Abstract

We report what we believe is the first realization of odd dark beams of finite length under controllable initial conditions. We obtain mixed edge–screw phase dislocations by reproducing binary computer-generated holograms. Two effective ways to control the steering of the beams are analyzed experimentally and compared with numerical simulations.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
    [Crossref]
  2. G. Swartzlander and C. Law, “Optical vortex solitons observed in Kerr nonlinear medium,” Phys. Rev. Lett. 69, 2503–2506 (1992).
    [Crossref] [PubMed]
  3. E. A. Ostrovskaya and Yu. S. Kivshar, “Nonlinear theory of soliton-induced waveguides,” Opt. Lett. 23, 1268–1270 (1998).
    [Crossref]
  4. A. H. Carlsson, J. N. Malmberg, E. A. Ostrovskaya, T. J. Alexander, D. Anderson, M. Lisak, and Yu. Kivshar, “Linear and nonlinear waveguides induced by optical vortex solitons,” Opt. Lett. 25, 660–662 (2000).
    [Crossref]
  5. C. T. Law, X. Zhang, and G. A. Swartzlander, “Waveguiding properties of optical vortex solitons,” Opt. Lett. 25, 55–57 (2000).
    [Crossref]
  6. G. Allan, S. Skinner, D. Andersen, and A. Smirl, “Observation of fundamental dark spatial solitons in semiconductors using picosecond pulses,” Opt. Lett. 16, 156–158 (1991).
    [PubMed]
  7. Yu. S. Kivshar and X. Yang, “Ring dark solitons,” Phys. Rev. E 50, R40–R43 (1994);“Dynamics of dark solitons,” Chaos, Solitons Fractals 4, 1745–1758 (1994).
    [Crossref]
  8. D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fliesser, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
    [Crossref]
  9. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
    [Crossref]
  10. V. Bazhenov, M. Soskin, and M. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992);I. Basistiy, V. Bazhenov, M. Soskin, and M. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
    [Crossref]
  11. A. Dreischuh, G. G. Paulus, and F. Zacher, “Quasi-2D dark spatial solitons and generation of mixed phase dislocations,” Appl. Phys. B 69, 107–111 (1999).
    [Crossref]
  12. A. Dreischuh, G. G. Paulus, F. Zacher, and I. Velchev, “Steering one-dimensional odd dark beams of finite length,” Appl. Phys. B 69, 113–117 (1999).
    [Crossref]
  13. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
    [Crossref] [PubMed]
  14. W.-H. Lee, “Computer-generated holograms: techniques and applications,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1978), Vol. XVI, pp. 119–229.
  15. A. E. Kaplan, “Bending of trajectories of asymmetrical light beams in nonlinear media,” JETP Lett. 9, 33–36 (1969).
  16. M. S. Brodin and A. M. Kamuz, “Observation of self-bending of a non-uniform intense laser beam in an NaCl crystal,” JETP Lett. 9, 351–353 (1969).
  17. V. Tikhonenko, J. Christou, B. Luther-Davies, and Yu. S. Kivshar, “Observation of vortex solitons created by the instability of dark soliton stripes,” Opt. Lett. 21, 1129–1131 (1996).
    [Crossref] [PubMed]
  18. A. Dreischuh, G. G. Paulus, F. Zacher, F. Grasbon, and H. Walther, “Generation of multiple-charged optical vortex solitons in a saturable nonlinear medium,” Phys. Rev. E 60, 6111–6117 (1999).
    [Crossref]
  19. K. Staliunas, “Vortices and dark solitons in two-dimensional nonlinear Schrödinger equation,” Chaos, Solitons Fractals 4, 1783–1796 (1994).
    [Crossref]
  20. D. Neshev, A. Dreischuh, M. Assa, and S. Dinev, “Motion control of ensembles of ordered optical vortices generated on finite-extent background,” Opt. Commun. 151, 413–421 (1998).
    [Crossref]
  21. A. Dreischuh, V. Kamenov, and S. Dinev, “Parallel guiding of signal beams by a ring dark soliton,” Appl. Phys. B 63, 145–150 (1996).
    [Crossref]
  22. D. Neshev, A. Dreischuh, S. Dinev, and L. Windholz, “Controllable branching of optical beams by quasi-2D dark spatial solitons,” J. Opt. Soc. Am. B 14, 2869–2876 (1997).
    [Crossref]
  23. R. Thurston and A. Weiner, “Collisions of dark solitons in optical fibers,” J. Opt. Soc. Am. B 8, 471–477 (1991).
    [Crossref]
  24. A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Propagation of dark stripe beams in nonlinear media: snake instability and creation of optical vortices,” Phys. Rev. Lett. 76, 2262–2265 (1996).
    [Crossref] [PubMed]
  25. D. Neshev, A. Dreischuh, G. G. Paulus, and H. Walther, “Directional coupling of optical signals by odd dark beams with mixed phase dislocations,” http://xxx.lanl.gov/abs/nlin.PS/0007026 (2000).
  26. W. Krolikowski, N. Akhmediev, and B. Luther-Davies, “Darker-than-black solitons: dark solitons with total phase shift greater than π,” Phys. Rev. E 48, 3980–3987 (1993).
    [Crossref]
  27. V. Tikhonenko, Yu. S. Kivshar, V. Steblina, and A. Zozulya, “Vortex solitons in a saturable optical medium,” J. Opt. Soc. Am. B 15, 79–86 (1998).
    [Crossref]

2000 (2)

1999 (3)

A. Dreischuh, G. G. Paulus, and F. Zacher, “Quasi-2D dark spatial solitons and generation of mixed phase dislocations,” Appl. Phys. B 69, 107–111 (1999).
[Crossref]

A. Dreischuh, G. G. Paulus, F. Zacher, and I. Velchev, “Steering one-dimensional odd dark beams of finite length,” Appl. Phys. B 69, 113–117 (1999).
[Crossref]

A. Dreischuh, G. G. Paulus, F. Zacher, F. Grasbon, and H. Walther, “Generation of multiple-charged optical vortex solitons in a saturable nonlinear medium,” Phys. Rev. E 60, 6111–6117 (1999).
[Crossref]

1998 (4)

Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
[Crossref]

E. A. Ostrovskaya and Yu. S. Kivshar, “Nonlinear theory of soliton-induced waveguides,” Opt. Lett. 23, 1268–1270 (1998).
[Crossref]

D. Neshev, A. Dreischuh, M. Assa, and S. Dinev, “Motion control of ensembles of ordered optical vortices generated on finite-extent background,” Opt. Commun. 151, 413–421 (1998).
[Crossref]

V. Tikhonenko, Yu. S. Kivshar, V. Steblina, and A. Zozulya, “Vortex solitons in a saturable optical medium,” J. Opt. Soc. Am. B 15, 79–86 (1998).
[Crossref]

1997 (2)

D. Neshev, A. Dreischuh, S. Dinev, and L. Windholz, “Controllable branching of optical beams by quasi-2D dark spatial solitons,” J. Opt. Soc. Am. B 14, 2869–2876 (1997).
[Crossref]

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fliesser, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[Crossref]

1996 (3)

V. Tikhonenko, J. Christou, B. Luther-Davies, and Yu. S. Kivshar, “Observation of vortex solitons created by the instability of dark soliton stripes,” Opt. Lett. 21, 1129–1131 (1996).
[Crossref] [PubMed]

A. Dreischuh, V. Kamenov, and S. Dinev, “Parallel guiding of signal beams by a ring dark soliton,” Appl. Phys. B 63, 145–150 (1996).
[Crossref]

A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Propagation of dark stripe beams in nonlinear media: snake instability and creation of optical vortices,” Phys. Rev. Lett. 76, 2262–2265 (1996).
[Crossref] [PubMed]

1994 (2)

K. Staliunas, “Vortices and dark solitons in two-dimensional nonlinear Schrödinger equation,” Chaos, Solitons Fractals 4, 1783–1796 (1994).
[Crossref]

Yu. S. Kivshar and X. Yang, “Ring dark solitons,” Phys. Rev. E 50, R40–R43 (1994);“Dynamics of dark solitons,” Chaos, Solitons Fractals 4, 1745–1758 (1994).
[Crossref]

1993 (1)

W. Krolikowski, N. Akhmediev, and B. Luther-Davies, “Darker-than-black solitons: dark solitons with total phase shift greater than π,” Phys. Rev. E 48, 3980–3987 (1993).
[Crossref]

1992 (3)

G. Swartzlander and C. Law, “Optical vortex solitons observed in Kerr nonlinear medium,” Phys. Rev. Lett. 69, 2503–2506 (1992).
[Crossref] [PubMed]

V. Bazhenov, M. Soskin, and M. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992);I. Basistiy, V. Bazhenov, M. Soskin, and M. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[Crossref]

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
[Crossref] [PubMed]

1991 (2)

1974 (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[Crossref]

1969 (2)

A. E. Kaplan, “Bending of trajectories of asymmetrical light beams in nonlinear media,” JETP Lett. 9, 33–36 (1969).

M. S. Brodin and A. M. Kamuz, “Observation of self-bending of a non-uniform intense laser beam in an NaCl crystal,” JETP Lett. 9, 351–353 (1969).

Akhmediev, N.

W. Krolikowski, N. Akhmediev, and B. Luther-Davies, “Darker-than-black solitons: dark solitons with total phase shift greater than π,” Phys. Rev. E 48, 3980–3987 (1993).
[Crossref]

Alexander, T. J.

Allan, G.

Andersen, D.

Anderson, D.

Assa, M.

D. Neshev, A. Dreischuh, M. Assa, and S. Dinev, “Motion control of ensembles of ordered optical vortices generated on finite-extent background,” Opt. Commun. 151, 413–421 (1998).
[Crossref]

Bazhenov, V.

V. Bazhenov, M. Soskin, and M. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992);I. Basistiy, V. Bazhenov, M. Soskin, and M. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[Crossref]

Berry, M. V.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[Crossref]

Brodin, M. S.

M. S. Brodin and A. M. Kamuz, “Observation of self-bending of a non-uniform intense laser beam in an NaCl crystal,” JETP Lett. 9, 351–353 (1969).

Carlsson, A. H.

Christou, J.

Dinev, S.

D. Neshev, A. Dreischuh, M. Assa, and S. Dinev, “Motion control of ensembles of ordered optical vortices generated on finite-extent background,” Opt. Commun. 151, 413–421 (1998).
[Crossref]

D. Neshev, A. Dreischuh, S. Dinev, and L. Windholz, “Controllable branching of optical beams by quasi-2D dark spatial solitons,” J. Opt. Soc. Am. B 14, 2869–2876 (1997).
[Crossref]

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fliesser, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[Crossref]

A. Dreischuh, V. Kamenov, and S. Dinev, “Parallel guiding of signal beams by a ring dark soliton,” Appl. Phys. B 63, 145–150 (1996).
[Crossref]

Dreischuh, A.

A. Dreischuh, G. G. Paulus, F. Zacher, F. Grasbon, and H. Walther, “Generation of multiple-charged optical vortex solitons in a saturable nonlinear medium,” Phys. Rev. E 60, 6111–6117 (1999).
[Crossref]

A. Dreischuh, G. G. Paulus, F. Zacher, and I. Velchev, “Steering one-dimensional odd dark beams of finite length,” Appl. Phys. B 69, 113–117 (1999).
[Crossref]

A. Dreischuh, G. G. Paulus, and F. Zacher, “Quasi-2D dark spatial solitons and generation of mixed phase dislocations,” Appl. Phys. B 69, 107–111 (1999).
[Crossref]

D. Neshev, A. Dreischuh, M. Assa, and S. Dinev, “Motion control of ensembles of ordered optical vortices generated on finite-extent background,” Opt. Commun. 151, 413–421 (1998).
[Crossref]

D. Neshev, A. Dreischuh, S. Dinev, and L. Windholz, “Controllable branching of optical beams by quasi-2D dark spatial solitons,” J. Opt. Soc. Am. B 14, 2869–2876 (1997).
[Crossref]

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fliesser, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[Crossref]

A. Dreischuh, V. Kamenov, and S. Dinev, “Parallel guiding of signal beams by a ring dark soliton,” Appl. Phys. B 63, 145–150 (1996).
[Crossref]

Fliesser, W.

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fliesser, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[Crossref]

Grasbon, F.

A. Dreischuh, G. G. Paulus, F. Zacher, F. Grasbon, and H. Walther, “Generation of multiple-charged optical vortex solitons in a saturable nonlinear medium,” Phys. Rev. E 60, 6111–6117 (1999).
[Crossref]

Heckenberg, N. R.

Kamenov, V.

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fliesser, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[Crossref]

A. Dreischuh, V. Kamenov, and S. Dinev, “Parallel guiding of signal beams by a ring dark soliton,” Appl. Phys. B 63, 145–150 (1996).
[Crossref]

Kamuz, A. M.

M. S. Brodin and A. M. Kamuz, “Observation of self-bending of a non-uniform intense laser beam in an NaCl crystal,” JETP Lett. 9, 351–353 (1969).

Kaplan, A. E.

A. E. Kaplan, “Bending of trajectories of asymmetrical light beams in nonlinear media,” JETP Lett. 9, 33–36 (1969).

Kivshar, Yu.

Kivshar, Yu. S.

Krolikowski, W.

W. Krolikowski, N. Akhmediev, and B. Luther-Davies, “Darker-than-black solitons: dark solitons with total phase shift greater than π,” Phys. Rev. E 48, 3980–3987 (1993).
[Crossref]

Law, C.

G. Swartzlander and C. Law, “Optical vortex solitons observed in Kerr nonlinear medium,” Phys. Rev. Lett. 69, 2503–2506 (1992).
[Crossref] [PubMed]

Law, C. T.

Lee, W.-H.

W.-H. Lee, “Computer-generated holograms: techniques and applications,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1978), Vol. XVI, pp. 119–229.

Lisak, M.

Luther-Davies, B.

Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
[Crossref]

V. Tikhonenko, J. Christou, B. Luther-Davies, and Yu. S. Kivshar, “Observation of vortex solitons created by the instability of dark soliton stripes,” Opt. Lett. 21, 1129–1131 (1996).
[Crossref] [PubMed]

W. Krolikowski, N. Akhmediev, and B. Luther-Davies, “Darker-than-black solitons: dark solitons with total phase shift greater than π,” Phys. Rev. E 48, 3980–3987 (1993).
[Crossref]

Malmberg, J. N.

Mamaev, A. V.

A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Propagation of dark stripe beams in nonlinear media: snake instability and creation of optical vortices,” Phys. Rev. Lett. 76, 2262–2265 (1996).
[Crossref] [PubMed]

McDuff, R.

Neshev, D.

D. Neshev, A. Dreischuh, M. Assa, and S. Dinev, “Motion control of ensembles of ordered optical vortices generated on finite-extent background,” Opt. Commun. 151, 413–421 (1998).
[Crossref]

D. Neshev, A. Dreischuh, S. Dinev, and L. Windholz, “Controllable branching of optical beams by quasi-2D dark spatial solitons,” J. Opt. Soc. Am. B 14, 2869–2876 (1997).
[Crossref]

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fliesser, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[Crossref]

Nye, J. F.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[Crossref]

Ostrovskaya, E. A.

Paulus, G. G.

A. Dreischuh, G. G. Paulus, and F. Zacher, “Quasi-2D dark spatial solitons and generation of mixed phase dislocations,” Appl. Phys. B 69, 107–111 (1999).
[Crossref]

A. Dreischuh, G. G. Paulus, F. Zacher, and I. Velchev, “Steering one-dimensional odd dark beams of finite length,” Appl. Phys. B 69, 113–117 (1999).
[Crossref]

A. Dreischuh, G. G. Paulus, F. Zacher, F. Grasbon, and H. Walther, “Generation of multiple-charged optical vortex solitons in a saturable nonlinear medium,” Phys. Rev. E 60, 6111–6117 (1999).
[Crossref]

Saffman, M.

A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Propagation of dark stripe beams in nonlinear media: snake instability and creation of optical vortices,” Phys. Rev. Lett. 76, 2262–2265 (1996).
[Crossref] [PubMed]

Skinner, S.

Smirl, A.

Smith, C. P.

Soskin, M.

V. Bazhenov, M. Soskin, and M. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992);I. Basistiy, V. Bazhenov, M. Soskin, and M. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[Crossref]

Staliunas, K.

K. Staliunas, “Vortices and dark solitons in two-dimensional nonlinear Schrödinger equation,” Chaos, Solitons Fractals 4, 1783–1796 (1994).
[Crossref]

Steblina, V.

Stefanov, I.

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fliesser, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[Crossref]

Swartzlander, G.

G. Swartzlander and C. Law, “Optical vortex solitons observed in Kerr nonlinear medium,” Phys. Rev. Lett. 69, 2503–2506 (1992).
[Crossref] [PubMed]

Swartzlander, G. A.

Thurston, R.

Tikhonenko, V.

Vasnetsov, M.

V. Bazhenov, M. Soskin, and M. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992);I. Basistiy, V. Bazhenov, M. Soskin, and M. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[Crossref]

Velchev, I.

A. Dreischuh, G. G. Paulus, F. Zacher, and I. Velchev, “Steering one-dimensional odd dark beams of finite length,” Appl. Phys. B 69, 113–117 (1999).
[Crossref]

Walther, H.

A. Dreischuh, G. G. Paulus, F. Zacher, F. Grasbon, and H. Walther, “Generation of multiple-charged optical vortex solitons in a saturable nonlinear medium,” Phys. Rev. E 60, 6111–6117 (1999).
[Crossref]

Weiner, A.

White, A. G.

Windholz, L.

D. Neshev, A. Dreischuh, S. Dinev, and L. Windholz, “Controllable branching of optical beams by quasi-2D dark spatial solitons,” J. Opt. Soc. Am. B 14, 2869–2876 (1997).
[Crossref]

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fliesser, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[Crossref]

Yang, X.

Yu. S. Kivshar and X. Yang, “Ring dark solitons,” Phys. Rev. E 50, R40–R43 (1994);“Dynamics of dark solitons,” Chaos, Solitons Fractals 4, 1745–1758 (1994).
[Crossref]

Zacher, F.

A. Dreischuh, G. G. Paulus, F. Zacher, and I. Velchev, “Steering one-dimensional odd dark beams of finite length,” Appl. Phys. B 69, 113–117 (1999).
[Crossref]

A. Dreischuh, G. G. Paulus, and F. Zacher, “Quasi-2D dark spatial solitons and generation of mixed phase dislocations,” Appl. Phys. B 69, 107–111 (1999).
[Crossref]

A. Dreischuh, G. G. Paulus, F. Zacher, F. Grasbon, and H. Walther, “Generation of multiple-charged optical vortex solitons in a saturable nonlinear medium,” Phys. Rev. E 60, 6111–6117 (1999).
[Crossref]

Zhang, X.

Zozulya, A.

Zozulya, A. A.

A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Propagation of dark stripe beams in nonlinear media: snake instability and creation of optical vortices,” Phys. Rev. Lett. 76, 2262–2265 (1996).
[Crossref] [PubMed]

Appl. Phys. B (4)

D. Neshev, A. Dreischuh, V. Kamenov, I. Stefanov, S. Dinev, W. Fliesser, and L. Windholz, “Generation and intrinsic dynamics of ring dark solitary waves,” Appl. Phys. B 64, 429–433 (1997).
[Crossref]

A. Dreischuh, G. G. Paulus, and F. Zacher, “Quasi-2D dark spatial solitons and generation of mixed phase dislocations,” Appl. Phys. B 69, 107–111 (1999).
[Crossref]

A. Dreischuh, G. G. Paulus, F. Zacher, and I. Velchev, “Steering one-dimensional odd dark beams of finite length,” Appl. Phys. B 69, 113–117 (1999).
[Crossref]

A. Dreischuh, V. Kamenov, and S. Dinev, “Parallel guiding of signal beams by a ring dark soliton,” Appl. Phys. B 63, 145–150 (1996).
[Crossref]

Chaos, Solitons Fractals (1)

K. Staliunas, “Vortices and dark solitons in two-dimensional nonlinear Schrödinger equation,” Chaos, Solitons Fractals 4, 1783–1796 (1994).
[Crossref]

J. Mod. Opt. (1)

V. Bazhenov, M. Soskin, and M. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992);I. Basistiy, V. Bazhenov, M. Soskin, and M. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[Crossref]

J. Opt. Soc. Am. B (3)

JETP Lett. (2)

A. E. Kaplan, “Bending of trajectories of asymmetrical light beams in nonlinear media,” JETP Lett. 9, 33–36 (1969).

M. S. Brodin and A. M. Kamuz, “Observation of self-bending of a non-uniform intense laser beam in an NaCl crystal,” JETP Lett. 9, 351–353 (1969).

Opt. Commun. (1)

D. Neshev, A. Dreischuh, M. Assa, and S. Dinev, “Motion control of ensembles of ordered optical vortices generated on finite-extent background,” Opt. Commun. 151, 413–421 (1998).
[Crossref]

Opt. Lett. (6)

Phys. Rep. (1)

Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81–197 (1998).
[Crossref]

Phys. Rev. E (3)

Yu. S. Kivshar and X. Yang, “Ring dark solitons,” Phys. Rev. E 50, R40–R43 (1994);“Dynamics of dark solitons,” Chaos, Solitons Fractals 4, 1745–1758 (1994).
[Crossref]

A. Dreischuh, G. G. Paulus, F. Zacher, F. Grasbon, and H. Walther, “Generation of multiple-charged optical vortex solitons in a saturable nonlinear medium,” Phys. Rev. E 60, 6111–6117 (1999).
[Crossref]

W. Krolikowski, N. Akhmediev, and B. Luther-Davies, “Darker-than-black solitons: dark solitons with total phase shift greater than π,” Phys. Rev. E 48, 3980–3987 (1993).
[Crossref]

Phys. Rev. Lett. (2)

A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Propagation of dark stripe beams in nonlinear media: snake instability and creation of optical vortices,” Phys. Rev. Lett. 76, 2262–2265 (1996).
[Crossref] [PubMed]

G. Swartzlander and C. Law, “Optical vortex solitons observed in Kerr nonlinear medium,” Phys. Rev. Lett. 69, 2503–2506 (1992).
[Crossref] [PubMed]

Proc. R. Soc. London, Ser. A (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[Crossref]

Other (2)

W.-H. Lee, “Computer-generated holograms: techniques and applications,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1978), Vol. XVI, pp. 119–229.

D. Neshev, A. Dreischuh, G. G. Paulus, and H. Walther, “Directional coupling of optical signals by odd dark beams with mixed phase dislocations,” http://xxx.lanl.gov/abs/nlin.PS/0007026 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Phase distribution and (b), interference pattern corresponding to a mixed edge–screw phase dislocation.

Fig. 2
Fig. 2

(a) Deflection of odd dark beams of finite length versus dislocation length at input powers of 1.7 mW (filled circles), 33 mW (filled triangles), and 67 mW (open squares) for z=8.5 cm and Δφ=π. Selected experimental frames are shown in (b), 33 mW and (c), 67 mW. From left to right, the frames correspond to b=1, 14, 22 pixels. Upper solid lines, calculated position of the ODB at the entrance of the NLM for b=25 pixels.

Fig. 3
Fig. 3

Deflection Δx versus nonlinear propagation path length z for encoded dislocation lengths of 10 and 22 pixels. Dashed and solid curves, the respective linear fits. P=33 mW, Δφ=π.

Fig. 4
Fig. 4

ODB deflection versus magnitude of phase jump Δφ (open squares) and dislocation length as encoded in the CGH’s (filled circles). Solid curves are linear fits. P=33 mW.

Fig. 5
Fig. 5

Edge dislocation length versus input background beam power for two dislocation lengths encoded in the CGH’s. Δφ=π, z=8.5 cm.

Fig. 6
Fig. 6

ODB a, width and b, length (at the 1/e level) versus input background-beam power for two different dislocation lengths encoded in the CGH’s. z=8.5 cm.

Fig. 7
Fig. 7

Calculated ODB steering versus b/a for several input powers (Δφ=π).

Fig. 8
Fig. 8

ODB steering along the NLM for b/a=1.0, 2.2. Crosses, 10% of the numerical data. Vertical dashed line, propagation distance z/LNL=4, corresponding to the experimental conditions at 33 mW.

Fig. 9
Fig. 9

Deflection of ODB’s versus phase jump Δφ for b/a=2.2 and for several input powers.

Fig. 10
Fig. 10

a, ODB width and b, length of the edge portion of the mixed phase dislocation versus input power for Δφ|z=0=π and b/a=1.4. (FW1/e, full width at the 1/e-intensity level.)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Φα,β(x, y)=Δφ-βπ arctanαxy+bβ+(1-α)2 sgn(x),
α=0|y|b1, β=-1 y>b1, β=1 y-b.
Δn=n2|E|2/(1+s|E|2)γ
iEζ+122ξ2+2η2E-LDiffLNL|E|2(1+s|E|2)γE=0,
E(x, y)=I0B[r1,0(x, y)]tanhrα,β(x, y)a×exp[iΦα,β(x, y)],
B(r)=exp-x2+y2w21/214

Metrics