CrossRef]

Sakai, J.

J. Sakai and M. Katayama, “Observation of nonlinear molecular hyperfine level crossing in CD3I,” Chem. Phys. Lett. 35, 395–398 (1975).
[CrossRef]

Schupita, W.

G. Magerl, W. Schupita, J. M. Frye, W. A. Kreiner, and T. Oka, “Sub-Doppler spectroscopy of the v2 band of NH3 using microwave modulation sidebands of CO2 laser lines,” J. Mol. Spectrosc. 107, 72–83 (1984).
[CrossRef]

Spiegl, G.

A. Ainetschian, U. Häring, G. Spiegl, and W. A. Kreiner, “The v2/v4 diad of PH3,” J. Mol. Spectrosc. 181, 99–107 (1996).
[CrossRef]

Strumia, F.

G. Moruzzi, F. Strumia, P. Carnesecchi, R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Fourier spectrum of CH3OH between 950 and 1100 cm−1,” Infrared Phys. 29, 583–606 (1989).
[CrossRef]

Sun, Z. D.

Swalen, J. D.

C. C. Lin and J. D. Swalen, “Internal rotation and microwave spectroscopy,” Rev. Mod. Phys. 31, 841–892 (1959).
[CrossRef]

Takagi, K.

Z. D. Sun, F. Matsushima, S. Tsunekawa, and K. Takagi, “Infrared–microwave double-resonance spectroscopy of CH3OH by use of sidebands of CO2 laser lines,” J. Opt. Soc. Am. B 16, 1447–1454 (1999).
[CrossRef]

F. Matsushima, H. Odashima, D. Wang, S. Tsunekawa, and K. Takagi, “Far-infrared spectroscopy of LiH using a tun-able far infrared spectrometer,” Jpn. J. Appl. Phys. 33, 315–318 (1994).
[CrossRef]

K. Takagi, M. Kuse, T. Kido, and M. Furuta, “Infrared-radiofrequency double-resonance Stark spectroscopy of CH3OH using a CO2 laser,” J. Mol. Spectrosc. 153, 291–302 (1992).
[CrossRef]

Tsunekawa, S.

Z. D. Sun, F. Matsushima, S. Tsunekawa, and K. Takagi, “Infrared–microwave double-resonance spectroscopy of CH3OH by use of sidebands of CO2 laser lines,” J. Opt. Soc. Am. B 16, 1447–1454 (1999).
[CrossRef]

F. Matsushima, H. Odashima, D. Wang, S. Tsunekawa, and K. Takagi, “Far-infrared spectroscopy of LiH using a tun-able far infrared spectrometer,” Jpn. J. Appl. Phys. 33, 315–318 (1994).
[CrossRef]

Wang, D.

F. Matsushima, H. Odashima, D. Wang, S. Tsunekawa, and K. Takagi, “Far-infrared spectroscopy of LiH using a tun-able far infrared spectrometer,” Jpn. J. Appl. Phys. 33, 315–318 (1994).
[CrossRef]

Xu, L. H.

L. H. Xu and J. T. Hougen, “Global fit of rotational transitions in the ground state of methanol,” J. Mol. Spectrosc. 169, 396–409 (1995), and references therein.
[CrossRef]

L. H. Xu, A. M. Andrews, and G. T. Fraser, “Study of the overtone C—O stretching band of methanol by multiple resonance spectroscopy,” J. Chem. Phys. 103, 14–19 (1995).
[CrossRef]

G. Moruzzi and L. H. Xu, “Resolution of multiple overlap-ping lines in the analysis of molecular spectra,” J. Mol. Spectrosc. 165, 233–248 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

T. Y. Chang, T. J. Bridges, and E. G. Burkhard, “CW submillimeter laser action in optically pumped methyl fluoride, methyl alcohol and vinyl chloride gases,” Appl. Phys. Lett. 17, 249–251 (1970).
[CrossRef]

G. Magerl, J. M. Frye, W. A. Kreiner, and T. Oka, “Inverse Lamp dip spectroscopy using microwave modulation sidebands of CO2 laser lines,” Appl. Phys. Lett. 42, 656–658 (1983).
[CrossRef]

Astrophys. J. Suppl. (1)

T. Anderson, F. C. Delucia, and E. Herbst, “Additional measurements and a refined analysis of the millimeter- and submillimeter-wave spectrum of methanol,” Astrophys. J. Suppl. 72, 797–814 (1990).
[CrossRef]

Chem. Phys. Lett. (1)

J. Sakai and M. Katayama, “Observation of nonlinear molecular hyperfine level crossing in CD3I,” Chem. Phys. Lett. 35, 395–398 (1975).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. K. Cheo, “Frequency synthesized and continuously tunable IR laser sources in 9–11 μm,” IEEE J. Quantum Electron. QE-20, 700–709 (1984).
[CrossRef]

C. Freed, L. C. Bradley, and R. G. O’Donnell, “Absolute frequencies of lasing transitions in seven CO2 isotopic species,” IEEE J. Quantum Electron. QE-16, 1195–1206 (1980).
[CrossRef]

Infrared Phys. (2)

S. Petersen and J. O. Henningsen, “Saturated absorption Stark spectroscopy of CH3OH with CO2 lasers,” Infrared Phys. 26, 55–71 (1986).
[CrossRef]

G. Moruzzi, F. Strumia, P. Carnesecchi, R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Fourier spectrum of CH3OH between 950 and 1100 cm−1,” Infrared Phys. 29, 583–606 (1989).
[CrossRef]

J. Chem. Phys. (2)

R. M. Lees and J. G. Baker, “Torsion-vibration-rotation interactions in methanol. I. Millimeter wave spectrum,” J. Chem. Phys. 48, 5299–5319 (1968).
[CrossRef]

L. H. Xu, A. M. Andrews, and G. T. Fraser, “Study of the overtone C—O stretching band of methanol by multiple resonance spectroscopy,” J. Chem. Phys. 103, 14–19 (1995).
[CrossRef]

J. Mol. Spectrosc. (6)

L. H. Xu and J. T. Hougen, “Global fit of rotational transitions in the ground state of methanol,” J. Mol. Spectrosc. 169, 396–409 (1995), and references therein.
[CrossRef]

G. Moruzzi and L. H. Xu, “Resolution of multiple overlap-ping lines in the analysis of molecular spectra,” J. Mol. Spectrosc. 165, 233–248 (1994).
[CrossRef]

G. Magerl, W. Schupita, J. M. Frye, W. A. Kreiner, and T. Oka, “Sub-Doppler spectroscopy of the v2 band of NH3 using microwave modulation sidebands of CO2 laser lines,” J. Mol. Spectrosc. 107, 72–83 (1984).
[CrossRef]

A. Ainetschian, U. Häring, G. Spiegl, and W. A. Kreiner, “The v2/v4 diad of PH3,” J. Mol. Spectrosc. 181, 99–107 (1996).
[CrossRef]

K. Takagi, M. Kuse, T. Kido, and M. Furuta, “Infrared-radiofrequency double-resonance Stark spectroscopy of CH3OH using a CO2 laser,” J. Mol. Spectrosc. 153, 291–302 (1992).
[CrossRef]

W. Höhe, A. Ainetschian, W. A. Kreiner, and M. Loëte, “Double modulation sideband spectroscopy: μ0, μ24 and μ44 of 28SiH4,” J. Mol. Spectrosc. 153, 316–323 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

F. Matsushima, H. Odashima, D. Wang, S. Tsunekawa, and K. Takagi, “Far-infrared spectroscopy of LiH using a tun-able far infrared spectrometer,” Jpn. J. Appl. Phys. 33, 315–318 (1994).
[CrossRef]

Opt. Commun. (1)

R. M. Lees, I. Mukhopadhyay, and J. W. C. Johns, “Assignment of IR transitions and FIR laser lines from torsionally excited CH3OH,” Opt. Commun. 55, 127–130 (1985).
[CrossRef]

Rev. Mod. Phys. (1)

C. C. Lin and J. D. Swalen, “Internal rotation and microwave spectroscopy,” Rev. Mod. Phys. 31, 841–892 (1959).
[CrossRef]

Other (5)

G. Moruzzi, B. P. Winnewisser, M. Winnewisser, I. Mukhopadhyay, and F. Strumia, Microwave, Infrared and Laser Transitions of Methanol (CRC, Boca Raton, Fla., 1995).

J. O. Henningsen, “Molecular spectroscopy by far infrared laser emission,” Infrared and Millimeter Waves (Academic, New York, 1982), Vol. 5, Part I, pp. 29–128.

H. W. Kroto, Molecular Rotation Spectra (Dover, New York, 1992), Chap. 7, pp. 164–178.

R. M. Lees, Department of Physics, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada (personal communication, 2000).

Y. B. Duan, “Theoretical study of spectra for a molecule with internal rotation,” Ph.D. dissertation (Kanazawa University, Kanazawa, Japan, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup of the sub-Doppler spectrometer with CO2 laser sidebands. B.S.1–B.S.5, beam splitters; L1–L3, ZnSe lenses; M1–M9, mirrors; TWTAmp., traveling-wave tube amplifier; F.P., Fabry–Perot interferometer; PSD, phase-sensitive detector.

Fig. 2
Fig. 2

(a) Fourier-transform (FT) spectrum from 1032.988 to 1033.088 cm-1 (Ref. 5) and (b) the sub-Doppler spectrum obtained by the microwave (15–12-GHz) lower sideband of the 9P(34) CO2 laser line with square-wave Stark-modulation voltage of 40 V (present study). The numbers 1–22 designate assigned lines, and the symbol U designates unidentified lines in the FT spectrum.

Fig. 3
Fig. 3

Stark patterns of the Lamb-dip signal for the transition (0 E 2, 3)1(0 E 2, 2)0 for a lower sideband of the 9P(28) CO2 laser line with a power of ∼2 mW. The methanol pressures are (a) 4, (b) 10, and (c) 20 mTorr. The signals above and below the baselines are zero-field signals and Stark patterns, respectively. The square-wave modulation voltage was 40 V, and the PSD time constant was 1 s.

Fig. 4
Fig. 4

Stark patterns of two Lamb-dip signals (a) and (b) for a blended line at 1033.25934 cm-1 in the FT spectrum.5 The lower sideband of the 9P(34) CO2 laser line was used. The methanol pressure was 8 mTorr; the PSD time constant was 1 s; the Stark-modulation voltage was 5Vpp; and the dc Stark biases were (I) 6 V and (II) 30 V.

Fig. 5
Fig. 5

Inverse Lamb dips a and b of the (0 A4±, 11)1(0 A 4±, 10)0 transitions observed with the upper sideband of the 9P(16) CO2 laser line. The square-wave modulation voltage was 40 V, and the PSD time constant was 1 s. The methanol pressure was 2 mTorr.

Fig. 6
Fig. 6

Energy-level diagrams of methanol for (a) two observed infrared transitions and (b) four observed infrared transitions in the sub-Doppler spectroscopy. The measured wave numbers (cm-1) are νa=1033.927609, νb=1025.858555, νc=1050.771935, νd=1050.772827, νe=1033.028845, and νf=1033.032638. The microwave transition frequencies of νmw, ν1, and ν2 (in MHz), are 241 904.152, 531 892.839, and 531 869.162, respectively.

Fig. 7
Fig. 7

Histogram of the deviations between the observed and predicted frequencies appearing in Table 1.

Fig. 8
Fig. 8

Stark pattern of the (1 E 2, 3)1(1 E 2, 2)0 transition observed with the upper sideband of the 9P(36) CO2 laser line. The Stark-modulation voltage was 5 Vpp, and the dc Stark bias was 45 V. The methanol pressure was 6 mTorr. The inner and outer Stark components are those with |M|=1 and 2, respectively. The M=0 Stark component that was supposed to be at the center of the pattern was not observed because of its small modulation effect. Four weak features between four strong signals are collision-induced center dips.

Fig. 9
Fig. 9

Stark pattern of the (1 E 5, 16)1(1 E 5, 15)0 transition observed with the lower sideband of the 9P(8) CO2 laser line. The Stark-modulation voltage was 30 Vpp, and the dc Stark bias was 800 V. The methanol pressure was 4 mTorr. The outermost components are of |M|=15.

Tables (6)

Tables Icon

Table 1 Observed Infrared Transitions of Methanol

Tables Icon

Table 2 Asymmetry Splittings ΔE(K, J) (in MHz)a for the vCO=1 State of Methanol

Tables Icon

Table 3 Asymmetry-Splitting Constants (in MHz)a for the vCO=1 State of Methanol

Tables Icon

Table 4 Observed Transitions of the (1, E, 2) and (1, E, 5) Sequences of Methanol

Tables Icon

Table 5 Term Values W˜ for the vCO=1 State of Methanol

Tables Icon

Table 6 Taylor-Series Expansion Coefficients (in cm-1)a for the vCO=1 State of Methanol

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔE(vt, K, J)
=(J+K)!(J-K)![S(vt, K)+J(J+1)T(vt, K)],
W˜(J)=m=0am[J(J+1)]m,

Metrics