Abstract

Two-photon-resonant difference-frequency generation using an ArF excimer laser provides widely tunable vacuum-ultraviolet (VUV) radiation at high pulse energies. Two-photon resonances in H2, Kr, and Hd are within the tuning range of the ArF laser. With this technique we have directly measured >65 µJ at 133 nm. H2 has a significantly smaller phase mismatch than Kr, leading to more efficient VUV generation, particularly at shorter VUV wavelengths. However, mixing in H2 also produces additional VUV lines from two-photon excited amplified spontaneous emission. We have observed new amplified spontaneous-emission lines produced in this manner. H2 is ineffective at generation of Lyman-α radiation owing to the production of H atoms. With a phase-matched mixture of Kr and Ar, we have directly measured 7 µJ at Lyman-α. A physical basis for the asymmetric tuning profile in this gas mixture is presented. With light from this VUV source we have performed 1+1 resonantly enhanced multiphoton ionization in Xe at 147 nm and two-photon-excited fluorescence in Ne at 133 nm.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription