Abstract

Results of experimental investigation of the non-steady-state photoelectromotive-force effect in ferroelectric photorefractive Sn2P2S6 crystals at a wavelength of 633 nm are reported. The dominating photoconductivity proved to be of the p type, with a diffusion length of photocarriers of ∼1 µm. This characteristic length proved to be shorter than the Debye-screening length evaluated as ∼3 µm in this crystal. The millisecond characteristic time of the space-charge grating formation was determined by the photoconductivity-relaxation time, which was found to be a little bit longer than the dielectric-relaxation time. Both of them dropped sublinearly with increasing average light intensity in the investigated region I00.50.01 mW/mm2.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Carpentier and R. Nitsche, “Vapor growth and crystal data of the thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals,” Mater. Res. Bull. 9, 401–410 (1974).
    [CrossRef]
  2. M. I. Gurzan, A. P. Buturlakin, V. S. Gerasimenko, N. F. Korda, and V. Yu. Slivka, “Optical properties of Sn2P2S6 crystals,” Sov. Phys. Solid State 19, 1794–1795 (1977).
  3. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoika, “Photorefraction in tin hypothiodiphosphate in the near-infrared,” J. Opt. Soc. Am. B 13, 2352–2360 (1996).
    [CrossRef]
  4. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
    [CrossRef]
  5. S. Mansurova, S. Stepanov, N. Korneev, and C. Dibon, “Giant enhancement of low frequency non-steady-state photoelectromotive-force signal in Bi12SiO20 crystal under external dc bias,” Opt. Commun. 152, 207–214 (1998).
    [CrossRef]
  6. F. M. Davidson, C. C. Wang, C. T. Field, and S. Trivedi, “Photocurrents in photoconductive semiconductors generated by a moving space-charge field,” Opt. Lett. 19, 478–480 (1994).
    [CrossRef] [PubMed]
  7. N. Korneev, S. Mansurova, S. Stepanov, T. J. Hall, and A. K. Powell, “Non-steady-state photoelectromotive force in semiconductor photorefractive materials biased by dc field,” J. Opt. Soc. Am. B 13, 2278–2285 (1996).
    [CrossRef]
  8. R. N. Schwartz, C. C. Wang, S. Trivedi, G. V. Jagannathan, F. M. Davidson, Ph. R. Boyd, and U. Lee, “Spectroscopic and photorefractive characterization of cadmium telluride crystals codoped with vanadium and manganese,” Phys. Rev. B 55, 15378–15381 (1997).
    [CrossRef]
  9. S. Sochava, K. Buse, and E. Krätzig, “Non-steady-state photocurrent technique for the characterization of photorefractive BaTiO3,” Opt. Commun. 98, 265–268 (1993).
    [CrossRef]
  10. N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
    [CrossRef]
  11. M. A. Noginov, N. Kukhtarev, N. E. Noginova, H. J. Caulfield, P. Venkateswarly, M. Mahdi, and A. Williams, “Study of photoconductivity and holographic current in rare-earth-doped Y3Sc2Ga3O12 laser crystals,” J. Opt. Soc. Am. B 14, 2137–2146 (1997).
    [CrossRef]
  12. G. B. Loutts, M. Warren, and P. Venkateswarly, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3716 (1998).
    [CrossRef]
  13. G. S. Trofimov, A. I. Kosarev, A. G. Kovrov, and P. G. LeComber, “Non-steady-state photoelectromotive force induced by the dynamic grating technique in α-Si:H films,” J. Non-Cryst. Solids 137, 483–486 (1991).
    [CrossRef]
  14. I. A. Sokolov and S. I. Stepanov, “Non-steady-state photovoltage in crystals with long photoconductivity relaxation time,” Electron. Lett. 26, 1275–1277 (1990).
    [CrossRef]
  15. I. A. Sokolov and S. I. Stepanov, “Non-steady-state photoelectromotive force in crystals with long lifetime of photocarriers,” J. Opt. Soc. Am. B 10, 1483–1488 (1993).
    [CrossRef]
  16. P. Günter, “Holography, coherent light amplification, and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
    [CrossRef]
  17. A. Mandel’, N. Khat’kov, and S. Shandarov, “Light diffraction in holographic arrays—different mechanisms of photorefractive effect in ferroelectrics,” Ferroelectrics 83, 215–220 (1988).
    [CrossRef]

1998 (3)

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

G. B. Loutts, M. Warren, and P. Venkateswarly, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3716 (1998).
[CrossRef]

S. Mansurova, S. Stepanov, N. Korneev, and C. Dibon, “Giant enhancement of low frequency non-steady-state photoelectromotive-force signal in Bi12SiO20 crystal under external dc bias,” Opt. Commun. 152, 207–214 (1998).
[CrossRef]

1997 (2)

R. N. Schwartz, C. C. Wang, S. Trivedi, G. V. Jagannathan, F. M. Davidson, Ph. R. Boyd, and U. Lee, “Spectroscopic and photorefractive characterization of cadmium telluride crystals codoped with vanadium and manganese,” Phys. Rev. B 55, 15378–15381 (1997).
[CrossRef]

M. A. Noginov, N. Kukhtarev, N. E. Noginova, H. J. Caulfield, P. Venkateswarly, M. Mahdi, and A. Williams, “Study of photoconductivity and holographic current in rare-earth-doped Y3Sc2Ga3O12 laser crystals,” J. Opt. Soc. Am. B 14, 2137–2146 (1997).
[CrossRef]

1996 (2)

1994 (1)

1993 (2)

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photoelectromotive force in crystals with long lifetime of photocarriers,” J. Opt. Soc. Am. B 10, 1483–1488 (1993).
[CrossRef]

S. Sochava, K. Buse, and E. Krätzig, “Non-steady-state photocurrent technique for the characterization of photorefractive BaTiO3,” Opt. Commun. 98, 265–268 (1993).
[CrossRef]

1991 (1)

G. S. Trofimov, A. I. Kosarev, A. G. Kovrov, and P. G. LeComber, “Non-steady-state photoelectromotive force induced by the dynamic grating technique in α-Si:H films,” J. Non-Cryst. Solids 137, 483–486 (1991).
[CrossRef]

1990 (2)

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photovoltage in crystals with long photoconductivity relaxation time,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

1988 (1)

A. Mandel’, N. Khat’kov, and S. Shandarov, “Light diffraction in holographic arrays—different mechanisms of photorefractive effect in ferroelectrics,” Ferroelectrics 83, 215–220 (1988).
[CrossRef]

1982 (1)

P. Günter, “Holography, coherent light amplification, and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

1977 (1)

M. I. Gurzan, A. P. Buturlakin, V. S. Gerasimenko, N. F. Korda, and V. Yu. Slivka, “Optical properties of Sn2P2S6 crystals,” Sov. Phys. Solid State 19, 1794–1795 (1977).

1974 (1)

C. D. Carpentier and R. Nitsche, “Vapor growth and crystal data of the thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals,” Mater. Res. Bull. 9, 401–410 (1974).
[CrossRef]

Boyd, Ph. R.

R. N. Schwartz, C. C. Wang, S. Trivedi, G. V. Jagannathan, F. M. Davidson, Ph. R. Boyd, and U. Lee, “Spectroscopic and photorefractive characterization of cadmium telluride crystals codoped with vanadium and manganese,” Phys. Rev. B 55, 15378–15381 (1997).
[CrossRef]

Buse, K.

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

S. Sochava, K. Buse, and E. Krätzig, “Non-steady-state photocurrent technique for the characterization of photorefractive BaTiO3,” Opt. Commun. 98, 265–268 (1993).
[CrossRef]

Buturlakin, A. P.

M. I. Gurzan, A. P. Buturlakin, V. S. Gerasimenko, N. F. Korda, and V. Yu. Slivka, “Optical properties of Sn2P2S6 crystals,” Sov. Phys. Solid State 19, 1794–1795 (1977).

Carpentier, C. D.

C. D. Carpentier and R. Nitsche, “Vapor growth and crystal data of the thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals,” Mater. Res. Bull. 9, 401–410 (1974).
[CrossRef]

Caulfield, H. J.

Davidson, F. M.

R. N. Schwartz, C. C. Wang, S. Trivedi, G. V. Jagannathan, F. M. Davidson, Ph. R. Boyd, and U. Lee, “Spectroscopic and photorefractive characterization of cadmium telluride crystals codoped with vanadium and manganese,” Phys. Rev. B 55, 15378–15381 (1997).
[CrossRef]

F. M. Davidson, C. C. Wang, C. T. Field, and S. Trivedi, “Photocurrents in photoconductive semiconductors generated by a moving space-charge field,” Opt. Lett. 19, 478–480 (1994).
[CrossRef] [PubMed]

Dibon, C.

S. Mansurova, S. Stepanov, N. Korneev, and C. Dibon, “Giant enhancement of low frequency non-steady-state photoelectromotive-force signal in Bi12SiO20 crystal under external dc bias,” Opt. Commun. 152, 207–214 (1998).
[CrossRef]

Field, C. T.

Gerasimenko, V. S.

M. I. Gurzan, A. P. Buturlakin, V. S. Gerasimenko, N. F. Korda, and V. Yu. Slivka, “Optical properties of Sn2P2S6 crystals,” Sov. Phys. Solid State 19, 1794–1795 (1977).

Gerwens, A.

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

Grabar, A. A.

Günter, P.

P. Günter, “Holography, coherent light amplification, and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

Gurzan, M. I.

M. I. Gurzan, A. P. Buturlakin, V. S. Gerasimenko, N. F. Korda, and V. Yu. Slivka, “Optical properties of Sn2P2S6 crystals,” Sov. Phys. Solid State 19, 1794–1795 (1977).

Hall, T. J.

Hellwig, U.

Jagannathan, G. V.

R. N. Schwartz, C. C. Wang, S. Trivedi, G. V. Jagannathan, F. M. Davidson, Ph. R. Boyd, and U. Lee, “Spectroscopic and photorefractive characterization of cadmium telluride crystals codoped with vanadium and manganese,” Phys. Rev. B 55, 15378–15381 (1997).
[CrossRef]

Khat’kov, N.

A. Mandel’, N. Khat’kov, and S. Shandarov, “Light diffraction in holographic arrays—different mechanisms of photorefractive effect in ferroelectrics,” Ferroelectrics 83, 215–220 (1988).
[CrossRef]

Korda, N. F.

M. I. Gurzan, A. P. Buturlakin, V. S. Gerasimenko, N. F. Korda, and V. Yu. Slivka, “Optical properties of Sn2P2S6 crystals,” Sov. Phys. Solid State 19, 1794–1795 (1977).

Korneev, N.

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

S. Mansurova, S. Stepanov, N. Korneev, and C. Dibon, “Giant enhancement of low frequency non-steady-state photoelectromotive-force signal in Bi12SiO20 crystal under external dc bias,” Opt. Commun. 152, 207–214 (1998).
[CrossRef]

N. Korneev, S. Mansurova, S. Stepanov, T. J. Hall, and A. K. Powell, “Non-steady-state photoelectromotive force in semiconductor photorefractive materials biased by dc field,” J. Opt. Soc. Am. B 13, 2278–2285 (1996).
[CrossRef]

Kosarev, A. I.

G. S. Trofimov, A. I. Kosarev, A. G. Kovrov, and P. G. LeComber, “Non-steady-state photoelectromotive force induced by the dynamic grating technique in α-Si:H films,” J. Non-Cryst. Solids 137, 483–486 (1991).
[CrossRef]

Kovrov, A. G.

G. S. Trofimov, A. I. Kosarev, A. G. Kovrov, and P. G. LeComber, “Non-steady-state photoelectromotive force induced by the dynamic grating technique in α-Si:H films,” J. Non-Cryst. Solids 137, 483–486 (1991).
[CrossRef]

Krätzig, E.

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

S. Sochava, K. Buse, and E. Krätzig, “Non-steady-state photocurrent technique for the characterization of photorefractive BaTiO3,” Opt. Commun. 98, 265–268 (1993).
[CrossRef]

Kukhtarev, N.

LeComber, P. G.

G. S. Trofimov, A. I. Kosarev, A. G. Kovrov, and P. G. LeComber, “Non-steady-state photoelectromotive force induced by the dynamic grating technique in α-Si:H films,” J. Non-Cryst. Solids 137, 483–486 (1991).
[CrossRef]

Lee, U.

R. N. Schwartz, C. C. Wang, S. Trivedi, G. V. Jagannathan, F. M. Davidson, Ph. R. Boyd, and U. Lee, “Spectroscopic and photorefractive characterization of cadmium telluride crystals codoped with vanadium and manganese,” Phys. Rev. B 55, 15378–15381 (1997).
[CrossRef]

Loutts, G. B.

G. B. Loutts, M. Warren, and P. Venkateswarly, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3716 (1998).
[CrossRef]

Mahdi, M.

Mandel’, A.

A. Mandel’, N. Khat’kov, and S. Shandarov, “Light diffraction in holographic arrays—different mechanisms of photorefractive effect in ferroelectrics,” Ferroelectrics 83, 215–220 (1988).
[CrossRef]

Mansurova, S.

S. Mansurova, S. Stepanov, N. Korneev, and C. Dibon, “Giant enhancement of low frequency non-steady-state photoelectromotive-force signal in Bi12SiO20 crystal under external dc bias,” Opt. Commun. 152, 207–214 (1998).
[CrossRef]

N. Korneev, S. Mansurova, S. Stepanov, T. J. Hall, and A. K. Powell, “Non-steady-state photoelectromotive force in semiconductor photorefractive materials biased by dc field,” J. Opt. Soc. Am. B 13, 2278–2285 (1996).
[CrossRef]

Mayorga, D.

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

Nitsche, R.

C. D. Carpentier and R. Nitsche, “Vapor growth and crystal data of the thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals,” Mater. Res. Bull. 9, 401–410 (1974).
[CrossRef]

Noginov, M. A.

Noginova, N. E.

Odoulov, S. G.

Petrov, M. P.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

Powell, A. K.

Rupp, R. A.

Schwartz, R. N.

R. N. Schwartz, C. C. Wang, S. Trivedi, G. V. Jagannathan, F. M. Davidson, Ph. R. Boyd, and U. Lee, “Spectroscopic and photorefractive characterization of cadmium telluride crystals codoped with vanadium and manganese,” Phys. Rev. B 55, 15378–15381 (1997).
[CrossRef]

Shandarov, S.

A. Mandel’, N. Khat’kov, and S. Shandarov, “Light diffraction in holographic arrays—different mechanisms of photorefractive effect in ferroelectrics,” Ferroelectrics 83, 215–220 (1988).
[CrossRef]

Shumelyuk, A. N.

Slivka, V. Yu.

M. I. Gurzan, A. P. Buturlakin, V. S. Gerasimenko, N. F. Korda, and V. Yu. Slivka, “Optical properties of Sn2P2S6 crystals,” Sov. Phys. Solid State 19, 1794–1795 (1977).

Sochava, S.

S. Sochava, K. Buse, and E. Krätzig, “Non-steady-state photocurrent technique for the characterization of photorefractive BaTiO3,” Opt. Commun. 98, 265–268 (1993).
[CrossRef]

Sokolov, I. A.

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photoelectromotive force in crystals with long lifetime of photocarriers,” J. Opt. Soc. Am. B 10, 1483–1488 (1993).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photovoltage in crystals with long photoconductivity relaxation time,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

Stepanov, S.

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

S. Mansurova, S. Stepanov, N. Korneev, and C. Dibon, “Giant enhancement of low frequency non-steady-state photoelectromotive-force signal in Bi12SiO20 crystal under external dc bias,” Opt. Commun. 152, 207–214 (1998).
[CrossRef]

N. Korneev, S. Mansurova, S. Stepanov, T. J. Hall, and A. K. Powell, “Non-steady-state photoelectromotive force in semiconductor photorefractive materials biased by dc field,” J. Opt. Soc. Am. B 13, 2278–2285 (1996).
[CrossRef]

Stepanov, S. I.

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photoelectromotive force in crystals with long lifetime of photocarriers,” J. Opt. Soc. Am. B 10, 1483–1488 (1993).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photovoltage in crystals with long photoconductivity relaxation time,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

Stoika, I. M.

Trivedi, S.

R. N. Schwartz, C. C. Wang, S. Trivedi, G. V. Jagannathan, F. M. Davidson, Ph. R. Boyd, and U. Lee, “Spectroscopic and photorefractive characterization of cadmium telluride crystals codoped with vanadium and manganese,” Phys. Rev. B 55, 15378–15381 (1997).
[CrossRef]

F. M. Davidson, C. C. Wang, C. T. Field, and S. Trivedi, “Photocurrents in photoconductive semiconductors generated by a moving space-charge field,” Opt. Lett. 19, 478–480 (1994).
[CrossRef] [PubMed]

Trofimov, G. S.

G. S. Trofimov, A. I. Kosarev, A. G. Kovrov, and P. G. LeComber, “Non-steady-state photoelectromotive force induced by the dynamic grating technique in α-Si:H films,” J. Non-Cryst. Solids 137, 483–486 (1991).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

Venkateswarly, P.

G. B. Loutts, M. Warren, and P. Venkateswarly, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3716 (1998).
[CrossRef]

M. A. Noginov, N. Kukhtarev, N. E. Noginova, H. J. Caulfield, P. Venkateswarly, M. Mahdi, and A. Williams, “Study of photoconductivity and holographic current in rare-earth-doped Y3Sc2Ga3O12 laser crystals,” J. Opt. Soc. Am. B 14, 2137–2146 (1997).
[CrossRef]

Wang, C. C.

R. N. Schwartz, C. C. Wang, S. Trivedi, G. V. Jagannathan, F. M. Davidson, Ph. R. Boyd, and U. Lee, “Spectroscopic and photorefractive characterization of cadmium telluride crystals codoped with vanadium and manganese,” Phys. Rev. B 55, 15378–15381 (1997).
[CrossRef]

F. M. Davidson, C. C. Wang, C. T. Field, and S. Trivedi, “Photocurrents in photoconductive semiconductors generated by a moving space-charge field,” Opt. Lett. 19, 478–480 (1994).
[CrossRef] [PubMed]

Warren, M.

G. B. Loutts, M. Warren, and P. Venkateswarly, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3716 (1998).
[CrossRef]

Williams, A.

Electron. Lett. (1)

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photovoltage in crystals with long photoconductivity relaxation time,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

Ferroelectrics (1)

A. Mandel’, N. Khat’kov, and S. Shandarov, “Light diffraction in holographic arrays—different mechanisms of photorefractive effect in ferroelectrics,” Ferroelectrics 83, 215–220 (1988).
[CrossRef]

J. Appl. Phys. (1)

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

J. Non-Cryst. Solids (1)

G. S. Trofimov, A. I. Kosarev, A. G. Kovrov, and P. G. LeComber, “Non-steady-state photoelectromotive force induced by the dynamic grating technique in α-Si:H films,” J. Non-Cryst. Solids 137, 483–486 (1991).
[CrossRef]

J. Opt. Soc. Am. B (4)

Mater. Res. Bull. (1)

C. D. Carpentier and R. Nitsche, “Vapor growth and crystal data of the thio(seleno)-hypodiphosphates Sn2P2S6, Sn2P2Se6, Pb2P2S6, Pb2P2Se6 and their mixed crystals,” Mater. Res. Bull. 9, 401–410 (1974).
[CrossRef]

Opt. Commun. (3)

S. Mansurova, S. Stepanov, N. Korneev, and C. Dibon, “Giant enhancement of low frequency non-steady-state photoelectromotive-force signal in Bi12SiO20 crystal under external dc bias,” Opt. Commun. 152, 207–214 (1998).
[CrossRef]

S. Sochava, K. Buse, and E. Krätzig, “Non-steady-state photocurrent technique for the characterization of photorefractive BaTiO3,” Opt. Commun. 98, 265–268 (1993).
[CrossRef]

N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady-state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rep. (1)

P. Günter, “Holography, coherent light amplification, and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

Phys. Rev. B (2)

G. B. Loutts, M. Warren, and P. Venkateswarly, “Manganese-doped yttrium orthoaluminate: a potential material for holographic recording and data storage,” Phys. Rev. B 57, 3706–3716 (1998).
[CrossRef]

R. N. Schwartz, C. C. Wang, S. Trivedi, G. V. Jagannathan, F. M. Davidson, Ph. R. Boyd, and U. Lee, “Spectroscopic and photorefractive characterization of cadmium telluride crystals codoped with vanadium and manganese,” Phys. Rev. B 55, 15378–15381 (1997).
[CrossRef]

Sov. Phys. Solid State (1)

M. I. Gurzan, A. P. Buturlakin, V. S. Gerasimenko, N. F. Korda, and V. Yu. Slivka, “Optical properties of Sn2P2S6 crystals,” Sov. Phys. Solid State 19, 1794–1795 (1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simplified experimental configuration used for observation of the non-steady-state photo-EMF effect in photorefractive or photoconductive materials (R and S are the recording reference and signal laser beams, respectively; EOM is the electro-optic modulator driven by a sinusoidal periodic signal with frequency Ω; and RL is the load resistance that is supposed to be considerably lower than the resistance of the illuminated sample).

Fig. 2
Fig. 2

Amplitude of the conventional photoconductive current signal observed in the sample uniformly illuminated by the amplitude-modulated light under external dc voltage versus modulation frequency. U0=60 V; RL=100 kΩ, I0, mW/mm2: (squares) 0.12, (triangles) 0.04, and (inverted triangles) 0.012. The depth of amplitude modulation is ∼50%.

Fig. 3
Fig. 3

Typical temporal decay of the photo-EMF signal UΩ under continuous illumination of the SPS sample by recording beams.

Fig. 4
Fig. 4

Photo-EMF signal amplitude versus modulation frequency for different average illumination levels. (RL=100 kΩ, Δ0.4 rad, K=100 mm-1, I0, mW/mm2: (squares) 0.5, (triangles) 0.17, and (inverted triangles) 0.05.

Fig. 5
Fig. 5

Photo-EMF signal amplitude versus spatial frequency of the recording pattern K=Λ/2π for different modulation frequencies Ω/2π, Hz: (squares) 1000, (triangles) 500, (inverted triangles) 100, and (diamonds) 30 (RL=112 kΩ).

Fig. 6
Fig. 6

Theoretical dependence of the photo-EMF current amplitude on modulation frequency for KLD0.3 and for different average intensity levels that ensure the following τdi/τph ratios: a, 100; b, 10; c, 1; d, 0.1; and e, 0.01 (in the calculations, depletion of impurity centers was neglected).

Fig. 7
Fig. 7

Experimental dependences of photoconductivity Uph(Ω) (squares), photo-EMF signal UΩ(Ω) (triangles), and normalized photo-EMF signal UΩ(Ω)/[Uph(Ω)/Uph(Ω0)] (inverted triangles) amplitude observed for approximately the same average light illumination level [RL=100 kΩ; Δ0.4 rad; K=100 mm-1; I0=0.15(±0.02) mW/mm2].

Fig. 8
Fig. 8

Experimental modulation-frequency dependences of the photo-EMF signal amplitude for three spatial frequencies K, mm-1: (inverted triangles) 150, (squares) 300, (triangles) 600 (RL=100 kΩ; Δ0.4 rad).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

jΩ=Δm22EDσ0
×Ωτdi{(1-Ω2τphτdi)2+Ω2[τdi(1+K2LD2)+τph]2}1/2,
jΩ=Δm22EDσ0Ωτdi(1+Ω2τdi2)1/21(1+Ω2τph2)1/2.
JmaxΩ=Δ2JEDph.

Metrics