Abstract

A new, direct vacuum-ultraviolet laser-excitation method is used to study the single-photon autoionization of xenon atoms in the 5p65p5 ns[1/2]10 (14n52) and 5p65p5 nd[3/2]10 (16n78) autoionizing Rydberg series. Fano profile parameters for both series are reported over the entire range of observed states. From analysis of the nd series an ionization potential Td=108 370.82±0.05 cm-1 is obtained. This agrees well with a previously reported limit of 108 370.8±0.2 cm-1.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Beutler, “Über absorptionsserien von argon, krypton und xenon in termen zwischen den beiden ionisierungsgrenzen 2P3/2 and 2P1/2,” Z. Phys. 93, 177–191 (1935).
    [CrossRef]
  2. R. E. Huffman, Y. Tanaka, and J. C. Larrabee, “Absorption coefficients of xenon and argon in the 600–1025 Å wavelength regions,” J. Chem. Phys. 39, 902–909 (1963).
    [CrossRef]
  3. F. M. Matsunaga, R. S. Jackson, and K. Watanabe, “Photoionization yield and absorption coefficient of xenon in the region of 860–1022 Å,” J. Quant. Spectrosc. Radiat. Transfer 5, 329–333 (1965).
    [CrossRef]
  4. P. H. Metzger and G. R. Cook, “Flux distribution of the Hopfield helium continuum from the photoionization of Ar, Kr, and Xe,” J. Opt. Soc. Am. 55, 516–520 (1965).
    [CrossRef]
  5. K. Yoshino and D. E. Freeman, “Absorption spectrum of xenon in the vacuum-ultraviolet region,” J. Opt. Soc. Am. B 2, 1268–1274 (1985).
    [CrossRef]
  6. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [CrossRef]
  7. F. H. Mies, “Configuration interaction theory: effects of overlapping resonances,” Phys. Rev. 175, 164–175 (1968).
    [CrossRef]
  8. U. Fano and J. W. Cooper, “Line profiles in the far-UV absorption spectra of the rare gases,” Phys. Rev. 137, A1364–A1379 (1961).
    [CrossRef]
  9. U. Fano, “Unified treatment of perturbed series, continuous spectra, and collisions,” J. Opt. Soc. Am. 65, 979–987 (1975).
    [CrossRef]
  10. M. J. Seaton, “Quantum defect theory. I. General formulation,” Proc. Phys. Soc. London 88, 801–814 (1966); M. J. Seaton, “Quantum defect theory. II. Illustrative one-channel and two-channel problems,” Proc. Phys. Soc. London 88, 815–832 (1966); W. Eissner, H. Nussbaumer, H. E. Saraph, and M. J. Seaton, “Resonance in cross sections for excitation of forbidden lines in O2+,” J. Phys. B JPAMA4 2, 341–355 (1969).
    [CrossRef]
  11. C. H. Greene, A. R. P. Rau, and U. Fano, “General form of the quantum-defect theory. II,” Phys. Rev. A 26, 2441–2459 (1982).
    [CrossRef]
  12. D. A. Harmin, “Hydrogenic Stark effect: properties of the wavefunction,” Phys. Rev. A 24, 2491–2517 (1981); D. A. Harmin, “Theory of the Stark effect,” Phys. Rev. A 26, 2656–2681 (1982).
    [CrossRef]
  13. F. H. Mies, “A multichannel quantum defect analysis of diatomic predissociation and inelastic atomic scattering,” J. Chem. Phys. 80, 2514–2525 (1984); F. H. Mies and P. S. Julienne, “A multichannel quantum defect analysis of two-state couplings in diatomic molecules,” J. Chem. Phys. 80, 2526–2536 (1984).
    [CrossRef]
  14. W. L. Cooke and C. L. Cromer, “Multichannel quantum-defect theory and an equivalent N-level system,” Phys. Rev. A 32, 2725–2738 (1985).
    [CrossRef] [PubMed]
  15. K. Ueda, “Spectral line shapes of autoionizing Rydberg series of xenon,” J. Opt. Soc. Am. B 4, 424–427 (1987).
    [CrossRef]
  16. J. P. Connerade, “On Rydberg series of autoionizing resonances,” J. Phys. B 16, L329–L335 (1983).
    [CrossRef]
  17. J. Dubau and M. J. Seaton, “Quantum defect theory. XIII. Radiative transitions,” J. Phys. B 17, 381–403 (1984).
    [CrossRef]
  18. A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. I. Symmetry analysis of the two-channel coupling,” J. Phys. B 17, 215–230 (1984); A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. II. A Hamiltonian model,” J. Phys. B 17, 4267–4275 (1984); A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. III. Note on a narrow band in the Ba J=2 spectrum,” J. Phys. B JPAMA4 17, 4277–4283 (1984).
    [CrossRef]
  19. K. Ueda, “Spectral shapes of autoionizing Rydberg series,” Phys. Rev. A 35, 2484–2492 (1987).
    [CrossRef] [PubMed]
  20. R. P. Madden and K. Codling, “Two-electron excitation states in helium,” Astrophys. J. 141, 364–375 (1965).
    [CrossRef]
  21. A. Chutjian and R. Carlson, “Curves of growth of autoionizing spectral lines with application to the 3s–4p transition in argon,” J. Opt. Soc. Am. 60, 1204–1208 (1970).
    [CrossRef]
  22. F. J. Comes, H. G. Sälzer, and G. Schumpe, “Autoionisation in atomspektren,” Z. Naturforsch. Teil A 23, 137–151 (1967).
  23. K. D. Bonin, T. J. McIlrath, and K. Yoshino, “High-resolution laser and classical spectroscopy of xenon autoionization,” J. Opt. Soc. Am. B 2, 1275–1283 (1985).
    [CrossRef]
  24. J. Z. Wu, S. B. Whitfield, C. D. Caldwell, M. O. Krause, P. van der Meulen, and A. Fahlman, “High-resolution photoelectron spectrometry of selected ns and nd autoionization resonances in Ar, Kr, and Xe,” Phys. Rev. A 41, 1350–1357 (1990).
    [CrossRef]
  25. K. Maeda, K. Ueda, T. Namioka, and K. Ito, “High-resolution measurement of Beutler–Fano profiles for autoionizing Rydberg series of Xe,” Phys. Rev. A 45, 527–530 (1992); K. Maeda, K. Ueda, T. Namioka, and K. Ito, “High-resolution measurement for photoabsorption cross sections in the autoionization regions of Ar, Kr, and Xe,” J. Phys. B 26, 1541–1555 (1993).
    [CrossRef] [PubMed]
  26. S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Three-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits,” Phys. Rev. A 49, 3322–3332 (1994).
    [CrossRef] [PubMed]
  27. R. H. Page, R. J. Larkin, A. H. Kung, Y. R. Shen, and Y. T. Lee, “Frequency tripling into the 720–1025-Å region with pulsed free jets,” Rev. Sci. Instrum. 58, 1616–1620 (1987).
    [CrossRef]
  28. E. E. Marinero, C. T. Rettner, R. N. Zare, and A. H. Kung, “Excitation of H2 using continuously tunable coherent XUV radiation (97.3–102.3 nm),” Chem. Phys. Lett. 95, 486–491 (1983).
    [CrossRef]
  29. A. H. Kung, “Third-harmonic generation in a pulsed supersonic jet of xenon,” Opt. Lett. 8, 24–26 (1983).
    [CrossRef] [PubMed]
  30. C. T. Rettner, E. E. Marinero, R. N. Zare, and A. H. Kung, “Pulsed free jets: a novel nonlinear media for generation of vacuum ultraviolet and extreme ultraviolet radiation,” J. Chem. Phys. 88, 4459–4465 (1984).
    [CrossRef]
  31. M. T. Frey, L. Ling, B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Use of the Stark effect to minimize residual electric fields in an experimental volume,” Rev. Sci. Instrum. 64, 3649–3650 (1993).
    [CrossRef]
  32. W. A. Chupka, “Factors affecting lifetimes and resolutions of Rydberg states observed in zero-electron-kinetic-energy spectroscopy,” J. Chem. Phys. 98, 4520–4530 (1993); F. Merkt, H. H. Fielding, and T. P. Softley, “Electric field effects on zero-kinetic-energy-photoelectron spectra: an explanation of observed trends,” Chem. Phys. Lett. 202, 153–160 (1993).
    [CrossRef]
  33. A. Chutjian and S. H. Alajajian, “s-Wave threshold in electron attachment: observations and cross sections in CCl4 and SF6 at ultralow electron energies,” Phys. Rev. A 31, 2885–2892 (1985).
    [CrossRef] [PubMed]
  34. W. H. Press, B. P. Flannery, S. A. Teukkolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge, UK, 1983), pp. 521–528.
  35. K. Radler and J. Berkowitz, “Photoionization mass spectrometry of neon using synchrotron radiation: anomalous variations of resonance widths in the noble gases,” J. Chem. Phys. 70, 216–220 (1979).
    [CrossRef]
  36. J. R. Taylor, An Introduction to Error Analysis (University Science, Mill Valley, Calif., 1997), pp. 181–197.
  37. C. E. Moore, Ionization Potentials and Ionization Limits Derived From the Analyses of Optical Spectra, National Standard Reference Data Series—National Bureau of Standards 34 (U.S. GPO, Washington, D.C., 1970).
  38. L. Wang and R. D. Knight, “Two-photon laser spectroscopy of ns and nd autoionizing Rydberg series in xenon,” Phys. Rev. A 34, 3902–3907 (1986).
    [CrossRef] [PubMed]

1994 (1)

S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Three-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits,” Phys. Rev. A 49, 3322–3332 (1994).
[CrossRef] [PubMed]

1993 (1)

M. T. Frey, L. Ling, B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Use of the Stark effect to minimize residual electric fields in an experimental volume,” Rev. Sci. Instrum. 64, 3649–3650 (1993).
[CrossRef]

1990 (1)

J. Z. Wu, S. B. Whitfield, C. D. Caldwell, M. O. Krause, P. van der Meulen, and A. Fahlman, “High-resolution photoelectron spectrometry of selected ns and nd autoionization resonances in Ar, Kr, and Xe,” Phys. Rev. A 41, 1350–1357 (1990).
[CrossRef]

1987 (3)

R. H. Page, R. J. Larkin, A. H. Kung, Y. R. Shen, and Y. T. Lee, “Frequency tripling into the 720–1025-Å region with pulsed free jets,” Rev. Sci. Instrum. 58, 1616–1620 (1987).
[CrossRef]

K. Ueda, “Spectral line shapes of autoionizing Rydberg series of xenon,” J. Opt. Soc. Am. B 4, 424–427 (1987).
[CrossRef]

K. Ueda, “Spectral shapes of autoionizing Rydberg series,” Phys. Rev. A 35, 2484–2492 (1987).
[CrossRef] [PubMed]

1986 (1)

L. Wang and R. D. Knight, “Two-photon laser spectroscopy of ns and nd autoionizing Rydberg series in xenon,” Phys. Rev. A 34, 3902–3907 (1986).
[CrossRef] [PubMed]

1985 (4)

A. Chutjian and S. H. Alajajian, “s-Wave threshold in electron attachment: observations and cross sections in CCl4 and SF6 at ultralow electron energies,” Phys. Rev. A 31, 2885–2892 (1985).
[CrossRef] [PubMed]

K. D. Bonin, T. J. McIlrath, and K. Yoshino, “High-resolution laser and classical spectroscopy of xenon autoionization,” J. Opt. Soc. Am. B 2, 1275–1283 (1985).
[CrossRef]

W. L. Cooke and C. L. Cromer, “Multichannel quantum-defect theory and an equivalent N-level system,” Phys. Rev. A 32, 2725–2738 (1985).
[CrossRef] [PubMed]

K. Yoshino and D. E. Freeman, “Absorption spectrum of xenon in the vacuum-ultraviolet region,” J. Opt. Soc. Am. B 2, 1268–1274 (1985).
[CrossRef]

1984 (2)

J. Dubau and M. J. Seaton, “Quantum defect theory. XIII. Radiative transitions,” J. Phys. B 17, 381–403 (1984).
[CrossRef]

C. T. Rettner, E. E. Marinero, R. N. Zare, and A. H. Kung, “Pulsed free jets: a novel nonlinear media for generation of vacuum ultraviolet and extreme ultraviolet radiation,” J. Chem. Phys. 88, 4459–4465 (1984).
[CrossRef]

1983 (3)

E. E. Marinero, C. T. Rettner, R. N. Zare, and A. H. Kung, “Excitation of H2 using continuously tunable coherent XUV radiation (97.3–102.3 nm),” Chem. Phys. Lett. 95, 486–491 (1983).
[CrossRef]

A. H. Kung, “Third-harmonic generation in a pulsed supersonic jet of xenon,” Opt. Lett. 8, 24–26 (1983).
[CrossRef] [PubMed]

J. P. Connerade, “On Rydberg series of autoionizing resonances,” J. Phys. B 16, L329–L335 (1983).
[CrossRef]

1982 (1)

C. H. Greene, A. R. P. Rau, and U. Fano, “General form of the quantum-defect theory. II,” Phys. Rev. A 26, 2441–2459 (1982).
[CrossRef]

1979 (1)

K. Radler and J. Berkowitz, “Photoionization mass spectrometry of neon using synchrotron radiation: anomalous variations of resonance widths in the noble gases,” J. Chem. Phys. 70, 216–220 (1979).
[CrossRef]

1975 (1)

1970 (1)

1968 (1)

F. H. Mies, “Configuration interaction theory: effects of overlapping resonances,” Phys. Rev. 175, 164–175 (1968).
[CrossRef]

1967 (1)

F. J. Comes, H. G. Sälzer, and G. Schumpe, “Autoionisation in atomspektren,” Z. Naturforsch. Teil A 23, 137–151 (1967).

1965 (3)

F. M. Matsunaga, R. S. Jackson, and K. Watanabe, “Photoionization yield and absorption coefficient of xenon in the region of 860–1022 Å,” J. Quant. Spectrosc. Radiat. Transfer 5, 329–333 (1965).
[CrossRef]

P. H. Metzger and G. R. Cook, “Flux distribution of the Hopfield helium continuum from the photoionization of Ar, Kr, and Xe,” J. Opt. Soc. Am. 55, 516–520 (1965).
[CrossRef]

R. P. Madden and K. Codling, “Two-electron excitation states in helium,” Astrophys. J. 141, 364–375 (1965).
[CrossRef]

1963 (1)

R. E. Huffman, Y. Tanaka, and J. C. Larrabee, “Absorption coefficients of xenon and argon in the 600–1025 Å wavelength regions,” J. Chem. Phys. 39, 902–909 (1963).
[CrossRef]

1961 (2)

U. Fano and J. W. Cooper, “Line profiles in the far-UV absorption spectra of the rare gases,” Phys. Rev. 137, A1364–A1379 (1961).
[CrossRef]

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

1935 (1)

H. Beutler, “Über absorptionsserien von argon, krypton und xenon in termen zwischen den beiden ionisierungsgrenzen 2P3/2 and 2P1/2,” Z. Phys. 93, 177–191 (1935).
[CrossRef]

Alajajian, S. H.

A. Chutjian and S. H. Alajajian, “s-Wave threshold in electron attachment: observations and cross sections in CCl4 and SF6 at ultralow electron energies,” Phys. Rev. A 31, 2885–2892 (1985).
[CrossRef] [PubMed]

Berkowitz, J.

K. Radler and J. Berkowitz, “Photoionization mass spectrometry of neon using synchrotron radiation: anomalous variations of resonance widths in the noble gases,” J. Chem. Phys. 70, 216–220 (1979).
[CrossRef]

Beutler, H.

H. Beutler, “Über absorptionsserien von argon, krypton und xenon in termen zwischen den beiden ionisierungsgrenzen 2P3/2 and 2P1/2,” Z. Phys. 93, 177–191 (1935).
[CrossRef]

Bonin, K. D.

Buma, W. J.

S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Three-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits,” Phys. Rev. A 49, 3322–3332 (1994).
[CrossRef] [PubMed]

Caldwell, C. D.

J. Z. Wu, S. B. Whitfield, C. D. Caldwell, M. O. Krause, P. van der Meulen, and A. Fahlman, “High-resolution photoelectron spectrometry of selected ns and nd autoionization resonances in Ar, Kr, and Xe,” Phys. Rev. A 41, 1350–1357 (1990).
[CrossRef]

Carlson, R.

Chutjian, A.

A. Chutjian and S. H. Alajajian, “s-Wave threshold in electron attachment: observations and cross sections in CCl4 and SF6 at ultralow electron energies,” Phys. Rev. A 31, 2885–2892 (1985).
[CrossRef] [PubMed]

A. Chutjian and R. Carlson, “Curves of growth of autoionizing spectral lines with application to the 3s–4p transition in argon,” J. Opt. Soc. Am. 60, 1204–1208 (1970).
[CrossRef]

Codling, K.

R. P. Madden and K. Codling, “Two-electron excitation states in helium,” Astrophys. J. 141, 364–375 (1965).
[CrossRef]

Comes, F. J.

F. J. Comes, H. G. Sälzer, and G. Schumpe, “Autoionisation in atomspektren,” Z. Naturforsch. Teil A 23, 137–151 (1967).

Connerade, J. P.

J. P. Connerade, “On Rydberg series of autoionizing resonances,” J. Phys. B 16, L329–L335 (1983).
[CrossRef]

Cook, G. R.

Cooke, W. L.

W. L. Cooke and C. L. Cromer, “Multichannel quantum-defect theory and an equivalent N-level system,” Phys. Rev. A 32, 2725–2738 (1985).
[CrossRef] [PubMed]

Cooper, J. W.

U. Fano and J. W. Cooper, “Line profiles in the far-UV absorption spectra of the rare gases,” Phys. Rev. 137, A1364–A1379 (1961).
[CrossRef]

Cromer, C. L.

W. L. Cooke and C. L. Cromer, “Multichannel quantum-defect theory and an equivalent N-level system,” Phys. Rev. A 32, 2725–2738 (1985).
[CrossRef] [PubMed]

de Lange, C. A.

S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Three-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits,” Phys. Rev. A 49, 3322–3332 (1994).
[CrossRef] [PubMed]

Dubau, J.

J. Dubau and M. J. Seaton, “Quantum defect theory. XIII. Radiative transitions,” J. Phys. B 17, 381–403 (1984).
[CrossRef]

Dunning, F. B.

M. T. Frey, L. Ling, B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Use of the Stark effect to minimize residual electric fields in an experimental volume,” Rev. Sci. Instrum. 64, 3649–3650 (1993).
[CrossRef]

Fahlman, A.

J. Z. Wu, S. B. Whitfield, C. D. Caldwell, M. O. Krause, P. van der Meulen, and A. Fahlman, “High-resolution photoelectron spectrometry of selected ns and nd autoionization resonances in Ar, Kr, and Xe,” Phys. Rev. A 41, 1350–1357 (1990).
[CrossRef]

Fano, U.

C. H. Greene, A. R. P. Rau, and U. Fano, “General form of the quantum-defect theory. II,” Phys. Rev. A 26, 2441–2459 (1982).
[CrossRef]

U. Fano, “Unified treatment of perturbed series, continuous spectra, and collisions,” J. Opt. Soc. Am. 65, 979–987 (1975).
[CrossRef]

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

U. Fano and J. W. Cooper, “Line profiles in the far-UV absorption spectra of the rare gases,” Phys. Rev. 137, A1364–A1379 (1961).
[CrossRef]

Freeman, D. E.

Frey, M. T.

M. T. Frey, L. Ling, B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Use of the Stark effect to minimize residual electric fields in an experimental volume,” Rev. Sci. Instrum. 64, 3649–3650 (1993).
[CrossRef]

Greene, C. H.

C. H. Greene, A. R. P. Rau, and U. Fano, “General form of the quantum-defect theory. II,” Phys. Rev. A 26, 2441–2459 (1982).
[CrossRef]

Huffman, R. E.

R. E. Huffman, Y. Tanaka, and J. C. Larrabee, “Absorption coefficients of xenon and argon in the 600–1025 Å wavelength regions,” J. Chem. Phys. 39, 902–909 (1963).
[CrossRef]

Jackson, R. S.

F. M. Matsunaga, R. S. Jackson, and K. Watanabe, “Photoionization yield and absorption coefficient of xenon in the region of 860–1022 Å,” J. Quant. Spectrosc. Radiat. Transfer 5, 329–333 (1965).
[CrossRef]

Knight, R. D.

L. Wang and R. D. Knight, “Two-photon laser spectroscopy of ns and nd autoionizing Rydberg series in xenon,” Phys. Rev. A 34, 3902–3907 (1986).
[CrossRef] [PubMed]

Koeckhoven, S. M.

S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Three-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits,” Phys. Rev. A 49, 3322–3332 (1994).
[CrossRef] [PubMed]

Krause, M. O.

J. Z. Wu, S. B. Whitfield, C. D. Caldwell, M. O. Krause, P. van der Meulen, and A. Fahlman, “High-resolution photoelectron spectrometry of selected ns and nd autoionization resonances in Ar, Kr, and Xe,” Phys. Rev. A 41, 1350–1357 (1990).
[CrossRef]

Kung, A. H.

R. H. Page, R. J. Larkin, A. H. Kung, Y. R. Shen, and Y. T. Lee, “Frequency tripling into the 720–1025-Å region with pulsed free jets,” Rev. Sci. Instrum. 58, 1616–1620 (1987).
[CrossRef]

C. T. Rettner, E. E. Marinero, R. N. Zare, and A. H. Kung, “Pulsed free jets: a novel nonlinear media for generation of vacuum ultraviolet and extreme ultraviolet radiation,” J. Chem. Phys. 88, 4459–4465 (1984).
[CrossRef]

E. E. Marinero, C. T. Rettner, R. N. Zare, and A. H. Kung, “Excitation of H2 using continuously tunable coherent XUV radiation (97.3–102.3 nm),” Chem. Phys. Lett. 95, 486–491 (1983).
[CrossRef]

A. H. Kung, “Third-harmonic generation in a pulsed supersonic jet of xenon,” Opt. Lett. 8, 24–26 (1983).
[CrossRef] [PubMed]

Larkin, R. J.

R. H. Page, R. J. Larkin, A. H. Kung, Y. R. Shen, and Y. T. Lee, “Frequency tripling into the 720–1025-Å region with pulsed free jets,” Rev. Sci. Instrum. 58, 1616–1620 (1987).
[CrossRef]

Larrabee, J. C.

R. E. Huffman, Y. Tanaka, and J. C. Larrabee, “Absorption coefficients of xenon and argon in the 600–1025 Å wavelength regions,” J. Chem. Phys. 39, 902–909 (1963).
[CrossRef]

Lee, Y. T.

R. H. Page, R. J. Larkin, A. H. Kung, Y. R. Shen, and Y. T. Lee, “Frequency tripling into the 720–1025-Å region with pulsed free jets,” Rev. Sci. Instrum. 58, 1616–1620 (1987).
[CrossRef]

Lindsay, B. G.

M. T. Frey, L. Ling, B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Use of the Stark effect to minimize residual electric fields in an experimental volume,” Rev. Sci. Instrum. 64, 3649–3650 (1993).
[CrossRef]

Ling, L.

M. T. Frey, L. Ling, B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Use of the Stark effect to minimize residual electric fields in an experimental volume,” Rev. Sci. Instrum. 64, 3649–3650 (1993).
[CrossRef]

Madden, R. P.

R. P. Madden and K. Codling, “Two-electron excitation states in helium,” Astrophys. J. 141, 364–375 (1965).
[CrossRef]

Marinero, E. E.

C. T. Rettner, E. E. Marinero, R. N. Zare, and A. H. Kung, “Pulsed free jets: a novel nonlinear media for generation of vacuum ultraviolet and extreme ultraviolet radiation,” J. Chem. Phys. 88, 4459–4465 (1984).
[CrossRef]

E. E. Marinero, C. T. Rettner, R. N. Zare, and A. H. Kung, “Excitation of H2 using continuously tunable coherent XUV radiation (97.3–102.3 nm),” Chem. Phys. Lett. 95, 486–491 (1983).
[CrossRef]

Matsunaga, F. M.

F. M. Matsunaga, R. S. Jackson, and K. Watanabe, “Photoionization yield and absorption coefficient of xenon in the region of 860–1022 Å,” J. Quant. Spectrosc. Radiat. Transfer 5, 329–333 (1965).
[CrossRef]

McIlrath, T. J.

Metzger, P. H.

Mies, F. H.

F. H. Mies, “Configuration interaction theory: effects of overlapping resonances,” Phys. Rev. 175, 164–175 (1968).
[CrossRef]

Page, R. H.

R. H. Page, R. J. Larkin, A. H. Kung, Y. R. Shen, and Y. T. Lee, “Frequency tripling into the 720–1025-Å region with pulsed free jets,” Rev. Sci. Instrum. 58, 1616–1620 (1987).
[CrossRef]

Radler, K.

K. Radler and J. Berkowitz, “Photoionization mass spectrometry of neon using synchrotron radiation: anomalous variations of resonance widths in the noble gases,” J. Chem. Phys. 70, 216–220 (1979).
[CrossRef]

Rau, A. R. P.

C. H. Greene, A. R. P. Rau, and U. Fano, “General form of the quantum-defect theory. II,” Phys. Rev. A 26, 2441–2459 (1982).
[CrossRef]

Rettner, C. T.

C. T. Rettner, E. E. Marinero, R. N. Zare, and A. H. Kung, “Pulsed free jets: a novel nonlinear media for generation of vacuum ultraviolet and extreme ultraviolet radiation,” J. Chem. Phys. 88, 4459–4465 (1984).
[CrossRef]

E. E. Marinero, C. T. Rettner, R. N. Zare, and A. H. Kung, “Excitation of H2 using continuously tunable coherent XUV radiation (97.3–102.3 nm),” Chem. Phys. Lett. 95, 486–491 (1983).
[CrossRef]

Sälzer, H. G.

F. J. Comes, H. G. Sälzer, and G. Schumpe, “Autoionisation in atomspektren,” Z. Naturforsch. Teil A 23, 137–151 (1967).

Schumpe, G.

F. J. Comes, H. G. Sälzer, and G. Schumpe, “Autoionisation in atomspektren,” Z. Naturforsch. Teil A 23, 137–151 (1967).

Seaton, M. J.

J. Dubau and M. J. Seaton, “Quantum defect theory. XIII. Radiative transitions,” J. Phys. B 17, 381–403 (1984).
[CrossRef]

Shen, Y. R.

R. H. Page, R. J. Larkin, A. H. Kung, Y. R. Shen, and Y. T. Lee, “Frequency tripling into the 720–1025-Å region with pulsed free jets,” Rev. Sci. Instrum. 58, 1616–1620 (1987).
[CrossRef]

Smith, K. A.

M. T. Frey, L. Ling, B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Use of the Stark effect to minimize residual electric fields in an experimental volume,” Rev. Sci. Instrum. 64, 3649–3650 (1993).
[CrossRef]

Tanaka, Y.

R. E. Huffman, Y. Tanaka, and J. C. Larrabee, “Absorption coefficients of xenon and argon in the 600–1025 Å wavelength regions,” J. Chem. Phys. 39, 902–909 (1963).
[CrossRef]

Ueda, K.

K. Ueda, “Spectral shapes of autoionizing Rydberg series,” Phys. Rev. A 35, 2484–2492 (1987).
[CrossRef] [PubMed]

K. Ueda, “Spectral line shapes of autoionizing Rydberg series of xenon,” J. Opt. Soc. Am. B 4, 424–427 (1987).
[CrossRef]

van der Meulen, P.

J. Z. Wu, S. B. Whitfield, C. D. Caldwell, M. O. Krause, P. van der Meulen, and A. Fahlman, “High-resolution photoelectron spectrometry of selected ns and nd autoionization resonances in Ar, Kr, and Xe,” Phys. Rev. A 41, 1350–1357 (1990).
[CrossRef]

Wang, L.

L. Wang and R. D. Knight, “Two-photon laser spectroscopy of ns and nd autoionizing Rydberg series in xenon,” Phys. Rev. A 34, 3902–3907 (1986).
[CrossRef] [PubMed]

Watanabe, K.

F. M. Matsunaga, R. S. Jackson, and K. Watanabe, “Photoionization yield and absorption coefficient of xenon in the region of 860–1022 Å,” J. Quant. Spectrosc. Radiat. Transfer 5, 329–333 (1965).
[CrossRef]

Whitfield, S. B.

J. Z. Wu, S. B. Whitfield, C. D. Caldwell, M. O. Krause, P. van der Meulen, and A. Fahlman, “High-resolution photoelectron spectrometry of selected ns and nd autoionization resonances in Ar, Kr, and Xe,” Phys. Rev. A 41, 1350–1357 (1990).
[CrossRef]

Wu, J. Z.

J. Z. Wu, S. B. Whitfield, C. D. Caldwell, M. O. Krause, P. van der Meulen, and A. Fahlman, “High-resolution photoelectron spectrometry of selected ns and nd autoionization resonances in Ar, Kr, and Xe,” Phys. Rev. A 41, 1350–1357 (1990).
[CrossRef]

Yoshino, K.

Zare, R. N.

C. T. Rettner, E. E. Marinero, R. N. Zare, and A. H. Kung, “Pulsed free jets: a novel nonlinear media for generation of vacuum ultraviolet and extreme ultraviolet radiation,” J. Chem. Phys. 88, 4459–4465 (1984).
[CrossRef]

E. E. Marinero, C. T. Rettner, R. N. Zare, and A. H. Kung, “Excitation of H2 using continuously tunable coherent XUV radiation (97.3–102.3 nm),” Chem. Phys. Lett. 95, 486–491 (1983).
[CrossRef]

Astrophys. J. (1)

R. P. Madden and K. Codling, “Two-electron excitation states in helium,” Astrophys. J. 141, 364–375 (1965).
[CrossRef]

Chem. Phys. Lett. (1)

E. E. Marinero, C. T. Rettner, R. N. Zare, and A. H. Kung, “Excitation of H2 using continuously tunable coherent XUV radiation (97.3–102.3 nm),” Chem. Phys. Lett. 95, 486–491 (1983).
[CrossRef]

J. Chem. Phys. (3)

K. Radler and J. Berkowitz, “Photoionization mass spectrometry of neon using synchrotron radiation: anomalous variations of resonance widths in the noble gases,” J. Chem. Phys. 70, 216–220 (1979).
[CrossRef]

C. T. Rettner, E. E. Marinero, R. N. Zare, and A. H. Kung, “Pulsed free jets: a novel nonlinear media for generation of vacuum ultraviolet and extreme ultraviolet radiation,” J. Chem. Phys. 88, 4459–4465 (1984).
[CrossRef]

R. E. Huffman, Y. Tanaka, and J. C. Larrabee, “Absorption coefficients of xenon and argon in the 600–1025 Å wavelength regions,” J. Chem. Phys. 39, 902–909 (1963).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. B (3)

J. Phys. B (2)

J. P. Connerade, “On Rydberg series of autoionizing resonances,” J. Phys. B 16, L329–L335 (1983).
[CrossRef]

J. Dubau and M. J. Seaton, “Quantum defect theory. XIII. Radiative transitions,” J. Phys. B 17, 381–403 (1984).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

F. M. Matsunaga, R. S. Jackson, and K. Watanabe, “Photoionization yield and absorption coefficient of xenon in the region of 860–1022 Å,” J. Quant. Spectrosc. Radiat. Transfer 5, 329–333 (1965).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (3)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

F. H. Mies, “Configuration interaction theory: effects of overlapping resonances,” Phys. Rev. 175, 164–175 (1968).
[CrossRef]

U. Fano and J. W. Cooper, “Line profiles in the far-UV absorption spectra of the rare gases,” Phys. Rev. 137, A1364–A1379 (1961).
[CrossRef]

Phys. Rev. A (7)

C. H. Greene, A. R. P. Rau, and U. Fano, “General form of the quantum-defect theory. II,” Phys. Rev. A 26, 2441–2459 (1982).
[CrossRef]

W. L. Cooke and C. L. Cromer, “Multichannel quantum-defect theory and an equivalent N-level system,” Phys. Rev. A 32, 2725–2738 (1985).
[CrossRef] [PubMed]

A. Chutjian and S. H. Alajajian, “s-Wave threshold in electron attachment: observations and cross sections in CCl4 and SF6 at ultralow electron energies,” Phys. Rev. A 31, 2885–2892 (1985).
[CrossRef] [PubMed]

K. Ueda, “Spectral shapes of autoionizing Rydberg series,” Phys. Rev. A 35, 2484–2492 (1987).
[CrossRef] [PubMed]

L. Wang and R. D. Knight, “Two-photon laser spectroscopy of ns and nd autoionizing Rydberg series in xenon,” Phys. Rev. A 34, 3902–3907 (1986).
[CrossRef] [PubMed]

J. Z. Wu, S. B. Whitfield, C. D. Caldwell, M. O. Krause, P. van der Meulen, and A. Fahlman, “High-resolution photoelectron spectrometry of selected ns and nd autoionization resonances in Ar, Kr, and Xe,” Phys. Rev. A 41, 1350–1357 (1990).
[CrossRef]

S. M. Koeckhoven, W. J. Buma, and C. A. de Lange, “Three-photon excitation of autoionizing states of Ar, Kr, and Xe between the 2P3/2 and 2P1/2 ionic limits,” Phys. Rev. A 49, 3322–3332 (1994).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

R. H. Page, R. J. Larkin, A. H. Kung, Y. R. Shen, and Y. T. Lee, “Frequency tripling into the 720–1025-Å region with pulsed free jets,” Rev. Sci. Instrum. 58, 1616–1620 (1987).
[CrossRef]

M. T. Frey, L. Ling, B. G. Lindsay, K. A. Smith, and F. B. Dunning, “Use of the Stark effect to minimize residual electric fields in an experimental volume,” Rev. Sci. Instrum. 64, 3649–3650 (1993).
[CrossRef]

Z. Naturforsch. Teil A (1)

F. J. Comes, H. G. Sälzer, and G. Schumpe, “Autoionisation in atomspektren,” Z. Naturforsch. Teil A 23, 137–151 (1967).

Z. Phys. (1)

H. Beutler, “Über absorptionsserien von argon, krypton und xenon in termen zwischen den beiden ionisierungsgrenzen 2P3/2 and 2P1/2,” Z. Phys. 93, 177–191 (1935).
[CrossRef]

Other (9)

D. A. Harmin, “Hydrogenic Stark effect: properties of the wavefunction,” Phys. Rev. A 24, 2491–2517 (1981); D. A. Harmin, “Theory of the Stark effect,” Phys. Rev. A 26, 2656–2681 (1982).
[CrossRef]

F. H. Mies, “A multichannel quantum defect analysis of diatomic predissociation and inelastic atomic scattering,” J. Chem. Phys. 80, 2514–2525 (1984); F. H. Mies and P. S. Julienne, “A multichannel quantum defect analysis of two-state couplings in diatomic molecules,” J. Chem. Phys. 80, 2526–2536 (1984).
[CrossRef]

M. J. Seaton, “Quantum defect theory. I. General formulation,” Proc. Phys. Soc. London 88, 801–814 (1966); M. J. Seaton, “Quantum defect theory. II. Illustrative one-channel and two-channel problems,” Proc. Phys. Soc. London 88, 815–832 (1966); W. Eissner, H. Nussbaumer, H. E. Saraph, and M. J. Seaton, “Resonance in cross sections for excitation of forbidden lines in O2+,” J. Phys. B JPAMA4 2, 341–355 (1969).
[CrossRef]

W. A. Chupka, “Factors affecting lifetimes and resolutions of Rydberg states observed in zero-electron-kinetic-energy spectroscopy,” J. Chem. Phys. 98, 4520–4530 (1993); F. Merkt, H. H. Fielding, and T. P. Softley, “Electric field effects on zero-kinetic-energy-photoelectron spectra: an explanation of observed trends,” Chem. Phys. Lett. 202, 153–160 (1993).
[CrossRef]

W. H. Press, B. P. Flannery, S. A. Teukkolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge, UK, 1983), pp. 521–528.

A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. I. Symmetry analysis of the two-channel coupling,” J. Phys. B 17, 215–230 (1984); A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. II. A Hamiltonian model,” J. Phys. B 17, 4267–4275 (1984); A. Giusti-Suzor and U. Fano, “Alternative parameters of channel interactions. III. Note on a narrow band in the Ba J=2 spectrum,” J. Phys. B JPAMA4 17, 4277–4283 (1984).
[CrossRef]

K. Maeda, K. Ueda, T. Namioka, and K. Ito, “High-resolution measurement of Beutler–Fano profiles for autoionizing Rydberg series of Xe,” Phys. Rev. A 45, 527–530 (1992); K. Maeda, K. Ueda, T. Namioka, and K. Ito, “High-resolution measurement for photoabsorption cross sections in the autoionization regions of Ar, Kr, and Xe,” J. Phys. B 26, 1541–1555 (1993).
[CrossRef] [PubMed]

J. R. Taylor, An Introduction to Error Analysis (University Science, Mill Valley, Calif., 1997), pp. 181–197.

C. E. Moore, Ionization Potentials and Ionization Limits Derived From the Analyses of Optical Spectra, National Standard Reference Data Series—National Bureau of Standards 34 (U.S. GPO, Washington, D.C., 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the laser photoionization apparatus: Nd:YAG, 10-Hz pulsed Nd:YAG laser; DX, doubling crystal; DyL, dye laser; MX, mixing crystal; QL, quartz focusing lens; TC, tripling chamber; T, frequency-tripling pulsed jet (Xe); TMP1 and TMP2, 250-l/s turbomolecular pumps; B, differential pumping baffle; IC, ionization vacuum chamber; NB, electric-field nulling box; G, effusive Xe target beam; PM, powermeter to measure 276-nm power; EC, ion-extraction cone; IL, ion-focusing lens system; P, pulsed voltage on EC and first lens element; QMS, quadrupole mass spectrometer; CEM, channel-type electron multiplier; PA, signal preamplifier; PC, personal computer; MC, master clock.

Fig. 2
Fig. 2

Single-photon VUV ionization of Xe as a function of the pulsed-jet backing pressure. The third-harmonic generation efficiency is assumed to be proportional to the Xe+ signal. The wavelength here is 92.271 nm. The laser is focused one nozzle diameter (0.25 mm) away from the pulsed jet. Error bars are given at the 1 σ limit.

Fig. 3
Fig. 3

Single-photon VUV photoionization of Xe as a function of normalized distance x/D between the pulsed-jet nozzle (diameter D=0.25 mm) and the laser focus. The third-harmonic generation efficiency is assumed to be proportional to the Xe+ signal. The tripling medium is Xe gas at a backing pressure of 280 kPa.

Fig. 4
Fig. 4

Single-photon VUV (92.2-nm) photoionization of Xe as a function of UV (276-nm) laser power. The slope is equal to 2.9±0.2 UV photons per ion, corresponding to the power law expected for a third-order process.

Fig. 5
Fig. 5

Single-photon Xe+ yield as a function of wavelength for the wavelength region >92.34 nm. The nozzle diameter is 0.25 mm, and the xenon backing pressure is 240 kPa.

Fig. 6
Fig. 6

Same as Fig. 5 except for the wavelength region <92.37 nm.

Fig. 7
Fig. 7

Differences of resonance positions between Ref. 5 and present data for the ns[1/2]10 Rydberg series (hollow circles) and the nd[3/2]10 Rydberg series (solid squares). Equation (4) was used to compare the absorption maxima of Ref. 5 with the resonance positions reported here. The dashed curve through the ns data is shown for ease of comparison.

Fig. 8
Fig. 8

Present and previous measurements of the linewidth parameter Γns for the ns[1/2]10 Rydberg series. Present data are solid squares, and other data are from Ref. 23 (hollow triangles), Ref. 24 (solid triangles), Ref. 25 (hollow circles), and Ref. 35 (hollow squares). Also shown is the expected 1/n*3 dependence (solid line).

Fig. 9
Fig. 9

Asymmetry parameters qns for the ns[1/2]10 Rydberg series. Present data are solid squares, along with data from Ref. 23 (hollow triangles), Ref. 24 (hollow inverted triangles), and Ref. 25 (hollow circles).

Fig. 10
Fig. 10

Linewidth parameter Γnd for the nd[3/2]10 Rydberg series. Present data are solid squares, and other data are from Ref. 22 (hollow triangles) and Ref. 25 (hollow circles). Also shown is the expected 1/n*3 dependence (solid line).

Fig. 11
Fig. 11

Asymmetry parameter qnd for the nd[3/2]10 series. Present data are solid squares, along with data from Ref. 24 (hollow inverted triangles) and Ref. 25 (hollow circles).

Tables (2)

Tables Icon

Table 1 Quantum Numbers, Energy Levels, and Fano q and Γ Parameters for the Xe(ns) Series

Tables Icon

Table 2 Quantum Numbers, Energy Levels, and Fano q and Γ Parameters for the Xe(nd) Series

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σnl(E)=σnl (qnl+nl)21+nl2+σb,
nl=(E-Enl)12Γnl,
E(mV/cm)=1.71×1012n5.
Em=Γnd2qnd+End.
σn(E)=σns (qns+ns)21+ns2+σ(n-2)d (q(n-2)d+(n-2)d)21+(n-2)d2+σb,
Tl=Enl+R(n-δl)2,

Metrics