Abstract

The frequency dispersion of the large electro-optic effect in rubidium hydrogen selenate is measured from 300 Hz to 200 kHz as a function of the direction of propagation. It is shown that the major coefficient is r42 (750 pm/V at 1 kHz). Both dielectric and electro-optic responses exhibit strong, perfectly correlated dispersions in this frequency range. The experimental results confirm the major contribution of domain dynamics in the huge electro-optic effect and are in perfect agreement with calculations based on the tilting of the optical indicatrix. The possible use of rubidium hydrogen selenate in low-frequency electro-optic modulators is briefly discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with strong electro-optic effect: rubidium hydrogen selenate,” Appl. Phys. Lett. 64, 1920–1922 (1994).
    [CrossRef]
  2. J. P. Salvestrini, L. Guilbert, M. D. Fontana, and Z. Czapla, “Electro-optical properties of rubidium hydrogen selenate: influence of the dc electric field and origin of the large electro-optic coefficient,” J. Opt. Soc. Am. B 14, 2818–2822 (1997).
    [CrossRef]
  3. L. Guilbert, J. P. Salvestrini, M. D. Fontana, and Z. Czapla, “Correlation between dielectric and electro-optic properties related to domain dynamics in RbHSeO4 crystals,” Phys. Rev. B 58, 2523–2528 (1998).
    [CrossRef]
  4. L. Guilbert, J. P. Salvestrini, P. Kolata, F. X. Abrial, M. D. Fontana, and Z. Czapla, “Optical characteristics of triclinic rubidium hydrogen selenate,” J. Opt. Soc. Am. B 15, 1009–1016 (1998).
    [CrossRef]
  5. L. Guilbert, J. P. Salvestrini, H. Hassan, and M. D. Fontana, “Combination of phase, intensity and contrast contributions in electro-optic modulation,” IEEE J. Quantum Electron. 35, 273–280 (1999).
    [CrossRef]
  6. R. Poprawski, J. Mroz, Z. Czapla, and L. Sobczyk, “Ferroelectrics properties and domain structure in RbHSeO4,” Acta Phys. Pol. A 55, 641–645 (1979).

1999 (1)

L. Guilbert, J. P. Salvestrini, H. Hassan, and M. D. Fontana, “Combination of phase, intensity and contrast contributions in electro-optic modulation,” IEEE J. Quantum Electron. 35, 273–280 (1999).
[CrossRef]

1998 (2)

L. Guilbert, J. P. Salvestrini, M. D. Fontana, and Z. Czapla, “Correlation between dielectric and electro-optic properties related to domain dynamics in RbHSeO4 crystals,” Phys. Rev. B 58, 2523–2528 (1998).
[CrossRef]

L. Guilbert, J. P. Salvestrini, P. Kolata, F. X. Abrial, M. D. Fontana, and Z. Czapla, “Optical characteristics of triclinic rubidium hydrogen selenate,” J. Opt. Soc. Am. B 15, 1009–1016 (1998).
[CrossRef]

1997 (1)

1994 (1)

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with strong electro-optic effect: rubidium hydrogen selenate,” Appl. Phys. Lett. 64, 1920–1922 (1994).
[CrossRef]

1979 (1)

R. Poprawski, J. Mroz, Z. Czapla, and L. Sobczyk, “Ferroelectrics properties and domain structure in RbHSeO4,” Acta Phys. Pol. A 55, 641–645 (1979).

Abrial, F. X.

Aillerie, M.

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with strong electro-optic effect: rubidium hydrogen selenate,” Appl. Phys. Lett. 64, 1920–1922 (1994).
[CrossRef]

Czapla, Z.

L. Guilbert, J. P. Salvestrini, P. Kolata, F. X. Abrial, M. D. Fontana, and Z. Czapla, “Optical characteristics of triclinic rubidium hydrogen selenate,” J. Opt. Soc. Am. B 15, 1009–1016 (1998).
[CrossRef]

L. Guilbert, J. P. Salvestrini, M. D. Fontana, and Z. Czapla, “Correlation between dielectric and electro-optic properties related to domain dynamics in RbHSeO4 crystals,” Phys. Rev. B 58, 2523–2528 (1998).
[CrossRef]

J. P. Salvestrini, L. Guilbert, M. D. Fontana, and Z. Czapla, “Electro-optical properties of rubidium hydrogen selenate: influence of the dc electric field and origin of the large electro-optic coefficient,” J. Opt. Soc. Am. B 14, 2818–2822 (1997).
[CrossRef]

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with strong electro-optic effect: rubidium hydrogen selenate,” Appl. Phys. Lett. 64, 1920–1922 (1994).
[CrossRef]

R. Poprawski, J. Mroz, Z. Czapla, and L. Sobczyk, “Ferroelectrics properties and domain structure in RbHSeO4,” Acta Phys. Pol. A 55, 641–645 (1979).

Fontana, M. D.

L. Guilbert, J. P. Salvestrini, H. Hassan, and M. D. Fontana, “Combination of phase, intensity and contrast contributions in electro-optic modulation,” IEEE J. Quantum Electron. 35, 273–280 (1999).
[CrossRef]

L. Guilbert, J. P. Salvestrini, M. D. Fontana, and Z. Czapla, “Correlation between dielectric and electro-optic properties related to domain dynamics in RbHSeO4 crystals,” Phys. Rev. B 58, 2523–2528 (1998).
[CrossRef]

L. Guilbert, J. P. Salvestrini, P. Kolata, F. X. Abrial, M. D. Fontana, and Z. Czapla, “Optical characteristics of triclinic rubidium hydrogen selenate,” J. Opt. Soc. Am. B 15, 1009–1016 (1998).
[CrossRef]

J. P. Salvestrini, L. Guilbert, M. D. Fontana, and Z. Czapla, “Electro-optical properties of rubidium hydrogen selenate: influence of the dc electric field and origin of the large electro-optic coefficient,” J. Opt. Soc. Am. B 14, 2818–2822 (1997).
[CrossRef]

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with strong electro-optic effect: rubidium hydrogen selenate,” Appl. Phys. Lett. 64, 1920–1922 (1994).
[CrossRef]

Guilbert, L.

L. Guilbert, J. P. Salvestrini, H. Hassan, and M. D. Fontana, “Combination of phase, intensity and contrast contributions in electro-optic modulation,” IEEE J. Quantum Electron. 35, 273–280 (1999).
[CrossRef]

L. Guilbert, J. P. Salvestrini, P. Kolata, F. X. Abrial, M. D. Fontana, and Z. Czapla, “Optical characteristics of triclinic rubidium hydrogen selenate,” J. Opt. Soc. Am. B 15, 1009–1016 (1998).
[CrossRef]

L. Guilbert, J. P. Salvestrini, M. D. Fontana, and Z. Czapla, “Correlation between dielectric and electro-optic properties related to domain dynamics in RbHSeO4 crystals,” Phys. Rev. B 58, 2523–2528 (1998).
[CrossRef]

J. P. Salvestrini, L. Guilbert, M. D. Fontana, and Z. Czapla, “Electro-optical properties of rubidium hydrogen selenate: influence of the dc electric field and origin of the large electro-optic coefficient,” J. Opt. Soc. Am. B 14, 2818–2822 (1997).
[CrossRef]

Hassan, H.

L. Guilbert, J. P. Salvestrini, H. Hassan, and M. D. Fontana, “Combination of phase, intensity and contrast contributions in electro-optic modulation,” IEEE J. Quantum Electron. 35, 273–280 (1999).
[CrossRef]

Kolata, P.

Mroz, J.

R. Poprawski, J. Mroz, Z. Czapla, and L. Sobczyk, “Ferroelectrics properties and domain structure in RbHSeO4,” Acta Phys. Pol. A 55, 641–645 (1979).

Poprawski, R.

R. Poprawski, J. Mroz, Z. Czapla, and L. Sobczyk, “Ferroelectrics properties and domain structure in RbHSeO4,” Acta Phys. Pol. A 55, 641–645 (1979).

Salvestrini, J. P.

L. Guilbert, J. P. Salvestrini, H. Hassan, and M. D. Fontana, “Combination of phase, intensity and contrast contributions in electro-optic modulation,” IEEE J. Quantum Electron. 35, 273–280 (1999).
[CrossRef]

L. Guilbert, J. P. Salvestrini, P. Kolata, F. X. Abrial, M. D. Fontana, and Z. Czapla, “Optical characteristics of triclinic rubidium hydrogen selenate,” J. Opt. Soc. Am. B 15, 1009–1016 (1998).
[CrossRef]

L. Guilbert, J. P. Salvestrini, M. D. Fontana, and Z. Czapla, “Correlation between dielectric and electro-optic properties related to domain dynamics in RbHSeO4 crystals,” Phys. Rev. B 58, 2523–2528 (1998).
[CrossRef]

J. P. Salvestrini, L. Guilbert, M. D. Fontana, and Z. Czapla, “Electro-optical properties of rubidium hydrogen selenate: influence of the dc electric field and origin of the large electro-optic coefficient,” J. Opt. Soc. Am. B 14, 2818–2822 (1997).
[CrossRef]

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with strong electro-optic effect: rubidium hydrogen selenate,” Appl. Phys. Lett. 64, 1920–1922 (1994).
[CrossRef]

Sobczyk, L.

R. Poprawski, J. Mroz, Z. Czapla, and L. Sobczyk, “Ferroelectrics properties and domain structure in RbHSeO4,” Acta Phys. Pol. A 55, 641–645 (1979).

Acta Phys. Pol. A (1)

R. Poprawski, J. Mroz, Z. Czapla, and L. Sobczyk, “Ferroelectrics properties and domain structure in RbHSeO4,” Acta Phys. Pol. A 55, 641–645 (1979).

Appl. Phys. Lett. (1)

J. P. Salvestrini, M. D. Fontana, M. Aillerie, and Z. Czapla, “New material with strong electro-optic effect: rubidium hydrogen selenate,” Appl. Phys. Lett. 64, 1920–1922 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Guilbert, J. P. Salvestrini, H. Hassan, and M. D. Fontana, “Combination of phase, intensity and contrast contributions in electro-optic modulation,” IEEE J. Quantum Electron. 35, 273–280 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

Phys. Rev. B (1)

L. Guilbert, J. P. Salvestrini, M. D. Fontana, and Z. Czapla, “Correlation between dielectric and electro-optic properties related to domain dynamics in RbHSeO4 crystals,” Phys. Rev. B 58, 2523–2528 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Rotating sample holder for electro-optic measurements versus incidence angle.

Fig. 2
Fig. 2

Definition of the pseudoprincipal axes in the pseudomonoclinic crystal system: x3 is perpendicular to the plan of W-domain walls; x1 and x2 are the neutral lines in this plane.

Fig. 3
Fig. 3

Tilt of the optical indicatrix as seen from axes (a) x1 and (b) x2. For clarity the small values of the tilt angles (ϕ1=-2.2° and ϕ2=0.6°) are voluntarily increased. (c) The variation of the extraordinary index n from domain to domain when the light beam is propagated in the plane (x2, x3) is shown schematically. The other index is quasiordinary and keeps practically the same value (n1) in both types of domains.

Fig. 4
Fig. 4

Sénarmont setup and its transfer function.

Fig. 5
Fig. 5

Typical birefringence cycle recorded versus dc when the direction of propagation is not perpendicular to domain walls. Cycling time is ∼1 h. The origin of the vertical scale is arbitrarily chosen in order to symmetrize the saturated branches of the loop (i.e., natural birefringence is suppressed).

Fig. 6
Fig. 6

Variation of (a) the birefringence difference and (b) the effective EO coefficient as a function of the incidence angle i in the plane (x2, x3). ΔΔn is measured on birefringence cycles and corresponds to the full range of the birefringence variation between saturated states. n3reff is measured at 1 kHz in the coercive state by the classical modulation method under ac amplitude Vpp=50 V (Epp110V/cm).

Fig. 7
Fig. 7

Frequency dispersion of the effective EO coefficient for three different angles of incidence in the plane (x2, x3). The dotted lines are only to guide the eye.

Fig. 8
Fig. 8

Correlated dispersions of (a) the dielectric permittivity ε and (b) the Pockels coefficient r42. (c) The proportionality between the EO coefficient and the modulus of the complex dielectric susceptibility χ associated with domain dynamics.

Tables (1)

Tables Icon

Table 1 Optical Parametersa of RHSe at 633 nm in the Ferroelastic Phase, 293 Kb

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Γ=2β=2πL×Δn/λ,
n3reff=2λπLbVppArcsinippImax-Imin,
L=c/cos i,
ΔΔn=n+2n-2n++n-n2+n3n22n32Δn1 sin 2ϕ1 sin 2i,
n3reff=n3r42 sin 2i,
r52r42Δn2 sin 2ϕ2Δn1 sin 2ϕ1.

Metrics