Abstract

The optical properties of Si nanoclusters embedded within an ordered array of silica spheres have been measured. Raman data were used to confirm the existence of the Si nanoclusters. Reflection measurements and a large photoluminescence signal demonstrated the effect of the periodic structure on the optical characteristics. The wavelength-dependent, photoluminescence decay time was in the range of 7 to 24 µs for λ=650 to λ=850 nm, respectively, implying contributions from surface or interface states.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Vijayalakshmi, F. Shen, and H. Grebel, “Artificial dielectrics: nonlinear optical properties of silicon nanoclusters at λ=532 nm,” Appl. Phys. Lett. 71, 3332–3334 (1997).
    [CrossRef]
  2. S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
    [CrossRef]
  3. M. Ajgaonkar, Y. Zhang, H. Grebel, and C. W. White, “Linear and nonlinear properties of a coherent array of submicron SiO2 spheres (opal) embedded with Si nanoparticles,” Appl. Phys. Lett. 75, 1532–1534 (1999).
    [CrossRef]
  4. A. Philipes, “Solid opaline packing of colloidal silica spheres,” J. Mater. Sci. Lett. 8, 1371–1373 (1987).
    [CrossRef]
  5. S. Vijayalakshmi, Z. Iqbal, H. Grebel, and C. W. White, “Artificial dielectrics: nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix,” J. Appl. Phys. 84, 6502–6506 (1998).
    [CrossRef]
  6. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree S., Jr., and J. C. Barbour, “Effects of hydrogen inthe annealing environment on photoluminescence from Si nanoparticles in SiO2,” J. Appl. Phys. 86, 396–401 (1999).
    [CrossRef]
  7. D. M. Mittleman, J. F. Bertone, Peng Jiang, K. S. Hwang, and V. L. Colvin, “Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation,” J. Chem. Phys. 111, 345–354 (1999).
    [CrossRef]
  8. E. Snoeks, A. van Blaaderen, C. M. van Kats, M. L. Brogersma, T. van Dillen, and A. Polman, “Colloidal ellipsoids with continuously variable shape,” Nature (to be published).
  9. H. Grebel, Y. Zhang, M. Sosnowski, D. Jacobson, and J. Benton, “Implantation of erbium into ordered array of silica nanospheres (opal),” presented at the Material Research Society Spring Meeting, San Francisco, Calif., April 5–9, 1999.
  10. S. Veprek, F. A. Sarott, and Z. Iqbal, “Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon,” Phys. Rev. B 36, 3344–3350 (1986).
    [CrossRef]
  11. J. Linrose, A. Galeckas, N. Lalic, and V. Grivickas, “Time resolved photoluminescence chracterization of nm-sized silicon crystallites in SiO2,” Thin Solid Films 297, 167–170 (1997).
    [CrossRef]
  12. K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033 (1999).
    [CrossRef]
  13. X. L. Wu, T. Gao, G. G. Siu, S. Tong, and X. M. Bao, “Defect related infrared photoluminescence in Ge+ implanted SiO2 films,” Appl. Phys. Lett. 74, 2420–2422 (1999).
    [CrossRef]

1999 (6)

S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
[CrossRef]

M. Ajgaonkar, Y. Zhang, H. Grebel, and C. W. White, “Linear and nonlinear properties of a coherent array of submicron SiO2 spheres (opal) embedded with Si nanoparticles,” Appl. Phys. Lett. 75, 1532–1534 (1999).
[CrossRef]

P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree S., Jr., and J. C. Barbour, “Effects of hydrogen inthe annealing environment on photoluminescence from Si nanoparticles in SiO2,” J. Appl. Phys. 86, 396–401 (1999).
[CrossRef]

D. M. Mittleman, J. F. Bertone, Peng Jiang, K. S. Hwang, and V. L. Colvin, “Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation,” J. Chem. Phys. 111, 345–354 (1999).
[CrossRef]

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033 (1999).
[CrossRef]

X. L. Wu, T. Gao, G. G. Siu, S. Tong, and X. M. Bao, “Defect related infrared photoluminescence in Ge+ implanted SiO2 films,” Appl. Phys. Lett. 74, 2420–2422 (1999).
[CrossRef]

1998 (1)

S. Vijayalakshmi, Z. Iqbal, H. Grebel, and C. W. White, “Artificial dielectrics: nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix,” J. Appl. Phys. 84, 6502–6506 (1998).
[CrossRef]

1997 (2)

S. Vijayalakshmi, F. Shen, and H. Grebel, “Artificial dielectrics: nonlinear optical properties of silicon nanoclusters at λ=532 nm,” Appl. Phys. Lett. 71, 3332–3334 (1997).
[CrossRef]

J. Linrose, A. Galeckas, N. Lalic, and V. Grivickas, “Time resolved photoluminescence chracterization of nm-sized silicon crystallites in SiO2,” Thin Solid Films 297, 167–170 (1997).
[CrossRef]

1987 (1)

A. Philipes, “Solid opaline packing of colloidal silica spheres,” J. Mater. Sci. Lett. 8, 1371–1373 (1987).
[CrossRef]

1986 (1)

S. Veprek, F. A. Sarott, and Z. Iqbal, “Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon,” Phys. Rev. B 36, 3344–3350 (1986).
[CrossRef]

Ajgaonkar, M.

M. Ajgaonkar, Y. Zhang, H. Grebel, and C. W. White, “Linear and nonlinear properties of a coherent array of submicron SiO2 spheres (opal) embedded with Si nanoparticles,” Appl. Phys. Lett. 75, 1532–1534 (1999).
[CrossRef]

Atwater, H. A.

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033 (1999).
[CrossRef]

Bao, X. M.

X. L. Wu, T. Gao, G. G. Siu, S. Tong, and X. M. Bao, “Defect related infrared photoluminescence in Ge+ implanted SiO2 films,” Appl. Phys. Lett. 74, 2420–2422 (1999).
[CrossRef]

Barbour, J. C.

P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree S., Jr., and J. C. Barbour, “Effects of hydrogen inthe annealing environment on photoluminescence from Si nanoparticles in SiO2,” J. Appl. Phys. 86, 396–401 (1999).
[CrossRef]

Bertone, J. F.

D. M. Mittleman, J. F. Bertone, Peng Jiang, K. S. Hwang, and V. L. Colvin, “Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation,” J. Chem. Phys. 111, 345–354 (1999).
[CrossRef]

Brongersma, M. L.

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033 (1999).
[CrossRef]

Budai, J. D.

P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree S., Jr., and J. C. Barbour, “Effects of hydrogen inthe annealing environment on photoluminescence from Si nanoparticles in SiO2,” J. Appl. Phys. 86, 396–401 (1999).
[CrossRef]

Colvin, V. L.

D. M. Mittleman, J. F. Bertone, Peng Jiang, K. S. Hwang, and V. L. Colvin, “Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation,” J. Chem. Phys. 111, 345–354 (1999).
[CrossRef]

Federici, J.

S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
[CrossRef]

Galeckas, A.

J. Linrose, A. Galeckas, N. Lalic, and V. Grivickas, “Time resolved photoluminescence chracterization of nm-sized silicon crystallites in SiO2,” Thin Solid Films 297, 167–170 (1997).
[CrossRef]

Gao, T.

X. L. Wu, T. Gao, G. G. Siu, S. Tong, and X. M. Bao, “Defect related infrared photoluminescence in Ge+ implanted SiO2 films,” Appl. Phys. Lett. 74, 2420–2422 (1999).
[CrossRef]

George, M.

S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
[CrossRef]

Grebel, H.

S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
[CrossRef]

M. Ajgaonkar, Y. Zhang, H. Grebel, and C. W. White, “Linear and nonlinear properties of a coherent array of submicron SiO2 spheres (opal) embedded with Si nanoparticles,” Appl. Phys. Lett. 75, 1532–1534 (1999).
[CrossRef]

S. Vijayalakshmi, Z. Iqbal, H. Grebel, and C. W. White, “Artificial dielectrics: nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix,” J. Appl. Phys. 84, 6502–6506 (1998).
[CrossRef]

S. Vijayalakshmi, F. Shen, and H. Grebel, “Artificial dielectrics: nonlinear optical properties of silicon nanoclusters at λ=532 nm,” Appl. Phys. Lett. 71, 3332–3334 (1997).
[CrossRef]

Grivickas, V.

J. Linrose, A. Galeckas, N. Lalic, and V. Grivickas, “Time resolved photoluminescence chracterization of nm-sized silicon crystallites in SiO2,” Thin Solid Films 297, 167–170 (1997).
[CrossRef]

Hembree S. Jr., D. M.

P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree S., Jr., and J. C. Barbour, “Effects of hydrogen inthe annealing environment on photoluminescence from Si nanoparticles in SiO2,” J. Appl. Phys. 86, 396–401 (1999).
[CrossRef]

Hwang, K. S.

D. M. Mittleman, J. F. Bertone, Peng Jiang, K. S. Hwang, and V. L. Colvin, “Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation,” J. Chem. Phys. 111, 345–354 (1999).
[CrossRef]

Iqbal, Z.

S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
[CrossRef]

S. Vijayalakshmi, Z. Iqbal, H. Grebel, and C. W. White, “Artificial dielectrics: nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix,” J. Appl. Phys. 84, 6502–6506 (1998).
[CrossRef]

S. Veprek, F. A. Sarott, and Z. Iqbal, “Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon,” Phys. Rev. B 36, 3344–3350 (1986).
[CrossRef]

Jiang, Peng

D. M. Mittleman, J. F. Bertone, Peng Jiang, K. S. Hwang, and V. L. Colvin, “Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation,” J. Chem. Phys. 111, 345–354 (1999).
[CrossRef]

Lalic, N.

J. Linrose, A. Galeckas, N. Lalic, and V. Grivickas, “Time resolved photoluminescence chracterization of nm-sized silicon crystallites in SiO2,” Thin Solid Films 297, 167–170 (1997).
[CrossRef]

Linrose, J.

J. Linrose, A. Galeckas, N. Lalic, and V. Grivickas, “Time resolved photoluminescence chracterization of nm-sized silicon crystallites in SiO2,” Thin Solid Films 297, 167–170 (1997).
[CrossRef]

Meldrum, A.

P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree S., Jr., and J. C. Barbour, “Effects of hydrogen inthe annealing environment on photoluminescence from Si nanoparticles in SiO2,” J. Appl. Phys. 86, 396–401 (1999).
[CrossRef]

Min, K. S.

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033 (1999).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, J. F. Bertone, Peng Jiang, K. S. Hwang, and V. L. Colvin, “Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation,” J. Chem. Phys. 111, 345–354 (1999).
[CrossRef]

Philipes, A.

A. Philipes, “Solid opaline packing of colloidal silica spheres,” J. Mater. Sci. Lett. 8, 1371–1373 (1987).
[CrossRef]

Polman, A.

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033 (1999).
[CrossRef]

Sarott, F. A.

S. Veprek, F. A. Sarott, and Z. Iqbal, “Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon,” Phys. Rev. B 36, 3344–3350 (1986).
[CrossRef]

Shcheglov, K. V.

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033 (1999).
[CrossRef]

Shen, F.

S. Vijayalakshmi, F. Shen, and H. Grebel, “Artificial dielectrics: nonlinear optical properties of silicon nanoclusters at λ=532 nm,” Appl. Phys. Lett. 71, 3332–3334 (1997).
[CrossRef]

Siu, G. G.

X. L. Wu, T. Gao, G. G. Siu, S. Tong, and X. M. Bao, “Defect related infrared photoluminescence in Ge+ implanted SiO2 films,” Appl. Phys. Lett. 74, 2420–2422 (1999).
[CrossRef]

Tong, S.

X. L. Wu, T. Gao, G. G. Siu, S. Tong, and X. M. Bao, “Defect related infrared photoluminescence in Ge+ implanted SiO2 films,” Appl. Phys. Lett. 74, 2420–2422 (1999).
[CrossRef]

Veprek, S.

S. Veprek, F. A. Sarott, and Z. Iqbal, “Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon,” Phys. Rev. B 36, 3344–3350 (1986).
[CrossRef]

Vijayalakshmi, S.

S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
[CrossRef]

S. Vijayalakshmi, Z. Iqbal, H. Grebel, and C. W. White, “Artificial dielectrics: nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix,” J. Appl. Phys. 84, 6502–6506 (1998).
[CrossRef]

S. Vijayalakshmi, F. Shen, and H. Grebel, “Artificial dielectrics: nonlinear optical properties of silicon nanoclusters at λ=532 nm,” Appl. Phys. Lett. 71, 3332–3334 (1997).
[CrossRef]

White, C. W.

M. Ajgaonkar, Y. Zhang, H. Grebel, and C. W. White, “Linear and nonlinear properties of a coherent array of submicron SiO2 spheres (opal) embedded with Si nanoparticles,” Appl. Phys. Lett. 75, 1532–1534 (1999).
[CrossRef]

P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree S., Jr., and J. C. Barbour, “Effects of hydrogen inthe annealing environment on photoluminescence from Si nanoparticles in SiO2,” J. Appl. Phys. 86, 396–401 (1999).
[CrossRef]

S. Vijayalakshmi, Z. Iqbal, H. Grebel, and C. W. White, “Artificial dielectrics: nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix,” J. Appl. Phys. 84, 6502–6506 (1998).
[CrossRef]

Withrow, P.

P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree S., Jr., and J. C. Barbour, “Effects of hydrogen inthe annealing environment on photoluminescence from Si nanoparticles in SiO2,” J. Appl. Phys. 86, 396–401 (1999).
[CrossRef]

Wu, X. L.

X. L. Wu, T. Gao, G. G. Siu, S. Tong, and X. M. Bao, “Defect related infrared photoluminescence in Ge+ implanted SiO2 films,” Appl. Phys. Lett. 74, 2420–2422 (1999).
[CrossRef]

Yang, C. M.

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033 (1999).
[CrossRef]

Zhang, Y.

M. Ajgaonkar, Y. Zhang, H. Grebel, and C. W. White, “Linear and nonlinear properties of a coherent array of submicron SiO2 spheres (opal) embedded with Si nanoparticles,” Appl. Phys. Lett. 75, 1532–1534 (1999).
[CrossRef]

Appl. Phys. Lett. (4)

S. Vijayalakshmi, F. Shen, and H. Grebel, “Artificial dielectrics: nonlinear optical properties of silicon nanoclusters at λ=532 nm,” Appl. Phys. Lett. 71, 3332–3334 (1997).
[CrossRef]

M. Ajgaonkar, Y. Zhang, H. Grebel, and C. W. White, “Linear and nonlinear properties of a coherent array of submicron SiO2 spheres (opal) embedded with Si nanoparticles,” Appl. Phys. Lett. 75, 1532–1534 (1999).
[CrossRef]

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett. 69, 2033 (1999).
[CrossRef]

X. L. Wu, T. Gao, G. G. Siu, S. Tong, and X. M. Bao, “Defect related infrared photoluminescence in Ge+ implanted SiO2 films,” Appl. Phys. Lett. 74, 2420–2422 (1999).
[CrossRef]

J. Appl. Phys. (2)

S. Vijayalakshmi, Z. Iqbal, H. Grebel, and C. W. White, “Artificial dielectrics: nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix,” J. Appl. Phys. 84, 6502–6506 (1998).
[CrossRef]

P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree S., Jr., and J. C. Barbour, “Effects of hydrogen inthe annealing environment on photoluminescence from Si nanoparticles in SiO2,” J. Appl. Phys. 86, 396–401 (1999).
[CrossRef]

J. Chem. Phys. (1)

D. M. Mittleman, J. F. Bertone, Peng Jiang, K. S. Hwang, and V. L. Colvin, “Optical properties of planar colloidal crystals: dynamical diffraction and the scalar wave approximation,” J. Chem. Phys. 111, 345–354 (1999).
[CrossRef]

J. Mater. Sci. Lett. (1)

A. Philipes, “Solid opaline packing of colloidal silica spheres,” J. Mater. Sci. Lett. 8, 1371–1373 (1987).
[CrossRef]

Phys. Rev. B (1)

S. Veprek, F. A. Sarott, and Z. Iqbal, “Effect of grain boundaries on the Raman spectra, optical absorption, and elastic light scattering in nanometer-sized crystalline silicon,” Phys. Rev. B 36, 3344–3350 (1986).
[CrossRef]

Thin Solid Films (2)

J. Linrose, A. Galeckas, N. Lalic, and V. Grivickas, “Time resolved photoluminescence chracterization of nm-sized silicon crystallites in SiO2,” Thin Solid Films 297, 167–170 (1997).
[CrossRef]

S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
[CrossRef]

Other (2)

E. Snoeks, A. van Blaaderen, C. M. van Kats, M. L. Brogersma, T. van Dillen, and A. Polman, “Colloidal ellipsoids with continuously variable shape,” Nature (to be published).

H. Grebel, Y. Zhang, M. Sosnowski, D. Jacobson, and J. Benton, “Implantation of erbium into ordered array of silica nanospheres (opal),” presented at the Material Research Society Spring Meeting, San Francisco, Calif., April 5–9, 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SEM picture of a silicon-ion-implanted red opal. The featureless region is the swollen, implanted top layer. (b) SEM picture of a cross section of a silicon-ion-implanted red opal. The smooth featureless region indicates the swollen region.

Fig. 2
Fig. 2

Reflection data with respect to the input optical intensity for a red (300-nm-size silica spheres) opal at a viewing angle of θ=20° with respect to the sample normal. The peak reflection is normalized to unity.

Fig. 3
Fig. 3

Reflection data with respect to the input optical intensity for a Si-implanted red (300-nm-size silica spheres) opal at a viewing angle of θ=20° with respect to the sample normal. The peak reflection is normalized to unity.

Fig. 4
Fig. 4

Micro-Raman spectra of the various samples.

Fig. 5
Fig. 5

Comparative PL data in volts. The ordinate of each curve starts at zero. (a) Si-implanted flat sample. (b) Si-implanted and nonimplanted green opal. (c) Si-implanted and nonimplanted red opal.

Fig. 6
Fig. 6

(a) Time-resolved spectroscopy signals from a Si-ion-implanted flat sample at various luminescent wavelengths. The asymptotic fit was made with one exponential curve. (b) Time-resolved spectroscopy signals from a Si-implanted red (300-nm sphere size) opal. The asymptotic fit was made with one exponential curve.

Tables (1)

Tables Icon

Table 1 Asymptotic Time Constants for Various Luminescence Wavelengths

Metrics