Abstract

One approach to the experimental determination of the molecular second-order nonlinear polarizability, or the first hyperpolarizability, of fluorescent species by hyper-Rayleigh scattering is based on high-frequency demodulation of the time-delayed fluorescence contribution to the immediate scattering signal [Rev. Sci. Instrum. 69, 2233 (1998)]. For typical fluorescence lifetimes of less than a nanosecond a detection bandwidth of more than 1 GHz is necessary. This bandwidth has not yet been realized. Measurements at successively higher modulation frequencies are performed instead. A fitting of the apparent hyperpolarizability as a function of the modulation frequency then reveals the inherent hyperpolarizability without the fluorescence contribution. An improved fitting function has been derived, resulting in the elimination of a small systematic error and in the reduction of the larger statistical uncertainty in the deduced value. Possible implications of the improved accuracy and precision are discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
    [CrossRef] [PubMed]
  2. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
    [CrossRef]
  3. K. Clays, A. Persoons, and L. De Maeyer, “Hyper-Rayleigh scattering in solution,” in Modern Nonlinear Optics, Part 3, Vol. 85 of Advances in Chemical Physics, I. Prigogine and S. A. Rice, eds. (Wiley, New York, 1994), pp. 455–498.
  4. T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
    [CrossRef]
  5. K. Clays, E. Hendrickx, T. Verbiest, and A. Persoons, “Nonlinear optical properties of correlated chromophores in organic mesoscopic superstructures,” Adv. Mater. 10, 643–655 (1998).
    [CrossRef]
  6. E. Hendrickx, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in isotropic solution,” Acc. Chem. Res. 31, 675–683 (1998).
    [CrossRef]
  7. C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with larger octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
    [CrossRef]
  8. M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyper-Rayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
    [CrossRef]
  9. E. Hendrickx, C. Dehu, K. Clays, J.-L. Brédas, and A. Persoons, “Experimental and theoretical investigation of the second-order optical properties of the chromophore retinal and its derivatives: modeling the bacteriorhodopsin binding pocket,” in American Chemical Society Symposium Series: Polymers for Second-Order Nonlinear Optics (American Chemical Society, Washington, D.C., 1995), Vol. 601, pp. 82–94.
  10. C.-C. Hsu, T.-H. Huang, Y.-L. Zang, J.-L. Lin, Y.-Y. Cheng, J. T. Lin, H. H. Wu, C.-T. Kuo, and C.-H. Chen, “Hyperpolarizabilities of the m-substituent phenyl amine based chromophores determined from the hyper-Rayleigh scattering and two-photon absorption induced fluorescence,” J. Appl. Phys. 80, 5996–6001 (1996).
    [CrossRef]
  11. S. F. Hubbard, R. G. Petschek, and K. D. Singer, “Spectral content and dispersion of hyper-Rayleigh scattering,” Opt. Lett. 21, 1774–1776 (1996).
    [CrossRef] [PubMed]
  12. P. Kaatz and D. P. Shelton, “Polarized hyper-Rayleigh scattering measurements of nonlinear optical chromophores,” J. Chem. Phys. 105, 3918–3929 (1996).
    [CrossRef]
  13. I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
    [CrossRef]
  14. O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities β of fluorescent molecules,” Chem. Phys. Lett. 253, 145–150 (1996).
    [CrossRef]
  15. A. Sastre, T. Torres, M. A. Díaz-García, F. Agulló-López, C. Dhenaut, S. Brasselet, I. Ledoux, and J. Zyss, “Subphthalocyanines: novel targets for remarkable second-order optical nonlinearities,” J. Am. Chem. Soc. 118, 2746–2747 (1996).
    [CrossRef]
  16. S. Stadler, G. Bourhill, and C. Braüchle, “Problems associated with hyper-Rayleigh scattering as a means to determine the second-order polarizability of organic molecules,” J. Phys. Chem. 100, 6927–6934 (1996).
    [CrossRef]
  17. M. A. Pauley and C. H. Wang, “Hyper-Rayleigh scattering measurements of nonlinear optical chromophores at 1907 nm,” Chem. Phys. Lett. 280, 544–550 (1997).
    [CrossRef]
  18. O. K. Song, J. N. Woodford, and C. H. Wang, “Effects of two-photon fluorescence and polymerization on the first hyperpolarizability of an azobenzene dye,” J. Phys. Chem. A 101, 3222–3226 (1997).
    [CrossRef]
  19. T. W. Chui and K. Y. Wong, “Study of hyper-Rayleigh scattering and two-photon absorption induced fluorescence from crystal violet,” J. Chem. Phys. 109, 1391–1396 (1998).
    [CrossRef]
  20. B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Martí, S. Brasselet, I. Ledoux, and J. Zyss, “Synthesis and nonlinear optical properties, photophysical, and electrochemical properties of subphthalocyanines,” J. Am. Chem. Soc. 120, 12808–12817 (1998).
    [CrossRef]
  21. P. J. A. Kenis, O. F. J. Noordman, S. Houbrechts, G. J. van Hummel, S. Harkema, F. C. J. M. van Veggel, K. Clays, J. F. J. Engbersen, A. Persoons, N. F. van Hulst, and D. Reinhoudt, “Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers,” J. Am. Chem. Soc. 120, 7875–7883 (1998).
    [CrossRef]
  22. K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
    [CrossRef]
  23. G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
    [CrossRef]
  24. G. Olbrechts, K. Wostyn, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in long-wavelength hyper-Rayleigh scattering,” Opt. Lett. 24, 403–405 (1999).
    [CrossRef]
  25. G. Olbrechts, K. Wostyn, K. Clays, A. Persoons, S. H. Kang, and K. Kim, “Multiphoton fluorescence free hyperpolarizabilities of subphthalocyanines,” Chem. Phys. Lett. 308, 173–175 (1999).
    [CrossRef]
  26. K. Clays, K. Wostyn, G. Olbrechts, A. Persoons, A. Watanabe, K. Nogi, X.-M. Duan, S. Okada, H. Oikawa, H. Nakanishi, D. Beljonne, H. Vogel, and J.-L. Brédas, “Fourier analysis of the femtosecond hyper-Rayleigh scattering signal from ionic fluorescent hemicyanine dyes,” J. Opt. Soc. Am. B 17, 256–265 (2000).
    [CrossRef]
  27. K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E: Sci. Instrum. 22, 297–305 (1989).
    [CrossRef]
  28. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190–2194 (1994).
    [CrossRef]
  29. M. A. Pauley, C. H. Wang, and A. K.-Y. Jen, “Hyper-Rayleigh scattering studies of first order hyperpolarizability of tricyanovinylthiophene derivatives in solution,” J. Chem. Phys. 102, 6400–6405 (1995).
    [CrossRef]
  30. O. K. Song, C. H. Wang, B. R. Cho, and J. T. Je, “Measurement of first-order hyperpolarizability of several barbituric acid derivatives in solution by hyper-Rayleigh scattering,” J. Phys. Chem. 99, 6808–6811 (1995).
    [CrossRef]
  31. M. Wu, K. Clays, and A. Persoons, “High-resolution electric-field-induced second-harmonic generation with ultra-fast Ti:sapphire laser,” Rev. Sci. Instrum. 67, 3005–3009 (1996).
    [CrossRef]

2000 (1)

1999 (2)

G. Olbrechts, K. Wostyn, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in long-wavelength hyper-Rayleigh scattering,” Opt. Lett. 24, 403–405 (1999).
[CrossRef]

G. Olbrechts, K. Wostyn, K. Clays, A. Persoons, S. H. Kang, and K. Kim, “Multiphoton fluorescence free hyperpolarizabilities of subphthalocyanines,” Chem. Phys. Lett. 308, 173–175 (1999).
[CrossRef]

1998 (7)

K. Clays, E. Hendrickx, T. Verbiest, and A. Persoons, “Nonlinear optical properties of correlated chromophores in organic mesoscopic superstructures,” Adv. Mater. 10, 643–655 (1998).
[CrossRef]

E. Hendrickx, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in isotropic solution,” Acc. Chem. Res. 31, 675–683 (1998).
[CrossRef]

T. W. Chui and K. Y. Wong, “Study of hyper-Rayleigh scattering and two-photon absorption induced fluorescence from crystal violet,” J. Chem. Phys. 109, 1391–1396 (1998).
[CrossRef]

B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Martí, S. Brasselet, I. Ledoux, and J. Zyss, “Synthesis and nonlinear optical properties, photophysical, and electrochemical properties of subphthalocyanines,” J. Am. Chem. Soc. 120, 12808–12817 (1998).
[CrossRef]

P. J. A. Kenis, O. F. J. Noordman, S. Houbrechts, G. J. van Hummel, S. Harkema, F. C. J. M. van Veggel, K. Clays, J. F. J. Engbersen, A. Persoons, N. F. van Hulst, and D. Reinhoudt, “Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers,” J. Am. Chem. Soc. 120, 7875–7883 (1998).
[CrossRef]

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
[CrossRef]

1997 (3)

M. A. Pauley and C. H. Wang, “Hyper-Rayleigh scattering measurements of nonlinear optical chromophores at 1907 nm,” Chem. Phys. Lett. 280, 544–550 (1997).
[CrossRef]

O. K. Song, J. N. Woodford, and C. H. Wang, “Effects of two-photon fluorescence and polymerization on the first hyperpolarizability of an azobenzene dye,” J. Phys. Chem. A 101, 3222–3226 (1997).
[CrossRef]

T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
[CrossRef]

1996 (8)

M. Wu, K. Clays, and A. Persoons, “High-resolution electric-field-induced second-harmonic generation with ultra-fast Ti:sapphire laser,” Rev. Sci. Instrum. 67, 3005–3009 (1996).
[CrossRef]

C.-C. Hsu, T.-H. Huang, Y.-L. Zang, J.-L. Lin, Y.-Y. Cheng, J. T. Lin, H. H. Wu, C.-T. Kuo, and C.-H. Chen, “Hyperpolarizabilities of the m-substituent phenyl amine based chromophores determined from the hyper-Rayleigh scattering and two-photon absorption induced fluorescence,” J. Appl. Phys. 80, 5996–6001 (1996).
[CrossRef]

S. F. Hubbard, R. G. Petschek, and K. D. Singer, “Spectral content and dispersion of hyper-Rayleigh scattering,” Opt. Lett. 21, 1774–1776 (1996).
[CrossRef] [PubMed]

P. Kaatz and D. P. Shelton, “Polarized hyper-Rayleigh scattering measurements of nonlinear optical chromophores,” J. Chem. Phys. 105, 3918–3929 (1996).
[CrossRef]

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[CrossRef]

O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities β of fluorescent molecules,” Chem. Phys. Lett. 253, 145–150 (1996).
[CrossRef]

A. Sastre, T. Torres, M. A. Díaz-García, F. Agulló-López, C. Dhenaut, S. Brasselet, I. Ledoux, and J. Zyss, “Subphthalocyanines: novel targets for remarkable second-order optical nonlinearities,” J. Am. Chem. Soc. 118, 2746–2747 (1996).
[CrossRef]

S. Stadler, G. Bourhill, and C. Braüchle, “Problems associated with hyper-Rayleigh scattering as a means to determine the second-order polarizability of organic molecules,” J. Phys. Chem. 100, 6927–6934 (1996).
[CrossRef]

1995 (4)

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with larger octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[CrossRef]

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyper-Rayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

M. A. Pauley, C. H. Wang, and A. K.-Y. Jen, “Hyper-Rayleigh scattering studies of first order hyperpolarizability of tricyanovinylthiophene derivatives in solution,” J. Chem. Phys. 102, 6400–6405 (1995).
[CrossRef]

O. K. Song, C. H. Wang, B. R. Cho, and J. T. Je, “Measurement of first-order hyperpolarizability of several barbituric acid derivatives in solution by hyper-Rayleigh scattering,” J. Phys. Chem. 99, 6808–6811 (1995).
[CrossRef]

1994 (1)

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190–2194 (1994).
[CrossRef]

1992 (1)

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[CrossRef]

1991 (1)

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef] [PubMed]

1989 (1)

K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E: Sci. Instrum. 22, 297–305 (1989).
[CrossRef]

Agulló-López, F.

B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Martí, S. Brasselet, I. Ledoux, and J. Zyss, “Synthesis and nonlinear optical properties, photophysical, and electrochemical properties of subphthalocyanines,” J. Am. Chem. Soc. 120, 12808–12817 (1998).
[CrossRef]

A. Sastre, T. Torres, M. A. Díaz-García, F. Agulló-López, C. Dhenaut, S. Brasselet, I. Ledoux, and J. Zyss, “Subphthalocyanines: novel targets for remarkable second-order optical nonlinearities,” J. Am. Chem. Soc. 118, 2746–2747 (1996).
[CrossRef]

Beljonne, D.

Bourgault, M.

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with larger octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[CrossRef]

Bourhill, G.

S. Stadler, G. Bourhill, and C. Braüchle, “Problems associated with hyper-Rayleigh scattering as a means to determine the second-order polarizability of organic molecules,” J. Phys. Chem. 100, 6927–6934 (1996).
[CrossRef]

Bozec, H. L.

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with larger octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[CrossRef]

Brasselet, S.

B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Martí, S. Brasselet, I. Ledoux, and J. Zyss, “Synthesis and nonlinear optical properties, photophysical, and electrochemical properties of subphthalocyanines,” J. Am. Chem. Soc. 120, 12808–12817 (1998).
[CrossRef]

A. Sastre, T. Torres, M. A. Díaz-García, F. Agulló-López, C. Dhenaut, S. Brasselet, I. Ledoux, and J. Zyss, “Subphthalocyanines: novel targets for remarkable second-order optical nonlinearities,” J. Am. Chem. Soc. 118, 2746–2747 (1996).
[CrossRef]

Braüchle, C.

S. Stadler, G. Bourhill, and C. Braüchle, “Problems associated with hyper-Rayleigh scattering as a means to determine the second-order polarizability of organic molecules,” J. Phys. Chem. 100, 6927–6934 (1996).
[CrossRef]

Brédas, J.-L.

Chen, C.-H.

C.-C. Hsu, T.-H. Huang, Y.-L. Zang, J.-L. Lin, Y.-Y. Cheng, J. T. Lin, H. H. Wu, C.-T. Kuo, and C.-H. Chen, “Hyperpolarizabilities of the m-substituent phenyl amine based chromophores determined from the hyper-Rayleigh scattering and two-photon absorption induced fluorescence,” J. Appl. Phys. 80, 5996–6001 (1996).
[CrossRef]

Cheng, Y.-Y.

C.-C. Hsu, T.-H. Huang, Y.-L. Zang, J.-L. Lin, Y.-Y. Cheng, J. T. Lin, H. H. Wu, C.-T. Kuo, and C.-H. Chen, “Hyperpolarizabilities of the m-substituent phenyl amine based chromophores determined from the hyper-Rayleigh scattering and two-photon absorption induced fluorescence,” J. Appl. Phys. 80, 5996–6001 (1996).
[CrossRef]

Cho, B. R.

O. K. Song, C. H. Wang, B. R. Cho, and J. T. Je, “Measurement of first-order hyperpolarizability of several barbituric acid derivatives in solution by hyper-Rayleigh scattering,” J. Phys. Chem. 99, 6808–6811 (1995).
[CrossRef]

Choi, L.-S.

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

Chui, T. W.

T. W. Chui and K. Y. Wong, “Study of hyper-Rayleigh scattering and two-photon absorption induced fluorescence from crystal violet,” J. Chem. Phys. 109, 1391–1396 (1998).
[CrossRef]

Clays, K.

K. Clays, K. Wostyn, G. Olbrechts, A. Persoons, A. Watanabe, K. Nogi, X.-M. Duan, S. Okada, H. Oikawa, H. Nakanishi, D. Beljonne, H. Vogel, and J.-L. Brédas, “Fourier analysis of the femtosecond hyper-Rayleigh scattering signal from ionic fluorescent hemicyanine dyes,” J. Opt. Soc. Am. B 17, 256–265 (2000).
[CrossRef]

G. Olbrechts, K. Wostyn, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in long-wavelength hyper-Rayleigh scattering,” Opt. Lett. 24, 403–405 (1999).
[CrossRef]

G. Olbrechts, K. Wostyn, K. Clays, A. Persoons, S. H. Kang, and K. Kim, “Multiphoton fluorescence free hyperpolarizabilities of subphthalocyanines,” Chem. Phys. Lett. 308, 173–175 (1999).
[CrossRef]

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
[CrossRef]

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

P. J. A. Kenis, O. F. J. Noordman, S. Houbrechts, G. J. van Hummel, S. Harkema, F. C. J. M. van Veggel, K. Clays, J. F. J. Engbersen, A. Persoons, N. F. van Hulst, and D. Reinhoudt, “Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers,” J. Am. Chem. Soc. 120, 7875–7883 (1998).
[CrossRef]

E. Hendrickx, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in isotropic solution,” Acc. Chem. Res. 31, 675–683 (1998).
[CrossRef]

K. Clays, E. Hendrickx, T. Verbiest, and A. Persoons, “Nonlinear optical properties of correlated chromophores in organic mesoscopic superstructures,” Adv. Mater. 10, 643–655 (1998).
[CrossRef]

T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
[CrossRef]

M. Wu, K. Clays, and A. Persoons, “High-resolution electric-field-induced second-harmonic generation with ultra-fast Ti:sapphire laser,” Rev. Sci. Instrum. 67, 3005–3009 (1996).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190–2194 (1994).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef] [PubMed]

K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E: Sci. Instrum. 22, 297–305 (1989).
[CrossRef]

de Jonge, R.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyper-Rayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

del Rey, B.

B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Martí, S. Brasselet, I. Ledoux, and J. Zyss, “Synthesis and nonlinear optical properties, photophysical, and electrochemical properties of subphthalocyanines,” J. Am. Chem. Soc. 120, 12808–12817 (1998).
[CrossRef]

Denning, R. G.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[CrossRef]

Dhenaut, C.

A. Sastre, T. Torres, M. A. Díaz-García, F. Agulló-López, C. Dhenaut, S. Brasselet, I. Ledoux, and J. Zyss, “Subphthalocyanines: novel targets for remarkable second-order optical nonlinearities,” J. Am. Chem. Soc. 118, 2746–2747 (1996).
[CrossRef]

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with larger octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[CrossRef]

Díaz-García, M. A.

A. Sastre, T. Torres, M. A. Díaz-García, F. Agulló-López, C. Dhenaut, S. Brasselet, I. Ledoux, and J. Zyss, “Subphthalocyanines: novel targets for remarkable second-order optical nonlinearities,” J. Am. Chem. Soc. 118, 2746–2747 (1996).
[CrossRef]

Duan, X.-M.

Engbersen, J. F. J.

P. J. A. Kenis, O. F. J. Noordman, S. Houbrechts, G. J. van Hummel, S. Harkema, F. C. J. M. van Veggel, K. Clays, J. F. J. Engbersen, A. Persoons, N. F. van Hulst, and D. Reinhoudt, “Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers,” J. Am. Chem. Soc. 120, 7875–7883 (1998).
[CrossRef]

Engelborghs, Y.

K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E: Sci. Instrum. 22, 297–305 (1989).
[CrossRef]

Flipse, M. C.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyper-Rayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

Harkema, S.

P. J. A. Kenis, O. F. J. Noordman, S. Houbrechts, G. J. van Hummel, S. Harkema, F. C. J. M. van Veggel, K. Clays, J. F. J. Engbersen, A. Persoons, N. F. van Hulst, and D. Reinhoudt, “Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers,” J. Am. Chem. Soc. 120, 7875–7883 (1998).
[CrossRef]

Hendrickx, E.

K. Clays, E. Hendrickx, T. Verbiest, and A. Persoons, “Nonlinear optical properties of correlated chromophores in organic mesoscopic superstructures,” Adv. Mater. 10, 643–655 (1998).
[CrossRef]

E. Hendrickx, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in isotropic solution,” Acc. Chem. Res. 31, 675–683 (1998).
[CrossRef]

Houbrechts, S.

P. J. A. Kenis, O. F. J. Noordman, S. Houbrechts, G. J. van Hummel, S. Harkema, F. C. J. M. van Veggel, K. Clays, J. F. J. Engbersen, A. Persoons, N. F. van Hulst, and D. Reinhoudt, “Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers,” J. Am. Chem. Soc. 120, 7875–7883 (1998).
[CrossRef]

T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
[CrossRef]

Hsu, C.-C.

C.-C. Hsu, T.-H. Huang, Y.-L. Zang, J.-L. Lin, Y.-Y. Cheng, J. T. Lin, H. H. Wu, C.-T. Kuo, and C.-H. Chen, “Hyperpolarizabilities of the m-substituent phenyl amine based chromophores determined from the hyper-Rayleigh scattering and two-photon absorption induced fluorescence,” J. Appl. Phys. 80, 5996–6001 (1996).
[CrossRef]

Huang, T.-H.

C.-C. Hsu, T.-H. Huang, Y.-L. Zang, J.-L. Lin, Y.-Y. Cheng, J. T. Lin, H. H. Wu, C.-T. Kuo, and C.-H. Chen, “Hyperpolarizabilities of the m-substituent phenyl amine based chromophores determined from the hyper-Rayleigh scattering and two-photon absorption induced fluorescence,” J. Appl. Phys. 80, 5996–6001 (1996).
[CrossRef]

Hubbard, S. F.

Jannes, J.

K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E: Sci. Instrum. 22, 297–305 (1989).
[CrossRef]

Je, J. T.

O. K. Song, C. H. Wang, B. R. Cho, and J. T. Je, “Measurement of first-order hyperpolarizability of several barbituric acid derivatives in solution by hyper-Rayleigh scattering,” J. Phys. Chem. 99, 6808–6811 (1995).
[CrossRef]

Jen, A. K.-Y.

M. A. Pauley, C. H. Wang, and A. K.-Y. Jen, “Hyper-Rayleigh scattering studies of first order hyperpolarizability of tricyanovinylthiophene derivatives in solution,” J. Chem. Phys. 102, 6400–6405 (1995).
[CrossRef]

Jenneskens, L. W.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyper-Rayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

Kaatz, P.

P. Kaatz and D. P. Shelton, “Polarized hyper-Rayleigh scattering measurements of nonlinear optical chromophores,” J. Chem. Phys. 105, 3918–3929 (1996).
[CrossRef]

Kang, S. H.

G. Olbrechts, K. Wostyn, K. Clays, A. Persoons, S. H. Kang, and K. Kim, “Multiphoton fluorescence free hyperpolarizabilities of subphthalocyanines,” Chem. Phys. Lett. 308, 173–175 (1999).
[CrossRef]

Kauranen, M.

T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
[CrossRef]

Keller, U.

B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Martí, S. Brasselet, I. Ledoux, and J. Zyss, “Synthesis and nonlinear optical properties, photophysical, and electrochemical properties of subphthalocyanines,” J. Am. Chem. Soc. 120, 12808–12817 (1998).
[CrossRef]

Kenis, P. J. A.

P. J. A. Kenis, O. F. J. Noordman, S. Houbrechts, G. J. van Hummel, S. Harkema, F. C. J. M. van Veggel, K. Clays, J. F. J. Engbersen, A. Persoons, N. F. van Hulst, and D. Reinhoudt, “Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers,” J. Am. Chem. Soc. 120, 7875–7883 (1998).
[CrossRef]

Kim, K.

G. Olbrechts, K. Wostyn, K. Clays, A. Persoons, S. H. Kang, and K. Kim, “Multiphoton fluorescence free hyperpolarizabilities of subphthalocyanines,” Chem. Phys. Lett. 308, 173–175 (1999).
[CrossRef]

Kim, O.-K.

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

Kuo, C.-T.

C.-C. Hsu, T.-H. Huang, Y.-L. Zang, J.-L. Lin, Y.-Y. Cheng, J. T. Lin, H. H. Wu, C.-T. Kuo, and C.-H. Chen, “Hyperpolarizabilities of the m-substituent phenyl amine based chromophores determined from the hyper-Rayleigh scattering and two-photon absorption induced fluorescence,” J. Appl. Phys. 80, 5996–6001 (1996).
[CrossRef]

Laidlaw, W. M.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[CrossRef]

Ledoux, I.

B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Martí, S. Brasselet, I. Ledoux, and J. Zyss, “Synthesis and nonlinear optical properties, photophysical, and electrochemical properties of subphthalocyanines,” J. Am. Chem. Soc. 120, 12808–12817 (1998).
[CrossRef]

A. Sastre, T. Torres, M. A. Díaz-García, F. Agulló-López, C. Dhenaut, S. Brasselet, I. Ledoux, and J. Zyss, “Subphthalocyanines: novel targets for remarkable second-order optical nonlinearities,” J. Am. Chem. Soc. 118, 2746–2747 (1996).
[CrossRef]

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with larger octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[CrossRef]

Lin, J. T.

C.-C. Hsu, T.-H. Huang, Y.-L. Zang, J.-L. Lin, Y.-Y. Cheng, J. T. Lin, H. H. Wu, C.-T. Kuo, and C.-H. Chen, “Hyperpolarizabilities of the m-substituent phenyl amine based chromophores determined from the hyper-Rayleigh scattering and two-photon absorption induced fluorescence,” J. Appl. Phys. 80, 5996–6001 (1996).
[CrossRef]

Lin, J.-L.

C.-C. Hsu, T.-H. Huang, Y.-L. Zang, J.-L. Lin, Y.-Y. Cheng, J. T. Lin, H. H. Wu, C.-T. Kuo, and C.-H. Chen, “Hyperpolarizabilities of the m-substituent phenyl amine based chromophores determined from the hyper-Rayleigh scattering and two-photon absorption induced fluorescence,” J. Appl. Phys. 80, 5996–6001 (1996).
[CrossRef]

Marsman, A. W.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyper-Rayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

Martí, C.

B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Martí, S. Brasselet, I. Ledoux, and J. Zyss, “Synthesis and nonlinear optical properties, photophysical, and electrochemical properties of subphthalocyanines,” J. Am. Chem. Soc. 120, 12808–12817 (1998).
[CrossRef]

Morrison, I. D.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[CrossRef]

Munters, T.

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

Nakanishi, H.

Nogi, K.

Nonell, S.

B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Martí, S. Brasselet, I. Ledoux, and J. Zyss, “Synthesis and nonlinear optical properties, photophysical, and electrochemical properties of subphthalocyanines,” J. Am. Chem. Soc. 120, 12808–12817 (1998).
[CrossRef]

Noordman, O. F. J.

P. J. A. Kenis, O. F. J. Noordman, S. Houbrechts, G. J. van Hummel, S. Harkema, F. C. J. M. van Veggel, K. Clays, J. F. J. Engbersen, A. Persoons, N. F. van Hulst, and D. Reinhoudt, “Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers,” J. Am. Chem. Soc. 120, 7875–7883 (1998).
[CrossRef]

O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities β of fluorescent molecules,” Chem. Phys. Lett. 253, 145–150 (1996).
[CrossRef]

Oikawa, H.

Okada, S.

Olbrechts, G.

K. Clays, K. Wostyn, G. Olbrechts, A. Persoons, A. Watanabe, K. Nogi, X.-M. Duan, S. Okada, H. Oikawa, H. Nakanishi, D. Beljonne, H. Vogel, and J.-L. Brédas, “Fourier analysis of the femtosecond hyper-Rayleigh scattering signal from ionic fluorescent hemicyanine dyes,” J. Opt. Soc. Am. B 17, 256–265 (2000).
[CrossRef]

G. Olbrechts, K. Wostyn, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in long-wavelength hyper-Rayleigh scattering,” Opt. Lett. 24, 403–405 (1999).
[CrossRef]

G. Olbrechts, K. Wostyn, K. Clays, A. Persoons, S. H. Kang, and K. Kim, “Multiphoton fluorescence free hyperpolarizabilities of subphthalocyanines,” Chem. Phys. Lett. 308, 173–175 (1999).
[CrossRef]

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
[CrossRef]

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

Pauley, M. A.

M. A. Pauley and C. H. Wang, “Hyper-Rayleigh scattering measurements of nonlinear optical chromophores at 1907 nm,” Chem. Phys. Lett. 280, 544–550 (1997).
[CrossRef]

M. A. Pauley, C. H. Wang, and A. K.-Y. Jen, “Hyper-Rayleigh scattering studies of first order hyperpolarizability of tricyanovinylthiophene derivatives in solution,” J. Chem. Phys. 102, 6400–6405 (1995).
[CrossRef]

Persoons, A.

K. Clays, K. Wostyn, G. Olbrechts, A. Persoons, A. Watanabe, K. Nogi, X.-M. Duan, S. Okada, H. Oikawa, H. Nakanishi, D. Beljonne, H. Vogel, and J.-L. Brédas, “Fourier analysis of the femtosecond hyper-Rayleigh scattering signal from ionic fluorescent hemicyanine dyes,” J. Opt. Soc. Am. B 17, 256–265 (2000).
[CrossRef]

G. Olbrechts, K. Wostyn, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in long-wavelength hyper-Rayleigh scattering,” Opt. Lett. 24, 403–405 (1999).
[CrossRef]

G. Olbrechts, K. Wostyn, K. Clays, A. Persoons, S. H. Kang, and K. Kim, “Multiphoton fluorescence free hyperpolarizabilities of subphthalocyanines,” Chem. Phys. Lett. 308, 173–175 (1999).
[CrossRef]

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
[CrossRef]

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

P. J. A. Kenis, O. F. J. Noordman, S. Houbrechts, G. J. van Hummel, S. Harkema, F. C. J. M. van Veggel, K. Clays, J. F. J. Engbersen, A. Persoons, N. F. van Hulst, and D. Reinhoudt, “Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers,” J. Am. Chem. Soc. 120, 7875–7883 (1998).
[CrossRef]

E. Hendrickx, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in isotropic solution,” Acc. Chem. Res. 31, 675–683 (1998).
[CrossRef]

K. Clays, E. Hendrickx, T. Verbiest, and A. Persoons, “Nonlinear optical properties of correlated chromophores in organic mesoscopic superstructures,” Adv. Mater. 10, 643–655 (1998).
[CrossRef]

T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
[CrossRef]

M. Wu, K. Clays, and A. Persoons, “High-resolution electric-field-induced second-harmonic generation with ultra-fast Ti:sapphire laser,” Rev. Sci. Instrum. 67, 3005–3009 (1996).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190–2194 (1994).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef] [PubMed]

K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E: Sci. Instrum. 22, 297–305 (1989).
[CrossRef]

Petschek, R. G.

Reinhoudt, D.

P. J. A. Kenis, O. F. J. Noordman, S. Houbrechts, G. J. van Hummel, S. Harkema, F. C. J. M. van Veggel, K. Clays, J. F. J. Engbersen, A. Persoons, N. F. van Hulst, and D. Reinhoudt, “Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers,” J. Am. Chem. Soc. 120, 7875–7883 (1998).
[CrossRef]

Rojo, G.

B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Martí, S. Brasselet, I. Ledoux, and J. Zyss, “Synthesis and nonlinear optical properties, photophysical, and electrochemical properties of subphthalocyanines,” J. Am. Chem. Soc. 120, 12808–12817 (1998).
[CrossRef]

Samuel, I. D. W.

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with larger octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[CrossRef]

Sastre, A.

A. Sastre, T. Torres, M. A. Díaz-García, F. Agulló-López, C. Dhenaut, S. Brasselet, I. Ledoux, and J. Zyss, “Subphthalocyanines: novel targets for remarkable second-order optical nonlinearities,” J. Am. Chem. Soc. 118, 2746–2747 (1996).
[CrossRef]

Shelton, D. P.

P. Kaatz and D. P. Shelton, “Polarized hyper-Rayleigh scattering measurements of nonlinear optical chromophores,” J. Chem. Phys. 105, 3918–3929 (1996).
[CrossRef]

Singer, K. D.

Song, O. K.

O. K. Song, J. N. Woodford, and C. H. Wang, “Effects of two-photon fluorescence and polymerization on the first hyperpolarizability of an azobenzene dye,” J. Phys. Chem. A 101, 3222–3226 (1997).
[CrossRef]

O. K. Song, C. H. Wang, B. R. Cho, and J. T. Je, “Measurement of first-order hyperpolarizability of several barbituric acid derivatives in solution by hyper-Rayleigh scattering,” J. Phys. Chem. 99, 6808–6811 (1995).
[CrossRef]

Stadler, S.

S. Stadler, G. Bourhill, and C. Braüchle, “Problems associated with hyper-Rayleigh scattering as a means to determine the second-order polarizability of organic molecules,” J. Phys. Chem. 100, 6927–6934 (1996).
[CrossRef]

Stammers, M. A.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[CrossRef]

Strobbe, R.

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
[CrossRef]

Torres, T.

B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Martí, S. Brasselet, I. Ledoux, and J. Zyss, “Synthesis and nonlinear optical properties, photophysical, and electrochemical properties of subphthalocyanines,” J. Am. Chem. Soc. 120, 12808–12817 (1998).
[CrossRef]

A. Sastre, T. Torres, M. A. Díaz-García, F. Agulló-López, C. Dhenaut, S. Brasselet, I. Ledoux, and J. Zyss, “Subphthalocyanines: novel targets for remarkable second-order optical nonlinearities,” J. Am. Chem. Soc. 118, 2746–2747 (1996).
[CrossRef]

van Hulst, N. F.

P. J. A. Kenis, O. F. J. Noordman, S. Houbrechts, G. J. van Hummel, S. Harkema, F. C. J. M. van Veggel, K. Clays, J. F. J. Engbersen, A. Persoons, N. F. van Hulst, and D. Reinhoudt, “Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers,” J. Am. Chem. Soc. 120, 7875–7883 (1998).
[CrossRef]

O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities β of fluorescent molecules,” Chem. Phys. Lett. 253, 145–150 (1996).
[CrossRef]

van Hummel, G. J.

P. J. A. Kenis, O. F. J. Noordman, S. Houbrechts, G. J. van Hummel, S. Harkema, F. C. J. M. van Veggel, K. Clays, J. F. J. Engbersen, A. Persoons, N. F. van Hulst, and D. Reinhoudt, “Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers,” J. Am. Chem. Soc. 120, 7875–7883 (1998).
[CrossRef]

van Veggel, F. C. J. M.

P. J. A. Kenis, O. F. J. Noordman, S. Houbrechts, G. J. van Hummel, S. Harkema, F. C. J. M. van Veggel, K. Clays, J. F. J. Engbersen, A. Persoons, N. F. van Hulst, and D. Reinhoudt, “Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers,” J. Am. Chem. Soc. 120, 7875–7883 (1998).
[CrossRef]

van Walree, C. A.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyper-Rayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

Verbiest, T.

K. Clays, E. Hendrickx, T. Verbiest, and A. Persoons, “Nonlinear optical properties of correlated chromophores in organic mesoscopic superstructures,” Adv. Mater. 10, 643–655 (1998).
[CrossRef]

T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
[CrossRef]

Vogel, H.

Wang, C. H.

M. A. Pauley and C. H. Wang, “Hyper-Rayleigh scattering measurements of nonlinear optical chromophores at 1907 nm,” Chem. Phys. Lett. 280, 544–550 (1997).
[CrossRef]

O. K. Song, J. N. Woodford, and C. H. Wang, “Effects of two-photon fluorescence and polymerization on the first hyperpolarizability of an azobenzene dye,” J. Phys. Chem. A 101, 3222–3226 (1997).
[CrossRef]

O. K. Song, C. H. Wang, B. R. Cho, and J. T. Je, “Measurement of first-order hyperpolarizability of several barbituric acid derivatives in solution by hyper-Rayleigh scattering,” J. Phys. Chem. 99, 6808–6811 (1995).
[CrossRef]

M. A. Pauley, C. H. Wang, and A. K.-Y. Jen, “Hyper-Rayleigh scattering studies of first order hyperpolarizability of tricyanovinylthiophene derivatives in solution,” J. Chem. Phys. 102, 6400–6405 (1995).
[CrossRef]

Watanabe, A.

Wong, K. Y.

T. W. Chui and K. Y. Wong, “Study of hyper-Rayleigh scattering and two-photon absorption induced fluorescence from crystal violet,” J. Chem. Phys. 109, 1391–1396 (1998).
[CrossRef]

Woodford, J. N.

O. K. Song, J. N. Woodford, and C. H. Wang, “Effects of two-photon fluorescence and polymerization on the first hyperpolarizability of an azobenzene dye,” J. Phys. Chem. A 101, 3222–3226 (1997).
[CrossRef]

Wostyn, K.

Woudenberg, R. H.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyper-Rayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

Wu, H. H.

C.-C. Hsu, T.-H. Huang, Y.-L. Zang, J.-L. Lin, Y.-Y. Cheng, J. T. Lin, H. H. Wu, C.-T. Kuo, and C.-H. Chen, “Hyperpolarizabilities of the m-substituent phenyl amine based chromophores determined from the hyper-Rayleigh scattering and two-photon absorption induced fluorescence,” J. Appl. Phys. 80, 5996–6001 (1996).
[CrossRef]

Wu, M.

M. Wu, K. Clays, and A. Persoons, “High-resolution electric-field-induced second-harmonic generation with ultra-fast Ti:sapphire laser,” Rev. Sci. Instrum. 67, 3005–3009 (1996).
[CrossRef]

Zang, Y.-L.

C.-C. Hsu, T.-H. Huang, Y.-L. Zang, J.-L. Lin, Y.-Y. Cheng, J. T. Lin, H. H. Wu, C.-T. Kuo, and C.-H. Chen, “Hyperpolarizabilities of the m-substituent phenyl amine based chromophores determined from the hyper-Rayleigh scattering and two-photon absorption induced fluorescence,” J. Appl. Phys. 80, 5996–6001 (1996).
[CrossRef]

Zyss, J.

B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Martí, S. Brasselet, I. Ledoux, and J. Zyss, “Synthesis and nonlinear optical properties, photophysical, and electrochemical properties of subphthalocyanines,” J. Am. Chem. Soc. 120, 12808–12817 (1998).
[CrossRef]

A. Sastre, T. Torres, M. A. Díaz-García, F. Agulló-López, C. Dhenaut, S. Brasselet, I. Ledoux, and J. Zyss, “Subphthalocyanines: novel targets for remarkable second-order optical nonlinearities,” J. Am. Chem. Soc. 118, 2746–2747 (1996).
[CrossRef]

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with larger octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[CrossRef]

Acc. Chem. Res. (1)

E. Hendrickx, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in isotropic solution,” Acc. Chem. Res. 31, 675–683 (1998).
[CrossRef]

Adv. Mater. (1)

K. Clays, E. Hendrickx, T. Verbiest, and A. Persoons, “Nonlinear optical properties of correlated chromophores in organic mesoscopic superstructures,” Adv. Mater. 10, 643–655 (1998).
[CrossRef]

Chem. Phys. Lett. (5)

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, “The determination of first hyperpolarizabilities β using hyper-Rayleigh scattering: a caveat,” Chem. Phys. Lett. 245, 297–303 (1995).
[CrossRef]

O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities β of fluorescent molecules,” Chem. Phys. Lett. 253, 145–150 (1996).
[CrossRef]

M. A. Pauley and C. H. Wang, “Hyper-Rayleigh scattering measurements of nonlinear optical chromophores at 1907 nm,” Chem. Phys. Lett. 280, 544–550 (1997).
[CrossRef]

K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim, and L.-S. Choi, “Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression,” Chem. Phys. Lett. 293, 337–342 (1998).
[CrossRef]

G. Olbrechts, K. Wostyn, K. Clays, A. Persoons, S. H. Kang, and K. Kim, “Multiphoton fluorescence free hyperpolarizabilities of subphthalocyanines,” Chem. Phys. Lett. 308, 173–175 (1999).
[CrossRef]

J. Am. Chem. Soc. (3)

B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Martí, S. Brasselet, I. Ledoux, and J. Zyss, “Synthesis and nonlinear optical properties, photophysical, and electrochemical properties of subphthalocyanines,” J. Am. Chem. Soc. 120, 12808–12817 (1998).
[CrossRef]

P. J. A. Kenis, O. F. J. Noordman, S. Houbrechts, G. J. van Hummel, S. Harkema, F. C. J. M. van Veggel, K. Clays, J. F. J. Engbersen, A. Persoons, N. F. van Hulst, and D. Reinhoudt, “Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers,” J. Am. Chem. Soc. 120, 7875–7883 (1998).
[CrossRef]

A. Sastre, T. Torres, M. A. Díaz-García, F. Agulló-López, C. Dhenaut, S. Brasselet, I. Ledoux, and J. Zyss, “Subphthalocyanines: novel targets for remarkable second-order optical nonlinearities,” J. Am. Chem. Soc. 118, 2746–2747 (1996).
[CrossRef]

J. Appl. Phys. (1)

C.-C. Hsu, T.-H. Huang, Y.-L. Zang, J.-L. Lin, Y.-Y. Cheng, J. T. Lin, H. H. Wu, C.-T. Kuo, and C.-H. Chen, “Hyperpolarizabilities of the m-substituent phenyl amine based chromophores determined from the hyper-Rayleigh scattering and two-photon absorption induced fluorescence,” J. Appl. Phys. 80, 5996–6001 (1996).
[CrossRef]

J. Chem. Phys. (3)

P. Kaatz and D. P. Shelton, “Polarized hyper-Rayleigh scattering measurements of nonlinear optical chromophores,” J. Chem. Phys. 105, 3918–3929 (1996).
[CrossRef]

T. W. Chui and K. Y. Wong, “Study of hyper-Rayleigh scattering and two-photon absorption induced fluorescence from crystal violet,” J. Chem. Phys. 109, 1391–1396 (1998).
[CrossRef]

M. A. Pauley, C. H. Wang, and A. K.-Y. Jen, “Hyper-Rayleigh scattering studies of first order hyperpolarizability of tricyanovinylthiophene derivatives in solution,” J. Chem. Phys. 102, 6400–6405 (1995).
[CrossRef]

J. Mater. Chem. (1)

T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order nonlinear optical materials: recent advances in chromophore design,” J. Mater. Chem. 7, 2175–2189 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (2)

O. K. Song, C. H. Wang, B. R. Cho, and J. T. Je, “Measurement of first-order hyperpolarizability of several barbituric acid derivatives in solution by hyper-Rayleigh scattering,” J. Phys. Chem. 99, 6808–6811 (1995).
[CrossRef]

S. Stadler, G. Bourhill, and C. Braüchle, “Problems associated with hyper-Rayleigh scattering as a means to determine the second-order polarizability of organic molecules,” J. Phys. Chem. 100, 6927–6934 (1996).
[CrossRef]

J. Phys. Chem. A (1)

O. K. Song, J. N. Woodford, and C. H. Wang, “Effects of two-photon fluorescence and polymerization on the first hyperpolarizability of an azobenzene dye,” J. Phys. Chem. A 101, 3222–3226 (1997).
[CrossRef]

J. Phys. E: Sci. Instrum. (1)

K. Clays, J. Jannes, Y. Engelborghs, and A. Persoons, “Instrumental and analysis improvements in multifrequency phasefluorometry,” J. Phys. E: Sci. Instrum. 22, 297–305 (1989).
[CrossRef]

Nature (1)

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with larger octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (5)

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[CrossRef]

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[CrossRef]

M. Wu, K. Clays, and A. Persoons, “High-resolution electric-field-induced second-harmonic generation with ultra-fast Ti:sapphire laser,” Rev. Sci. Instrum. 67, 3005–3009 (1996).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190–2194 (1994).
[CrossRef]

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, “High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering,” Rev. Sci. Instrum. 69, 2233–2241 (1998).
[CrossRef]

Other (2)

K. Clays, A. Persoons, and L. De Maeyer, “Hyper-Rayleigh scattering in solution,” in Modern Nonlinear Optics, Part 3, Vol. 85 of Advances in Chemical Physics, I. Prigogine and S. A. Rice, eds. (Wiley, New York, 1994), pp. 455–498.

E. Hendrickx, C. Dehu, K. Clays, J.-L. Brédas, and A. Persoons, “Experimental and theoretical investigation of the second-order optical properties of the chromophore retinal and its derivatives: modeling the bacteriorhodopsin binding pocket,” in American Chemical Society Symposium Series: Polymers for Second-Order Nonlinear Optics (American Chemical Society, Washington, D.C., 1995), Vol. 601, pp. 82–94.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: LTC, Lok-to-Clock; AOM, acousto-optic modulator driver electronics; SG, signal generator; PS, power splitter; LIA, lock-in amplifier; PC, personal computer; PMT, photomultiplier tube; DBM, double-balanced electronic mixers; N, harmonic number of the repetition frequency (80 MHz); PD1-sig, signal of photodiode 1; PD1, photodiode 1; PD2, photodiode 2; ND, neutral-density filter; HW, half-wave plate; PO, polarizer; M, routing mirror; Aux., auxiliary input of the LIA; Ref., reference input; BS, beam splitter; PCL, plano-convex lens; INT, interference filter; ASL, aspheric lens; TR, total concave reflector; 10-MHz sync, 10-MHz synchronization circuit. The filled triangles indicate high frequencies, and the open triangles refer to the low-frequency cross-correlation product at 700 Hz.

Fig. 2
Fig. 2

Demodulation curve of the apparent hyperpolarizability as a function of the amplitude-modulation frequency for MO in chloroform as the solvent at a 1300-nm fundamental wavelength and room temperature with a hyperpolarizability of 54×10-30 esu for Disperse Red 1 at 1300 nm as the external reference in the same solvent. The symbols represent the experimental data; the dashed curve is the fitting curve obtained by use of Eq. (4) with the assumption of a constant phase shift; the solid curve is the fitting curve obtained by use of (the correct) Eq. (14) with a frequency-dependent phase shift.

Fig. 3
Fig. 3

Normal distributions of the probability of measuring a hyperpolarizability. The dashed curve represents the analysis based on Eq. (4) with the assumption of a constant phase shift; the solid curve represents the analysis based on (the correct) Eq. (14) with a frequency-dependent phase shift.

Tables (1)

Tables Icon

Table 1 Numerical Data Obtained with Eq. (4) with an Assumed Constant Phase Shift of Zero Compared with Numerical Data Obtained with the Correct Eq. (14) with a Frequency-Dependent Phase Shift

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

NI0,N cos(ωLOt)cos(ωPRF,Nt+ϕN)
=12 NI0,N[cos(Δω+,Nt+ϕN)+cos(Δω-,Nt-ϕN)],
I0, N=I0,LO I0,PRF,N,Δω±,N=ωLO±ωPRF, N.
IIF=I0,IF cos(Δω-t-ϕ)=I0,IF cos{[2π(700Hz)]t-φ},
I0,IF=12I0,LO I0,rf.
Itotal(ωrf, λ/2)=IHRS(λ/2)+IMPF (ωrf, λ/2),
IMPF (ωrf, λ/2)=I0,MPF (λ/2)MMPF(ωrf).
IHRS(λ/2)βintr2I(λ)2,
I0,MPF(λ/2)XMPF2I(λ)2,
Itotal(λ/2)βapp2(ωrt)I(λ)2.
βapp(ωrf)=[βintr2+XMPF2MMPF (ωrf)]1/2.
Iex=I0,ex cos(ωrf t).
Idet=(IHRS+IMPF)M(ωrf, detector).
IHRS=I0,HRS cos(ωrft+ϕ),
ϕ=ϕ(instrument)+ϕ(ωrf, detector),
IMPF=I0,MPFM(ωrf,MPF)cos(ωrft+ϕ),
ϕ=ϕ(instrument)+ϕ(ωrf, detector)+ϕ(ωrf, MPF).
Idet=IHRS+IMPF,
IHRS=I0,HRS cos(ωrft),
IMPF=I0,MPFMMPF cos(ωrft+ϕMPF),
ϕMPF=ϕ(ωrf, MPF),MMPF=M(ωrf, MPF).
Idet,IF=Idet[(0,LO cos(ωLOt)]
=I0,HRS,IF cos(Δω-t)+I0,MPF,IFMMPF cos(Δω-t+ϕMPF).
X=Idet,IF[I0,ref cos(ωref t+ϕref)]
=I0,HRS,IF sin(-ϕref)+I0,MPF,IFMMPF sin(ϕMPF-θref),
Y=Idet,IF[I0,ref sin(ωref t+θref)]
=I0,HRS,IF cos(-θref)+I0,MPF,IFMMPF cos(ϕMPF-θref).
R(ωrf)=[X2(ωrf)+Y2(ωrf)]1/2.
R(ωrf)={IHRS2+IMPF2(ωrf)+2IHRSIMPF(ωrf)cos[ϕMPF(ωrf)]}1/2.
R(ωrf)=[IHRS2+IMPF2MMPF2+2IHRS IMPFMMPF cos(ϕMPF)]1/2.
R(ωrf,λ/2)QCappI2(λ)βapp2(ωrf)I2(λ),
IHRS(λ/2)QCHRSI2(λ)βHRS2I2(λ)βintr2I2(λ),
I0,MPF(λ/2)QCMPFI2(λ)XMPF2I2(λ),
 βapp(ωrf)=[βHRS4+XMPF4MMPF2+2βHRS2XMPF2MMPF cos(ϕMPF)]1/4.
M(ω)=11+(ωτ)21/2,ϕ(ω)=arctan(ωτ),

Metrics