Abstract

The photodegradation of a variety of donor–acceptor-substituted azobenzene nonlinear optical chromophores has been studied. The variables examined that influence the rate of degradation include chromophore and host polymer structure, irradiation wavelength, temperature, and atmosphere.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
    [CrossRef]
  2. Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71, 1543–1545 (1992).
    [CrossRef]
  3. R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
    [CrossRef]
  4. X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, V. Shivshankar, and S. K. Tripathy, “Polarization dependent recordings of surface relief gratings on azobenzene containing polymer films,” Appl. Phys. Lett. 68, 2618–2620 (1995).
    [CrossRef]
  5. F. Charra, F. Devaux, J.-M. Nunzi, and P. Raimond, “Picosecond light-induced noncentrosymmetry in a dye solution,” Phys. Rev. Lett. 68, 2440–2443 (1992).
    [CrossRef] [PubMed]
  6. J. Si, T. Mitsuyu, P. Ye, Y. Shen, and K. Hirao, “Optical poling and its application in optical storage of a polymide film with a high glass transition temperature,” Appl. Phys. Lett. 72, 762–764 (1998).
    [CrossRef]
  7. Y. Shi, W. Wang, W. Lin, D. J. Olson, and J. H. Bechtel, “Double-end crosslinked electro-optic polymer modulators with high optical power handling capability,” Appl. Phys. Lett. 70, 1342–1344 (1997).
    [CrossRef]
  8. Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
    [CrossRef]
  9. A. Zwieg and W. A. Henderson, Jr., “Singlet oxygen and polymer photooxidations. I. Sensitizers, quenchers and reactants,” J. Polym. Sci. 13, 717–736 (1975).
  10. A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, S. Marder, S. Thayumanavan, R. Twieg, T. C. Kowalczyk, X. Q. Zhang, and H. S. Lackritz, “Systematics of electro-optic chromophore photostability,” Opt. Lett. 25, 332–334 (2000).
    [CrossRef]
  11. A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, R. Twieg, T. C. Kowalczyk, and H. S. Lackritz, “Effect of temperature and atmospheric environment on the photodegradation of some Disperse Red 1-type polymers,” Opt. Lett. 24, 1741–1744 (1999).
    [CrossRef]
  12. J. Ma, S. Lin, W. Feng, R. J. Feuerstein, B. Hooker, and A. R. Mickelson, “Modeling photobleached optical polymer waveguides,” Appl. Opt. 34, 5352–5360 (1995).
    [CrossRef] [PubMed]
  13. A. Chen, F. I. Mart-Carrera, V. Chuyanov, S. Garner, W. H. Steier, S. S. Mao, Y. Ra, L. R. Dalton, and Y. Shi, “In situ trimming of polymer waveguides by rapid photobleaching for tuning device specifications,” in Organic Thin Films for Photonics Applications, Vol. 14 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 211–213.
  14. Q. Zhang, M. Canva, and G. I. Stegeman, “Wavelength dependence of the photodegradation of a DANS polymer thin film,” Appl. Phys. Lett. 73, 912–914 (1998).
    [CrossRef]
  15. A. Galvan-Gonzalez, M. Canva, and G. I. Stegeman, “Local and external factors affecting the photodegradation of DANS polymer films,” Appl. Phys. Lett. 75, 3306–3308 (1999).
    [CrossRef]
  16. I. Liakatas, C. Cai, M. Bosch, M. Jager, Ch. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368–1370 (2000).
    [CrossRef]
  17. R. J. Twieg, K. M. Betterton, D. M. Burland, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers for practical electro-optic waveguide applications,” in Nonlinear Optical Properties of Organic Materials V, G. R. Moehlmann, ed., Proc. Proc. SPIE 2025, 94–105 (1993).
    [CrossRef]
  18. R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
    [CrossRef]
  19. R. J. Twieg, D. M. Burland, J. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, C. M. Seymour, W. Volksen, and C. A. Walsh, “Nonlinear optical chromophores and polymers for practical electro-optic waveguide application,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. W. Perry, eds., Proc. SPIE 2143, 2–13 (1994).
    [CrossRef]
  20. R. J. Twieg, D. M. Burland, M. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, R. Siemens, A. Skumanich, J. I. Thackera, T. Berveist, and W. Volksen, “Stability and performance issues for nonlinear optical chromophores, polymers and devices,” Mater. Res. Soc. Symp. Proc. 392, 15–26 (1995).
    [CrossRef]
  21. A. Dubois, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Photostability of dye molecules trapped in solid matrices,” Appl. Opt. 35, 3193–3139 (1996).
    [CrossRef] [PubMed]
  22. A. Otomo, M. Jäger, G. Stegeman, M. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
    [CrossRef]
  23. A.-C. Le Duff, V. Ricci, T. Pliska, M. Canva, G. I. Stegeman, K. P. Chan, and R. Twieg, “The importance of chromophore environment on the near infrared absorption of polymeric waveguides,” Appl. Opt. 39, 947–953 (2000).
    [CrossRef]
  24. N. Dam, R. D. Scurlock, B. Wang, L. Ma, M. Sundahl, and P. R. Ogilby, “Singlet oxygen as a reactive intermediate in the photodegradation of phenylenevinylene oligomers,” Chem. Mater. 11, 1302–1305 (1999).
    [CrossRef]
  25. C. E. Barnes, “Mechanism of vinyl polymerization. I. Role of oxygen,” J. Am. Chem. Soc. 67, 217–220 (1945).
    [CrossRef]
  26. N. S. Allen, “Photofading and light stability of dyed and pigmented polymers,” Polym. Deg. Stab. 44, 357–374 (1994).
    [CrossRef]

2000 (3)

1999 (3)

N. Dam, R. D. Scurlock, B. Wang, L. Ma, M. Sundahl, and P. R. Ogilby, “Singlet oxygen as a reactive intermediate in the photodegradation of phenylenevinylene oligomers,” Chem. Mater. 11, 1302–1305 (1999).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, R. Twieg, T. C. Kowalczyk, and H. S. Lackritz, “Effect of temperature and atmospheric environment on the photodegradation of some Disperse Red 1-type polymers,” Opt. Lett. 24, 1741–1744 (1999).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, and G. I. Stegeman, “Local and external factors affecting the photodegradation of DANS polymer films,” Appl. Phys. Lett. 75, 3306–3308 (1999).
[CrossRef]

1998 (2)

Q. Zhang, M. Canva, and G. I. Stegeman, “Wavelength dependence of the photodegradation of a DANS polymer thin film,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

J. Si, T. Mitsuyu, P. Ye, Y. Shen, and K. Hirao, “Optical poling and its application in optical storage of a polymide film with a high glass transition temperature,” Appl. Phys. Lett. 72, 762–764 (1998).
[CrossRef]

1997 (2)

Y. Shi, W. Wang, W. Lin, D. J. Olson, and J. H. Bechtel, “Double-end crosslinked electro-optic polymer modulators with high optical power handling capability,” Appl. Phys. Lett. 70, 1342–1344 (1997).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

1996 (3)

Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
[CrossRef]

A. Dubois, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Photostability of dye molecules trapped in solid matrices,” Appl. Opt. 35, 3193–3139 (1996).
[CrossRef] [PubMed]

A. Otomo, M. Jäger, G. Stegeman, M. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

1995 (4)

R. J. Twieg, D. M. Burland, M. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, R. Siemens, A. Skumanich, J. I. Thackera, T. Berveist, and W. Volksen, “Stability and performance issues for nonlinear optical chromophores, polymers and devices,” Mater. Res. Soc. Symp. Proc. 392, 15–26 (1995).
[CrossRef]

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, V. Shivshankar, and S. K. Tripathy, “Polarization dependent recordings of surface relief gratings on azobenzene containing polymer films,” Appl. Phys. Lett. 68, 2618–2620 (1995).
[CrossRef]

J. Ma, S. Lin, W. Feng, R. J. Feuerstein, B. Hooker, and A. R. Mickelson, “Modeling photobleached optical polymer waveguides,” Appl. Opt. 34, 5352–5360 (1995).
[CrossRef] [PubMed]

1994 (3)

R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

R. J. Twieg, D. M. Burland, J. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, C. M. Seymour, W. Volksen, and C. A. Walsh, “Nonlinear optical chromophores and polymers for practical electro-optic waveguide application,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. W. Perry, eds., Proc. SPIE 2143, 2–13 (1994).
[CrossRef]

N. S. Allen, “Photofading and light stability of dyed and pigmented polymers,” Polym. Deg. Stab. 44, 357–374 (1994).
[CrossRef]

1993 (1)

R. J. Twieg, K. M. Betterton, D. M. Burland, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers for practical electro-optic waveguide applications,” in Nonlinear Optical Properties of Organic Materials V, G. R. Moehlmann, ed., Proc. Proc. SPIE 2025, 94–105 (1993).
[CrossRef]

1992 (2)

F. Charra, F. Devaux, J.-M. Nunzi, and P. Raimond, “Picosecond light-induced noncentrosymmetry in a dye solution,” Phys. Rev. Lett. 68, 2440–2443 (1992).
[CrossRef] [PubMed]

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71, 1543–1545 (1992).
[CrossRef]

1975 (1)

A. Zwieg and W. A. Henderson, Jr., “Singlet oxygen and polymer photooxidations. I. Sensitizers, quenchers and reactants,” J. Polym. Sci. 13, 717–736 (1975).

1945 (1)

C. E. Barnes, “Mechanism of vinyl polymerization. I. Role of oxygen,” J. Am. Chem. Soc. 67, 217–220 (1945).
[CrossRef]

Allen, N. S.

N. S. Allen, “Photofading and light stability of dyed and pigmented polymers,” Polym. Deg. Stab. 44, 357–374 (1994).
[CrossRef]

Barnes, C. E.

C. E. Barnes, “Mechanism of vinyl polymerization. I. Role of oxygen,” J. Am. Chem. Soc. 67, 217–220 (1945).
[CrossRef]

Bechtel, J. H.

Y. Shi, W. Wang, W. Lin, D. J. Olson, and J. H. Bechtel, “Double-end crosslinked electro-optic polymer modulators with high optical power handling capability,” Appl. Phys. Lett. 70, 1342–1344 (1997).
[CrossRef]

Berveist, T.

R. J. Twieg, D. M. Burland, M. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, R. Siemens, A. Skumanich, J. I. Thackera, T. Berveist, and W. Volksen, “Stability and performance issues for nonlinear optical chromophores, polymers and devices,” Mater. Res. Soc. Symp. Proc. 392, 15–26 (1995).
[CrossRef]

Betterton, K. M.

R. J. Twieg, K. M. Betterton, D. M. Burland, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers for practical electro-optic waveguide applications,” in Nonlinear Optical Properties of Organic Materials V, G. R. Moehlmann, ed., Proc. Proc. SPIE 2025, 94–105 (1993).
[CrossRef]

Boilot, J.-P.

Bosch, M.

I. Liakatas, C. Cai, M. Bosch, M. Jager, Ch. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368–1370 (2000).
[CrossRef]

Bosshard, Ch.

I. Liakatas, C. Cai, M. Bosch, M. Jager, Ch. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368–1370 (2000).
[CrossRef]

Brun, A.

Burland, D. M.

R. J. Twieg, D. M. Burland, M. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, R. Siemens, A. Skumanich, J. I. Thackera, T. Berveist, and W. Volksen, “Stability and performance issues for nonlinear optical chromophores, polymers and devices,” Mater. Res. Soc. Symp. Proc. 392, 15–26 (1995).
[CrossRef]

R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

R. J. Twieg, D. M. Burland, J. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, C. M. Seymour, W. Volksen, and C. A. Walsh, “Nonlinear optical chromophores and polymers for practical electro-optic waveguide application,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. W. Perry, eds., Proc. SPIE 2143, 2–13 (1994).
[CrossRef]

R. J. Twieg, K. M. Betterton, D. M. Burland, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers for practical electro-optic waveguide applications,” in Nonlinear Optical Properties of Organic Materials V, G. R. Moehlmann, ed., Proc. Proc. SPIE 2025, 94–105 (1993).
[CrossRef]

Cai, C.

I. Liakatas, C. Cai, M. Bosch, M. Jager, Ch. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368–1370 (2000).
[CrossRef]

Canva, M.

Chan, K. P.

Chaput, F.

Charra, F.

F. Charra, F. Devaux, J.-M. Nunzi, and P. Raimond, “Picosecond light-induced noncentrosymmetry in a dye solution,” Phys. Rev. Lett. 68, 2440–2443 (1992).
[CrossRef] [PubMed]

Chen, A.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Chen, D.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Dalton, L. R.

I. Liakatas, C. Cai, M. Bosch, M. Jager, Ch. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368–1370 (2000).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Dam, N.

N. Dam, R. D. Scurlock, B. Wang, L. Ma, M. Sundahl, and P. R. Ogilby, “Singlet oxygen as a reactive intermediate in the photodegradation of phenylenevinylene oligomers,” Chem. Mater. 11, 1302–1305 (1999).
[CrossRef]

Delaire, J.

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71, 1543–1545 (1992).
[CrossRef]

Devaux, F.

F. Charra, F. Devaux, J.-M. Nunzi, and P. Raimond, “Picosecond light-induced noncentrosymmetry in a dye solution,” Phys. Rev. Lett. 68, 2440–2443 (1992).
[CrossRef] [PubMed]

Diemeer, M.

A. Otomo, M. Jäger, G. Stegeman, M. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

Dreher, S.

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

Dubois, A.

Dumont, M.

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71, 1543–1545 (1992).
[CrossRef]

Dyer, D. J.

Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
[CrossRef]

Feng, W.

Fetterman, H. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Feuerstein, R. J.

Flipse, M.

A. Otomo, M. Jäger, G. Stegeman, M. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

Galvan-Gonzalez, A.

Gunter, P.

I. Liakatas, C. Cai, M. Bosch, M. Jager, Ch. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368–1370 (2000).
[CrossRef]

Hedrick, J.

R. J. Twieg, D. M. Burland, J. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, C. M. Seymour, W. Volksen, and C. A. Walsh, “Nonlinear optical chromophores and polymers for practical electro-optic waveguide application,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. W. Perry, eds., Proc. SPIE 2143, 2–13 (1994).
[CrossRef]

Hedrick, J. L.

R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

Henderson Jr., W. A.

A. Zwieg and W. A. Henderson, Jr., “Singlet oxygen and polymer photooxidations. I. Sensitizers, quenchers and reactants,” J. Polym. Sci. 13, 717–736 (1975).

Hill, R. A.

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

Hirao, K.

J. Si, T. Mitsuyu, P. Ye, Y. Shen, and K. Hirao, “Optical poling and its application in optical storage of a polymide film with a high glass transition temperature,” Appl. Phys. Lett. 72, 762–764 (1998).
[CrossRef]

Hooker, B.

Jager, M.

I. Liakatas, C. Cai, M. Bosch, M. Jager, Ch. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368–1370 (2000).
[CrossRef]

Jäger, M.

A. Otomo, M. Jäger, G. Stegeman, M. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

Jiang, X. L.

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, V. Shivshankar, and S. K. Tripathy, “Polarization dependent recordings of surface relief gratings on azobenzene containing polymer films,” Appl. Phys. Lett. 68, 2618–2620 (1995).
[CrossRef]

Jurich, M.

R. J. Twieg, D. M. Burland, M. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, R. Siemens, A. Skumanich, J. I. Thackera, T. Berveist, and W. Volksen, “Stability and performance issues for nonlinear optical chromophores, polymers and devices,” Mater. Res. Soc. Symp. Proc. 392, 15–26 (1995).
[CrossRef]

Kim, D. Y.

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, V. Shivshankar, and S. K. Tripathy, “Polarization dependent recordings of surface relief gratings on azobenzene containing polymer films,” Appl. Phys. Lett. 68, 2618–2620 (1995).
[CrossRef]

Knoesen, A.

Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
[CrossRef]

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

Kowalczyk, T. C.

Kumar, J.

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, V. Shivshankar, and S. K. Tripathy, “Polarization dependent recordings of surface relief gratings on azobenzene containing polymer films,” Appl. Phys. Lett. 68, 2618–2620 (1995).
[CrossRef]

Lackritz, H. S.

Le Duff, A.-C.

Lee, V. Y.

R. J. Twieg, D. M. Burland, M. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, R. Siemens, A. Skumanich, J. I. Thackera, T. Berveist, and W. Volksen, “Stability and performance issues for nonlinear optical chromophores, polymers and devices,” Mater. Res. Soc. Symp. Proc. 392, 15–26 (1995).
[CrossRef]

R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

R. J. Twieg, D. M. Burland, J. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, C. M. Seymour, W. Volksen, and C. A. Walsh, “Nonlinear optical chromophores and polymers for practical electro-optic waveguide application,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. W. Perry, eds., Proc. SPIE 2143, 2–13 (1994).
[CrossRef]

R. J. Twieg, K. M. Betterton, D. M. Burland, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers for practical electro-optic waveguide applications,” in Nonlinear Optical Properties of Organic Materials V, G. R. Moehlmann, ed., Proc. Proc. SPIE 2025, 94–105 (1993).
[CrossRef]

Li, L.

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, V. Shivshankar, and S. K. Tripathy, “Polarization dependent recordings of surface relief gratings on azobenzene containing polymer films,” Appl. Phys. Lett. 68, 2618–2620 (1995).
[CrossRef]

Liakatas, I.

I. Liakatas, C. Cai, M. Bosch, M. Jager, Ch. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368–1370 (2000).
[CrossRef]

Lin, S.

Lin, W.

Y. Shi, W. Wang, W. Lin, D. J. Olson, and J. H. Bechtel, “Double-end crosslinked electro-optic polymer modulators with high optical power handling capability,” Appl. Phys. Lett. 70, 1342–1344 (1997).
[CrossRef]

Loucif-Saibi, R.

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71, 1543–1545 (1992).
[CrossRef]

Ma, J.

Ma, L.

N. Dam, R. D. Scurlock, B. Wang, L. Ma, M. Sundahl, and P. R. Ogilby, “Singlet oxygen as a reactive intermediate in the photodegradation of phenylenevinylene oligomers,” Chem. Mater. 11, 1302–1305 (1999).
[CrossRef]

Marder, S.

Mickelson, A. R.

Miller, R. D.

R. J. Twieg, D. M. Burland, M. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, R. Siemens, A. Skumanich, J. I. Thackera, T. Berveist, and W. Volksen, “Stability and performance issues for nonlinear optical chromophores, polymers and devices,” Mater. Res. Soc. Symp. Proc. 392, 15–26 (1995).
[CrossRef]

R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

R. J. Twieg, D. M. Burland, J. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, C. M. Seymour, W. Volksen, and C. A. Walsh, “Nonlinear optical chromophores and polymers for practical electro-optic waveguide application,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. W. Perry, eds., Proc. SPIE 2143, 2–13 (1994).
[CrossRef]

R. J. Twieg, K. M. Betterton, D. M. Burland, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers for practical electro-optic waveguide applications,” in Nonlinear Optical Properties of Organic Materials V, G. R. Moehlmann, ed., Proc. Proc. SPIE 2025, 94–105 (1993).
[CrossRef]

Mitsuyu, T.

J. Si, T. Mitsuyu, P. Ye, Y. Shen, and K. Hirao, “Optical poling and its application in optical storage of a polymide film with a high glass transition temperature,” Appl. Phys. Lett. 72, 762–764 (1998).
[CrossRef]

Morichere, D.

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71, 1543–1545 (1992).
[CrossRef]

Moylan, C. R.

R. J. Twieg, D. M. Burland, M. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, R. Siemens, A. Skumanich, J. I. Thackera, T. Berveist, and W. Volksen, “Stability and performance issues for nonlinear optical chromophores, polymers and devices,” Mater. Res. Soc. Symp. Proc. 392, 15–26 (1995).
[CrossRef]

R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

R. J. Twieg, D. M. Burland, J. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, C. M. Seymour, W. Volksen, and C. A. Walsh, “Nonlinear optical chromophores and polymers for practical electro-optic waveguide application,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. W. Perry, eds., Proc. SPIE 2143, 2–13 (1994).
[CrossRef]

R. J. Twieg, K. M. Betterton, D. M. Burland, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers for practical electro-optic waveguide applications,” in Nonlinear Optical Properties of Organic Materials V, G. R. Moehlmann, ed., Proc. Proc. SPIE 2025, 94–105 (1993).
[CrossRef]

Nunzi, J.-M.

F. Charra, F. Devaux, J.-M. Nunzi, and P. Raimond, “Picosecond light-induced noncentrosymmetry in a dye solution,” Phys. Rev. Lett. 68, 2440–2443 (1992).
[CrossRef] [PubMed]

Ogilby, P. R.

N. Dam, R. D. Scurlock, B. Wang, L. Ma, M. Sundahl, and P. R. Ogilby, “Singlet oxygen as a reactive intermediate in the photodegradation of phenylenevinylene oligomers,” Chem. Mater. 11, 1302–1305 (1999).
[CrossRef]

Olson, D. J.

Y. Shi, W. Wang, W. Lin, D. J. Olson, and J. H. Bechtel, “Double-end crosslinked electro-optic polymer modulators with high optical power handling capability,” Appl. Phys. Lett. 70, 1342–1344 (1997).
[CrossRef]

Otomo, A.

A. Otomo, M. Jäger, G. Stegeman, M. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

Pliska, T.

Pretre, Ph.

Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
[CrossRef]

Raimond, P.

F. Charra, F. Devaux, J.-M. Nunzi, and P. Raimond, “Picosecond light-induced noncentrosymmetry in a dye solution,” Phys. Rev. Lett. 68, 2440–2443 (1992).
[CrossRef] [PubMed]

Ricci, V.

Scurlock, R. D.

N. Dam, R. D. Scurlock, B. Wang, L. Ma, M. Sundahl, and P. R. Ogilby, “Singlet oxygen as a reactive intermediate in the photodegradation of phenylenevinylene oligomers,” Chem. Mater. 11, 1302–1305 (1999).
[CrossRef]

Sekkat, Z.

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71, 1543–1545 (1992).
[CrossRef]

Seymour, C. M.

R. J. Twieg, D. M. Burland, J. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, C. M. Seymour, W. Volksen, and C. A. Walsh, “Nonlinear optical chromophores and polymers for practical electro-optic waveguide application,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. W. Perry, eds., Proc. SPIE 2143, 2–13 (1994).
[CrossRef]

Shen, Y.

J. Si, T. Mitsuyu, P. Ye, Y. Shen, and K. Hirao, “Optical poling and its application in optical storage of a polymide film with a high glass transition temperature,” Appl. Phys. Lett. 72, 762–764 (1998).
[CrossRef]

Shi, Y.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Y. Shi, W. Wang, W. Lin, D. J. Olson, and J. H. Bechtel, “Double-end crosslinked electro-optic polymer modulators with high optical power handling capability,” Appl. Phys. Lett. 70, 1342–1344 (1997).
[CrossRef]

Shivshankar, V.

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, V. Shivshankar, and S. K. Tripathy, “Polarization dependent recordings of surface relief gratings on azobenzene containing polymer films,” Appl. Phys. Lett. 68, 2618–2620 (1995).
[CrossRef]

Si, J.

J. Si, T. Mitsuyu, P. Ye, Y. Shen, and K. Hirao, “Optical poling and its application in optical storage of a polymide film with a high glass transition temperature,” Appl. Phys. Lett. 72, 762–764 (1998).
[CrossRef]

Sidlick, E.

Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
[CrossRef]

Siemens, R.

R. J. Twieg, D. M. Burland, M. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, R. Siemens, A. Skumanich, J. I. Thackera, T. Berveist, and W. Volksen, “Stability and performance issues for nonlinear optical chromophores, polymers and devices,” Mater. Res. Soc. Symp. Proc. 392, 15–26 (1995).
[CrossRef]

Skumanich, A.

R. J. Twieg, D. M. Burland, M. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, R. Siemens, A. Skumanich, J. I. Thackera, T. Berveist, and W. Volksen, “Stability and performance issues for nonlinear optical chromophores, polymers and devices,” Mater. Res. Soc. Symp. Proc. 392, 15–26 (1995).
[CrossRef]

Stegeman, G.

A. Otomo, M. Jäger, G. Stegeman, M. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

Stegeman, G. I.

Steier, W. H.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Sundahl, M.

N. Dam, R. D. Scurlock, B. Wang, L. Ma, M. Sundahl, and P. R. Ogilby, “Singlet oxygen as a reactive intermediate in the photodegradation of phenylenevinylene oligomers,” Chem. Mater. 11, 1302–1305 (1999).
[CrossRef]

Thackera, J. I.

R. J. Twieg, D. M. Burland, M. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, R. Siemens, A. Skumanich, J. I. Thackera, T. Berveist, and W. Volksen, “Stability and performance issues for nonlinear optical chromophores, polymers and devices,” Mater. Res. Soc. Symp. Proc. 392, 15–26 (1995).
[CrossRef]

Thayumanavan, S.

Tripathy, S. K.

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, V. Shivshankar, and S. K. Tripathy, “Polarization dependent recordings of surface relief gratings on azobenzene containing polymer films,” Appl. Phys. Lett. 68, 2618–2620 (1995).
[CrossRef]

Twieg, R.

Twieg, R. J.

Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
[CrossRef]

R. J. Twieg, D. M. Burland, M. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, R. Siemens, A. Skumanich, J. I. Thackera, T. Berveist, and W. Volksen, “Stability and performance issues for nonlinear optical chromophores, polymers and devices,” Mater. Res. Soc. Symp. Proc. 392, 15–26 (1995).
[CrossRef]

R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

R. J. Twieg, D. M. Burland, J. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, C. M. Seymour, W. Volksen, and C. A. Walsh, “Nonlinear optical chromophores and polymers for practical electro-optic waveguide application,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. W. Perry, eds., Proc. SPIE 2143, 2–13 (1994).
[CrossRef]

R. J. Twieg, K. M. Betterton, D. M. Burland, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers for practical electro-optic waveguide applications,” in Nonlinear Optical Properties of Organic Materials V, G. R. Moehlmann, ed., Proc. Proc. SPIE 2025, 94–105 (1993).
[CrossRef]

Volksen, W.

R. J. Twieg, D. M. Burland, M. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, R. Siemens, A. Skumanich, J. I. Thackera, T. Berveist, and W. Volksen, “Stability and performance issues for nonlinear optical chromophores, polymers and devices,” Mater. Res. Soc. Symp. Proc. 392, 15–26 (1995).
[CrossRef]

R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

R. J. Twieg, D. M. Burland, J. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, C. M. Seymour, W. Volksen, and C. A. Walsh, “Nonlinear optical chromophores and polymers for practical electro-optic waveguide application,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. W. Perry, eds., Proc. SPIE 2143, 2–13 (1994).
[CrossRef]

R. J. Twieg, K. M. Betterton, D. M. Burland, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers for practical electro-optic waveguide applications,” in Nonlinear Optical Properties of Organic Materials V, G. R. Moehlmann, ed., Proc. Proc. SPIE 2025, 94–105 (1993).
[CrossRef]

Walsh, C. A.

R. J. Twieg, D. M. Burland, J. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, C. M. Seymour, W. Volksen, and C. A. Walsh, “Nonlinear optical chromophores and polymers for practical electro-optic waveguide application,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. W. Perry, eds., Proc. SPIE 2143, 2–13 (1994).
[CrossRef]

R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

R. J. Twieg, K. M. Betterton, D. M. Burland, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers for practical electro-optic waveguide applications,” in Nonlinear Optical Properties of Organic Materials V, G. R. Moehlmann, ed., Proc. Proc. SPIE 2025, 94–105 (1993).
[CrossRef]

Wang, B.

N. Dam, R. D. Scurlock, B. Wang, L. Ma, M. Sundahl, and P. R. Ogilby, “Singlet oxygen as a reactive intermediate in the photodegradation of phenylenevinylene oligomers,” Chem. Mater. 11, 1302–1305 (1999).
[CrossRef]

Wang, W.

Y. Shi, W. Wang, W. Lin, D. J. Olson, and J. H. Bechtel, “Double-end crosslinked electro-optic polymer modulators with high optical power handling capability,” Appl. Phys. Lett. 70, 1342–1344 (1997).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Yankelevich, D. R.

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

Ye, P.

J. Si, T. Mitsuyu, P. Ye, Y. Shen, and K. Hirao, “Optical poling and its application in optical storage of a polymide film with a high glass transition temperature,” Appl. Phys. Lett. 72, 762–764 (1998).
[CrossRef]

Zhang, C.

I. Liakatas, C. Cai, M. Bosch, M. Jager, Ch. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368–1370 (2000).
[CrossRef]

Zhang, Q.

Q. Zhang, M. Canva, and G. I. Stegeman, “Wavelength dependence of the photodegradation of a DANS polymer thin film,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

Zhang, X. Q.

Zwieg, A.

A. Zwieg and W. A. Henderson, Jr., “Singlet oxygen and polymer photooxidations. I. Sensitizers, quenchers and reactants,” J. Polym. Sci. 13, 717–736 (1975).

ACS Symp. Ser. (1)

Ph. Pretre, E. Sidlick, A. Knoesen, D. J. Dyer, and R. J. Twieg, “Optical dispersion properties of tricyanovinylaniline polymer films for ultrashort optical pulse diagnostics,” ACS Symp. Ser. 695, 328–341 (1996).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (9)

A. Otomo, M. Jäger, G. Stegeman, M. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996).
[CrossRef]

J. Si, T. Mitsuyu, P. Ye, Y. Shen, and K. Hirao, “Optical poling and its application in optical storage of a polymide film with a high glass transition temperature,” Appl. Phys. Lett. 72, 762–764 (1998).
[CrossRef]

Y. Shi, W. Wang, W. Lin, D. J. Olson, and J. H. Bechtel, “Double-end crosslinked electro-optic polymer modulators with high optical power handling capability,” Appl. Phys. Lett. 70, 1342–1344 (1997).
[CrossRef]

Q. Zhang, M. Canva, and G. I. Stegeman, “Wavelength dependence of the photodegradation of a DANS polymer thin film,” Appl. Phys. Lett. 73, 912–914 (1998).
[CrossRef]

A. Galvan-Gonzalez, M. Canva, and G. I. Stegeman, “Local and external factors affecting the photodegradation of DANS polymer films,” Appl. Phys. Lett. 75, 3306–3308 (1999).
[CrossRef]

I. Liakatas, C. Cai, M. Bosch, M. Jager, Ch. Bosshard, P. Gunter, C. Zhang, and L. R. Dalton, “Importance of intermolecular interactions in the nonlinear optical properties of poled polymers,” Appl. Phys. Lett. 76, 1368–1370 (2000).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

R. A. Hill, S. Dreher, A. Knoesen, and D. R. Yankelevich, “Reversible optical storage utilizing pulsed, photoinduced, electric-field-assisted reorientation of azobenzenes,” Appl. Phys. Lett. 66, 2156–2158 (1995).
[CrossRef]

X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, V. Shivshankar, and S. K. Tripathy, “Polarization dependent recordings of surface relief gratings on azobenzene containing polymer films,” Appl. Phys. Lett. 68, 2618–2620 (1995).
[CrossRef]

Chem. Mater. (1)

N. Dam, R. D. Scurlock, B. Wang, L. Ma, M. Sundahl, and P. R. Ogilby, “Singlet oxygen as a reactive intermediate in the photodegradation of phenylenevinylene oligomers,” Chem. Mater. 11, 1302–1305 (1999).
[CrossRef]

J. Am. Chem. Soc. (1)

C. E. Barnes, “Mechanism of vinyl polymerization. I. Role of oxygen,” J. Am. Chem. Soc. 67, 217–220 (1945).
[CrossRef]

J. Appl. Phys. (1)

Z. Sekkat, D. Morichere, M. Dumont, R. Loucif-Saibi, and J. Delaire, “Photoisomerization of azobenzene derivatives in polymeric thin films,” J. Appl. Phys. 71, 1543–1545 (1992).
[CrossRef]

J. Polym. Sci. (1)

A. Zwieg and W. A. Henderson, Jr., “Singlet oxygen and polymer photooxidations. I. Sensitizers, quenchers and reactants,” J. Polym. Sci. 13, 717–736 (1975).

Mater. Res. Soc. Symp. Proc. (2)

R. J. Twieg, D. M. Burland, J. L. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers with useful nonlinearity and thermal stability,” Mater. Res. Soc. Symp. Proc. 328, 421–431 (1994).
[CrossRef]

R. J. Twieg, D. M. Burland, M. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, R. Siemens, A. Skumanich, J. I. Thackera, T. Berveist, and W. Volksen, “Stability and performance issues for nonlinear optical chromophores, polymers and devices,” Mater. Res. Soc. Symp. Proc. 392, 15–26 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

F. Charra, F. Devaux, J.-M. Nunzi, and P. Raimond, “Picosecond light-induced noncentrosymmetry in a dye solution,” Phys. Rev. Lett. 68, 2440–2443 (1992).
[CrossRef] [PubMed]

Polym. Deg. Stab. (1)

N. S. Allen, “Photofading and light stability of dyed and pigmented polymers,” Polym. Deg. Stab. 44, 357–374 (1994).
[CrossRef]

Proc. SPIE (2)

R. J. Twieg, D. M. Burland, J. Hedrick, V. Y. Lee, R. D. Miller, C. R. Moylan, C. M. Seymour, W. Volksen, and C. A. Walsh, “Nonlinear optical chromophores and polymers for practical electro-optic waveguide application,” in Organic, Metallo-Organic, and Polymeric Materials for Nonlinear Optical Applications, S. R. Marder and J. W. Perry, eds., Proc. SPIE 2143, 2–13 (1994).
[CrossRef]

R. J. Twieg, K. M. Betterton, D. M. Burland, V. Y. Lee, R. D. Miller, C. R. Moylan, W. Volksen, and C. A. Walsh, “Progress on nonlinear optical chromophores and polymers for practical electro-optic waveguide applications,” in Nonlinear Optical Properties of Organic Materials V, G. R. Moehlmann, ed., Proc. Proc. SPIE 2025, 94–105 (1993).
[CrossRef]

Other (1)

A. Chen, F. I. Mart-Carrera, V. Chuyanov, S. Garner, W. H. Steier, S. S. Mao, Y. Ra, L. R. Dalton, and Y. Shi, “In situ trimming of polymer waveguides by rapid photobleaching for tuning device specifications,” in Organic Thin Films for Photonics Applications, Vol. 14 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 211–213.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Model for the photodegradation process that involves raising initial Molecule 1 with concentration N1 to an excited state by means of the absorption of a photon (molecular absorptivity σ) followed by decay with quantum efficiency B-1 to the new species Molecule 2 (concentration N2) or by relaxation back to the ground state of Molecule 1 with quantum efficiency 1-B-1.

Fig. 2
Fig. 2

Schematic of the experimental apparatus employed for the photodegradation studies. B.S.’s, beam splitters.

Fig. 3
Fig. 3

Change in the transmission of a 3.2-µm-thick film of 5 wt. % of 4-N,N-diethylamino-3,4-dicyanoazobenzene (chromophore 2) in a PMMA host polymer with a probe at 544 nm and a pump at 633 nm with an intensity of 0.24 W/cm2.

Fig. 4
Fig. 4

Evolution of the absorption spectrum of a 3.17-µm-thick film of 5 wt. % 4-N,N-diethylamino-3,4-dicyanoazobenzene (chromophore 2) in a PMMA host polymer on irradiation in air at 497 nm. Here t0, t1, t2, t3, and t4 correspond to irradiation times of 0, 30, 60, 90, and 120 min, respectively.

Fig. 5
Fig. 5

Dependence of photostability FOM B/σ on the photon energy for three different guest chromophores, 4-(N-ethyl-N-2-hydroxyethyl)-4-; nitroazobenzene (DR1 chromophore 1; ×), DR1-M; chromophore 3; (◬) and 4-N,N-dibutylamino-4 nitroazobenzene (chromophore 4; □) in PMMA.

Fig. 6
Fig. 6

Dependence of photostability FOM B/σ on photon energy for three guest chromophores in a PMMA host. The azodyes 5 (+), 6 (⋄), and 7 (△) differ only by the site of attachment of a CF3 group on the benzene rings in the common 4-N,N-diethylamino-4-nitroazobenzene unit.

Fig. 7
Fig. 7

Dependence of photostability FOM B/σ on photon energy for the two guest chromophores 2 (⊞) and 8 (▿), which differ only in the type of donor (4-N,N-diethylamino and 4-N,N-diphenylamino, respectively), with the remainder of the 3,4-dicyanoazobenzene constant.

Fig. 8
Fig. 8

Plot of D0 versus E0 for the guest chromophores 1–8 (Table 1) in PMMA hosts.

Fig. 9
Fig. 9

Photostability FOM B/σ versus photon energy for chromophore 2, 4-N,N-diethylamino-3,4-dicyanoazobenzene (indicated by crosses) and chromophore 4, 4-N,N-dibutyl-amino-4-nitroazobenzene (indicated by open symbols) in the three different host polymer matrices PMMA, PES, and Ultem.

Fig. 10
Fig. 10

Plot of D0 versus E0 for the guest chromophores in the three polymer hosts identified in Fig. 9.

Fig. 11
Fig. 11

Photostability (normalized to air) of compounds 1 and 3 in nitrogen, air, and oxygen atmospheres when the compounds are irradiated at 544 and 633 nm.

Fig. 12
Fig. 12

Photostability figure of merit B/σ of azobenzenes 1 and 3 in air at 25, 65, and 95 °C at the two wavelengths 780 and 633 nm.

Fig. 13
Fig. 13

Predicted lifetimes (diagonal lines) of the electro-optic species when they are fabricated into channel waveguides of cross-sectional area 10 µm2 as a function of photon flux n and B/σ. The specific data refer to an average power of 1 mW in the waveguide. The experimental data for wavelengths λ1, λ2, λ3, and λ4 (544, 633, 780, and 1064 nm, respectively) are for compound 3 in PMMA.

Tables (2)

Tables Icon

Table 1 Chemical Structures of the Chromophores Studied, with Their Values of λmax, B Measured at 633 nm, Parameters D0 and E0, and Oxidation Potentialsa

Tables Icon

Table 2 Chemical Structures of the Host Polymers Used and Their (Undoped) Glass-Transition Temperatures Tg

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N2(t)t=-N1(t)t=BσN1(t)n(t)-α1(t)t,
B/σ=B/[σ0 f(Ephot-hc/λmax)].
B/σ=B/σ0 exp[(Ephot-hc/λmax)/E0]=D0 exp(Ephot/E0).

Metrics