Abstract

Two-photon-resonant difference-frequency generation using an ArF excimer laser provides widely tunable vacuum-ultraviolet (VUV) radiation at high pulse energies. Two-photon resonances in H2, Kr, and Hd are within the tuning range of the ArF laser. With this technique we have directly measured >65 µJ at 133 nm. H2 has a significantly smaller phase mismatch than Kr, leading to more efficient VUV generation, particularly at shorter VUV wavelengths. However, mixing in H2 also produces additional VUV lines from two-photon excited amplified spontaneous emission. We have observed new amplified spontaneous-emission lines produced in this manner. H2 is ineffective at generation of Lyman-α radiation owing to the production of H atoms. With a phase-matched mixture of Kr and Ar, we have directly measured 7 µJ at Lyman-α. A physical basis for the asymmetric tuning profile in this gas mixture is presented. With light from this VUV source we have performed 1+1 resonantly enhanced multiphoton ionization in Xe at 147 nm and two-photon-excited fluorescence in Ne at 133 nm.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hilbig and R. Wallenstein, “Resonant sum and difference frequency mixing in Hg,” IEEE J. Quantum Electron. 19, 1759–1770 (1983).
    [CrossRef]
  2. G. C. Herring, M. J. Dyer, L. E. Jusinski, and W. K. Bischel, “Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm,” Opt. Lett. 13, 360–362 (1988).
    [CrossRef] [PubMed]
  3. G. W. Faris and M. J. Dyer, “Raman-shifting ArF excimer laser radiation for vacuum-ultraviolet multiphoton spectroscopy,” J. Opt. Soc. Am. B 10, 2273–2286 (1993).
    [CrossRef]
  4. G. W. Faris and M. J. Dyer, “Two-photon excitation of neon at 133 nm,” Opt. Lett. 18, 382–384 (1993).
    [CrossRef] [PubMed]
  5. R. W. Dreyfus, P. Bogen, and H. Langer, “Atomic H and D concentrations and velocities measured with harmonically generated Lyman-α (1215 Å) radiation,” in Laser Techniques for Extreme Ultraviolet Spectroscopy, T. J. McIlrath and R. R. Freeman, eds. (American Institute of Physics, New York, 1982), pp. 57–68.
  6. K. G. H. Baldwin, J. P. Marangos, and D. D. Burgess, “Application of coherent VUV radiation to the measurement of Lyman-α absorption lineshapes in a dense Z-pinch plasma,” J. Phys. D 17, L169–L173 (1984).
    [CrossRef]
  7. G. C. Stutzin, A. T. Young, A. S. Schlachter, J. W. Stearns, K. N. Leung, W. B. Kunkel, G. T. Worth, and R. R. Stevens, “VUV laser absorption spectrometer system for measurement of H0 density and temperature in a plasma,” Rev. Sci. Instrum. 59, 1363–1368 (1988).
    [CrossRef]
  8. H. F. Dobele, “Generation of coherent VUV radiation and its application to plasma diagnostics,” Plasma Sources Sci. Technol. 4, 224–233 (1995).
    [CrossRef]
  9. D. Wagner, B. Dikmen, and H. F. Döbele, “Vacuum ultraviolet absorption spectroscopy in the spectral interval of Lyman-α of atomic hydrogen and deuterium in an ion source plasma,” Rev. Sci. Instrum. 67, 1800–1806 (1996).
    [CrossRef]
  10. Ph. Mertens and M. Silz, “Radial profiles of atomic deuterium measured in the boundary of TEXTOR 94 with laser-induced fluorescence,” J. Nucl. Mater. 241–243, 842–847 (1997).
    [CrossRef]
  11. S. A. Meyer, D. Bershader, and S. P. Sharma, “Resonance broadening measurements of atomic oxygen at 130 nm,” J. Quant. Spectrosc. Radiat. Transfer 60, 53–68 (1998).
    [CrossRef]
  12. A. V. Kanaev, V. Zafiropulos, M. Ait-Kaci, L. Museur, H. Nkwawo, and M. C. Castex, “Excimer formation mechanism in gaseous krypton and Kr/N2 mixtures,” Z. Phys. D 27, 29–37 (1993).
    [CrossRef]
  13. R. A. Brownsword, M. Hillenkamp, T. Laurent, R. K. Vatsa, H.-R. Volpp, and J. Wolfrum, “Photodissociation dynamics of the chloromethanes at the Lyman-α wavelength (121.6 nm),” J. Chem. Phys. 106, 1359–1366 (1997).
    [CrossRef]
  14. P. Löffler, E. Wrede, L. Schnieder, J. B. Halpern, W. M. Jackson, and K. H. Welge, “Dissociation dynamics of acetylene Rydberg states as a function of excited state lifetime,” J. Chem. Phys. 109, 5231–5246 (1998).
    [CrossRef]
  15. J. Lacouriére, S. A. Meyer, G. W. Faris, T. G. Slanger, B. R. Lewis, and S. T. Gibson, “The O(1D) yield from O2 photodissocation near H Lyman-α (121.6 nm),” J. Chem. Phys. 110, 1949–1958 (1999).
    [CrossRef]
  16. R. T. Hodgson, P. P. Sorokin, and J. J. Wynne, “Tunable coherent vacuum-ultraviolet generation in atomic vapors,” Phys. Rev. Lett. 32, 343–346 (1974).
    [CrossRef]
  17. W. Jamroz and B. P. Stoicheff, “Generation of tunable coherent vacuum-ultraviolet radiation,” in Progress in Optics XX, E. Wolf, ed. (North-Holland, Amsterdam, 1983), pp. 325–381.
  18. J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, New York, 1984).
  19. R. Hilbig, G. Hilber, A. Lago, B. Wolff, and R. Wallenstein, “Tunable coherent VUV radiation generated by nonlinear optical frequency conversion in gases,” Comments At. Mol. Phys. 18, 157–180 (1986).
  20. C. R. Vidal, “Four-wave frequency mixing in gases,” in Tunable Lasers, L. F. Mollenauer and J. C. White, eds., Topics in Applied Physics (Springer-Verlag, Berlin, 1987), Vol. 59, pp. 57–113.
    [CrossRef]
  21. H. F. Döbele, M. Hörl, and M. Röwenkamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
    [CrossRef]
  22. P. Bogen, Ph. Mertens, E. Pasch, and H. F. Döbele, “Detection of atomic oxygen and hydrogen in the vacuum UV using a frequency-doubled, Raman-shifted dye laser,” J. Opt. Soc. Am. B 9, 2137–2141 (1992).
    [CrossRef]
  23. A. Goehlich, U. Czarnetzki, and H. F. Dobele, “Increased efficiency of vacuum ultraviolet generation by stimulated anti-Stokes Raman scattering with Stokes seeding,” Appl. Opt. 37, 8453–8459 (1998).
    [CrossRef]
  24. F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,” Opt. Lett. 19, 1538–1540 (1994).
    [CrossRef] [PubMed]
  25. V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887–5892 (1998).
    [CrossRef]
  26. V. I. Gladushchak, S. A. Moshkalev, G. T. Razdobarin, and E. Ya. Shreider, “Coherent sources of vacuum ultraviolet radiation,” Sov. Phys. Tech. Phys. 31, 855–873 (1986).
  27. S. M. Hooker and C. E. Webb, “Progress in vacuum-ultraviolet lasers,” Prog. Quantum Electron. 18, 227–274 (1994).
    [CrossRef]
  28. K. D. Bonin and T. J. McIlrath, “Generation of tunable coherent radiation below 1000 Å by four-wave mixing in krypton,” J. Opt. Soc. Am. B 2, 527–534 (1985).
    [CrossRef]
  29. G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4, 1753–1764 (1987).
    [CrossRef]
  30. K. Miyazaki, H. Sakai, and T. Sato, “Two-photon resonances in Xe and Kr for the generation of tunable coherent extreme UV radiation,” Appl. Opt. 28, 699–702 (1989).
    [CrossRef] [PubMed]
  31. J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson, and J. P. Connerade, “Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum-difference frequency mixing in krypton,” J. Opt. Soc. Am. B 7, 1254–1259 (1990).
    [CrossRef]
  32. C. H. Muller III, D. D. Lowenthal, M. A. DeFaccio, and A. V. Smith, “High-efficiency, energy-scalable, coherent 130-nm source by four-wave mixing in Hg vapor,” Opt. Lett. 13, 651–653 (1988).
    [CrossRef]
  33. Y.-M. Yiu, K. D. Bonin, and T. J. McIlrath, “Two-photon resonant upconversion in xenon,” Opt. Lett. 7, 268–270 (1982).
    [CrossRef] [PubMed]
  34. R. Hilbig and R. Wallenstein, “Tunable VUV radiation generated by two-photon resonant frequency mixing in xenon,” IEEE J. Quantum Electron. 19, 194–201 (1983).
    [CrossRef]
  35. K. Tsukiyama, M. Momose, M. Tsukakoshi, and T. Kasuya, “Generation of XUV radiation by four-wave mixing in CO,” Opt. Commun. 79, 88–92 (1990).
    [CrossRef]
  36. N. Melikechi, S. Gangopadhyay, and E. E. Eyler, “Generation of vacuum ultraviolet radiation for precision laser spectroscopy,” Appl. Opt. 36, 7776–7778 (1997).
    [CrossRef]
  37. G. Z. Zhang, D. W. Tokaryk, B. P. Stoicheff, and K. Hakuta, “Nonlinear generation of extreme-ultraviolet radiation in atomic hydrogen using electromagnetically induced transparency,” Phys. Rev. A 56, 813–819 (1997).
    [CrossRef]
  38. W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, “Nonlinear optical processes in atoms and molecules using rare-gas halide lasers,” IEEE J. Quantum Electron. 15, 380–392 (1979).
    [CrossRef]
  39. R. Hilbig, G. Hilber, A. Timmerman, and R. Wallenstein, “Broadly tunable VUV radiation generated by frequency mixing in gases,” in Laser Techniques in the Extreme Ultraviolet, S. E. Harris and T. B. Lucatorto, eds. (American Institute of Physics, New York, 1984), pp. 1–9.
  40. C. E. M. Strauss and D. J. Funk, “Broadly tunable difference-frequency generation of VUV using two-photon resonances in H2 and Kr,” Opt. Lett. 16, 1192–1194 (1991).
    [CrossRef] [PubMed]
  41. G. W. Faris and M. J. Dyer, “Multiphoton spectroscopy using tunable VUV radiation from a Raman-shifted excimer laser,” in Short-Wavelength Coherent Radiation: Generation and Applications, P. H. Bucksbaum and N. M. Ceglio, eds., Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 58–61.
  42. O. Kittelmann, J. Ringling, G. Korn, A. Nazarkin, and I. V. Hertel, “Generation of broadly tunable femtosecond vacuum-ultraviolet pulses,” Opt. Lett. 21, 1159–1161 (1996).
    [CrossRef] [PubMed]
  43. Y. Hirakawa, T. Okada, M. Maeda, and K. Muraoka, “Coherent extreme-ultraviolet generation at 64 nm by efficient frequency tripling of an ArF laser,” J. Opt. Soc. Am. B 14, 1029–1034 (1997).
    [CrossRef]
  44. T. Srinivasan, H. Egger, H. Pummer, and C. K. Rhodes, “Generation of extreme ultraviolet radiation at 79 nm by sum frequency mixing,” IEEE J. Quantum Electron. 19, 1270–1276 (1983).
    [CrossRef]
  45. Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent extreme-ultraviolet radiation at wavelengths as low as 66 nm by resonant four-wave mixing,” Opt. Lett. 18, 735–737 (1993).
    [CrossRef] [PubMed]
  46. H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited moleclar hydrogen,” Phys. Rev. A 28, 795–801 (1983).
    [CrossRef]
  47. T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV: SRS of excimer laser wavelengths,” IEEE J. Quantum Electron. 15, 337–342 (1979).
    [CrossRef]
  48. R. S. Hargrove and J. A. Paisner, “Tunable, efficient VUV generation using ArF-pumped stimulated Raman scattering in H2,” in Digest of Topical Meeting on Excimer Lasers (Optical Society of America, Washington, D.C., 1979), paper ThA6.
  49. M. Shahidi, T. S. Luk, and C. K. Rhodes, “Generation of infrared and extreme-ultraviolet radiation in krypton with picosecond irradiation at 193 nm,” J. Opt. Soc. Am. B 5, 2386–2394 (1988).
    [CrossRef]
  50. U. Czarnetzki, U. Wojak, and H. F. Döbele, “Observation of stimulated hyper-Raman scattering in H2,” Phys. Rev. A 40, 6120–6123 (1989).
    [CrossRef] [PubMed]
  51. U. Czarnetzki and H. F. Döbele, “Generation of vacuum-ultraviolet radiation in H2 by nonlinear optical processes near the EF- and B-state resonances,” Phys. Rev. A 44, 7530–7546 (1991).
    [CrossRef] [PubMed]
  52. G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287–296 (1975).
    [CrossRef]
  53. G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38, 6231–6239 (1988).
    [CrossRef] [PubMed]
  54. A. Lago, G. Hilber, and R. Wallenstein, “Optical-frequency conversion in gaseous media,” Phys. Rev. A 36, 3827–3836 (1987).
    [CrossRef] [PubMed]
  55. To achieve agreement with Refs. 52 and 54, and the figures of Ref. 53, we use only positive k values in Eq. (3) of Ref. 53. We do not use a negative sign for the parametrized distance, ε, for the difference (dye) wavelength.
  56. J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57–72 (1969).
    [CrossRef]
  57. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 682–685.
  58. P. J. Leonard, “Refractive indices, Verdet constants, and polarizabilities of the inert gases,” At. Data Nucl. Data Tables 14, 21–37 (1974).
    [CrossRef]
  59. G. I. Chashchina, V. I. Gladushchak, and E. Ya. Shreider, “Determination of the refractive index of argon and the oscillator strength of its resonance lines,” Opt. Spectrosc. 24, 542–543 (1968).
  60. P. D. Chopra and D. W. O. Heddle, “Polarization free measurements of Rayleigh scattering of Lyman α,” J. Phys. B 7, 2421–2428 (1974).
    [CrossRef]
  61. W. R. Ferrell, M. G. Payne, and W. R. Garrett, “Determination of optical constants of noble gases through multiphoton ionization measurements,” Phys. Rev. A 35, 5020–5031 (1987).
    [CrossRef] [PubMed]
  62. R. J. Gordon, S.-P. Lu, S. M. Park, K. Trentelman, Y. Xie, L. Zhu, A. Kumar, and W. J. Meath, “The use of coherent phase control of multiphoton ionization to measure the refractive indices of H2 and Ar between 1100 and 1150 Å,” J. Chem. Phys. 98, 9481–9486 (1993).
    [CrossRef]
  63. A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton, and xenon in the 253.7–140.4-nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25, 395–402 (1981).
    [CrossRef]
  64. G. I. Chashchina and E. Ya. Shreider, “Determination of hydrogen refraction in the vacuum spectral range,” Opt. Spectrosc. 66, 274–275 (1989).
  65. M. O. Bulanin and I. M. Kislyakov, “Dynamic polarizabilities of rare-gas atoms: krypton and xenon,” Opt. Spectrosc. 85, 819–825 (1998).
  66. R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15, 444–451 (1979).
    [CrossRef]
  67. R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33, 305–307 (1978).
    [CrossRef]
  68. V. P. Gladushchak, S. A. Moshkalev, G. I. Chashchina, and E. Ya. Shreider, “Use of third-harmonic generation for determining the refractive indices of gases in the vacuum ultraviolet spectral region,” Opt. Spectrosc. 51, 608–609 (1981).
  69. H. Puell, H. Scheingraber, and C. R. Vidal, “Saturation of resonant third-harmonic generation in phase-matched systems,” Phys. Rev. A 22, 1165–1178 (1980).
    [CrossRef]
  70. H. Scheingraber and C. R. Vidal, “Saturation of resonant third-harmonic generation due to self-defocusing and a redistribution of the population densities,” IEEE J. Quantum Electron. 19, 1747–1758 (1983).
    [CrossRef]
  71. J. C. Miller, “Two-photon resonant multiphoton ionization and stimulated emission in krypton and xenon,” Phys. Rev. A 40, 6969–6976 (1989).
    [CrossRef] [PubMed]
  72. P. G. Datskos, L. A. Pinnaduwage, and J. F. Kielkopf, “Photophysical and electron attachment properties of ArF-excimer-laser irradiated H2,” Phys. Rev. A 55, 4131–4142 (1997).
    [CrossRef]
  73. S. A. Meyer and G. W. Faris, “High-power Lyman-α source generated with an ArF excimer laser,” Opt. Lett. 23, 204–206 (1998).
    [CrossRef]
  74. M. Krumrey, E. Tegeler, J. Barth, M. Krisch, F. Schäfers, and R. Wolf, “Schottky type photodiodes as detectors in the VUV and soft x-ray range,” Appl. Opt. 27, 4336–4341 (1988).
    [CrossRef] [PubMed]
  75. J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Pied, Lincoln, Nebr., 1967), pp. 263–295.
  76. U. Czarnetzki, H. F. Döbele, and B. Rückle, “Stimulated IR- and vacuum-UV emission following two-photon-excitation of molecular hydrogen using an ArF laser,” Appl. Phys. B: Photophys. Laser Chem. 48, 37–40 (1989).
    [CrossRef]
  77. T. S. Luk, H. Egger, W. Müller, H. Pummer, and C. K. Rhodes, “The observation of stimulated emission in the 119 to 149 nm range from HD excited by picosecond 193 nm radiation,” J. Chem. Phys. 82, 4479–4482 (1985).
    [CrossRef]
  78. I. Dabrowski, “The Lyman and Werner bands of H2,” Can. J. Phys. 62, 1639–1664 (1984).
    [CrossRef]
  79. R. J. Spindler, Jr., “Franck–Condon factors for band systems of molecular hydrogen—I,” J. Quant. Spectrosc. Radiat. Transfer 9, 597–626 (1969).
    [CrossRef]
  80. S. A. Batishche, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A. Mostovnikov, P. A. Naumenkov, G. T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Ya. Shreider, “Laser action near the Lα line in hydrogen and deuterium,” Sov. Tech. Phys. Lett. 3, 473 (1977).
  81. D. Cotter, “Tunable, narrow-band coherent VUV source for the Lyman-alpha region,” Opt. Commun. 31, 397–400 (1979).
    [CrossRef]
  82. R. Wallenstein, “Generation of narrowband tunable VUV radiation at the Lyman-α wavelength,” Opt. Commun. 33, 119–122 (1980).
    [CrossRef]
  83. H. Langer, H. Puell, and H. Röhr, “Lyman alpha (1216 Å) generation in krypton,” Opt. Commun. 34, 137–142 (1980).
    [CrossRef]
  84. R. Mahon and Y. M. Yiu, “Generation of Lyman-α radiation in phase-matched rare-gas mixtures,” Opt. Lett. 5, 279–281 (1980).
    [CrossRef] [PubMed]
  85. H. Zacharias, H. Rottke, J. Danon, and K. H. Welge, “Resonant two photon ionization of H and D atoms,” Opt. Commun. 37, 15–19 (1981).
    [CrossRef]
  86. R. Hilbig and R. Wallenstein, “Enhanced production of tunable vuv radiation by phase-matched frequency tripling in krypton and xenon,” IEEE J. Quantum Electron. 17, 1566–1573 (1981).
    [CrossRef]
  87. S. Himeno, E. Noda, Q. Q. Lü, S. Kogoshi, Y. Iida, M. Katsurai, and T. Sekiguchi, “Generation of coherent Lyman-alpha radiation with an alexandrite laser for diagnostics of neutral hydrogen density,” J. Nucl. Mater. 128–129, 974–976 (1984).
    [CrossRef]
  88. L. Cabaret, C. Delsart, and C. Blondel, “High resolution spectroscopy of the hydrogen Lyman-α line Stark structure using a vuv single mode pulsed laser system,” Opt. Commun. 61, 116–119 (1987).
    [CrossRef]
  89. Ph. Mertens and P. Bogen, “Densities and velocity distributions of atomic hydrogen and carbon, measured by laser-induced fluorescence with frequency-tripling into the vacuum UV,” Appl. Phys. A 43, 197–204 (1987).
    [CrossRef]
  90. K. Hakuta, L. Marmet, and B. P. Stoicheff, “Nonlinear optical generation with reduced absorption using electric-field coupling in atomic hydrogen,” Phys. Rev. A 45, 5152–5159 (1992).
    [CrossRef] [PubMed]
  91. T. J. McKee, B. P. Stoicheff, and S. C. Wallace, “Tunable, coherent radiation in the Lyman-α region (1210–1290 Å) using magnesium vapor,” Opt. Lett. 3, 207–208 (1978).
    [CrossRef] [PubMed]
  92. R. S. Turley, R. A. McFarlane, J. Remillard, and D. G. Steel, “Production of intense, coherent, tunable, narrow-band Lyman-alpha radiation,” Proc. SPIE 912, 116–121 (1988).
    [CrossRef]
  93. K. Eikema, J. Walz, and T. Hansch, “Continuous wave coherent Lyman-alpha radiation,” Phys. Rev. Lett. 83, 3828–3831 (1999).
    [CrossRef]
  94. F. G. Celii, H. R. Thorsheim, J. E. Butler, L. S. Plano, and J. M. Pinneo, “Detection of ground-state atomic hydrogen in a dc plasma using third-harmonic generation,” J. Appl. Phys. 68, 3814–3817 (1990).
    [CrossRef]
  95. C. E. M. Strauss, Los Alamos National Laboratory, Los Alamos, New Mexico (personal communication, 1997).
  96. W. L. Wiese and G. A. Martin, “Atomic transition probabilities,” in CRC Handbook of Chemistry and Physics, 59th ed., R. C. Weast, ed. (CRC, West Palm Beach, Fl., 1978), pp. D112–D140.
  97. G. Herzberg and C. Jungen, “Rydberg series and ionization potential of the H2 molecule,” J. Mol. Spectrosc. 41, 425–486 (1972).
    [CrossRef]

1999

J. Lacouriére, S. A. Meyer, G. W. Faris, T. G. Slanger, B. R. Lewis, and S. T. Gibson, “The O(1D) yield from O2 photodissocation near H Lyman-α (121.6 nm),” J. Chem. Phys. 110, 1949–1958 (1999).
[CrossRef]

K. Eikema, J. Walz, and T. Hansch, “Continuous wave coherent Lyman-alpha radiation,” Phys. Rev. Lett. 83, 3828–3831 (1999).
[CrossRef]

1998

M. O. Bulanin and I. M. Kislyakov, “Dynamic polarizabilities of rare-gas atoms: krypton and xenon,” Opt. Spectrosc. 85, 819–825 (1998).

P. Löffler, E. Wrede, L. Schnieder, J. B. Halpern, W. M. Jackson, and K. H. Welge, “Dissociation dynamics of acetylene Rydberg states as a function of excited state lifetime,” J. Chem. Phys. 109, 5231–5246 (1998).
[CrossRef]

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887–5892 (1998).
[CrossRef]

S. A. Meyer, D. Bershader, and S. P. Sharma, “Resonance broadening measurements of atomic oxygen at 130 nm,” J. Quant. Spectrosc. Radiat. Transfer 60, 53–68 (1998).
[CrossRef]

S. A. Meyer and G. W. Faris, “High-power Lyman-α source generated with an ArF excimer laser,” Opt. Lett. 23, 204–206 (1998).
[CrossRef]

A. Goehlich, U. Czarnetzki, and H. F. Dobele, “Increased efficiency of vacuum ultraviolet generation by stimulated anti-Stokes Raman scattering with Stokes seeding,” Appl. Opt. 37, 8453–8459 (1998).
[CrossRef]

1997

N. Melikechi, S. Gangopadhyay, and E. E. Eyler, “Generation of vacuum ultraviolet radiation for precision laser spectroscopy,” Appl. Opt. 36, 7776–7778 (1997).
[CrossRef]

Y. Hirakawa, T. Okada, M. Maeda, and K. Muraoka, “Coherent extreme-ultraviolet generation at 64 nm by efficient frequency tripling of an ArF laser,” J. Opt. Soc. Am. B 14, 1029–1034 (1997).
[CrossRef]

Ph. Mertens and M. Silz, “Radial profiles of atomic deuterium measured in the boundary of TEXTOR 94 with laser-induced fluorescence,” J. Nucl. Mater. 241–243, 842–847 (1997).
[CrossRef]

R. A. Brownsword, M. Hillenkamp, T. Laurent, R. K. Vatsa, H.-R. Volpp, and J. Wolfrum, “Photodissociation dynamics of the chloromethanes at the Lyman-α wavelength (121.6 nm),” J. Chem. Phys. 106, 1359–1366 (1997).
[CrossRef]

G. Z. Zhang, D. W. Tokaryk, B. P. Stoicheff, and K. Hakuta, “Nonlinear generation of extreme-ultraviolet radiation in atomic hydrogen using electromagnetically induced transparency,” Phys. Rev. A 56, 813–819 (1997).
[CrossRef]

P. G. Datskos, L. A. Pinnaduwage, and J. F. Kielkopf, “Photophysical and electron attachment properties of ArF-excimer-laser irradiated H2,” Phys. Rev. A 55, 4131–4142 (1997).
[CrossRef]

1996

D. Wagner, B. Dikmen, and H. F. Döbele, “Vacuum ultraviolet absorption spectroscopy in the spectral interval of Lyman-α of atomic hydrogen and deuterium in an ion source plasma,” Rev. Sci. Instrum. 67, 1800–1806 (1996).
[CrossRef]

O. Kittelmann, J. Ringling, G. Korn, A. Nazarkin, and I. V. Hertel, “Generation of broadly tunable femtosecond vacuum-ultraviolet pulses,” Opt. Lett. 21, 1159–1161 (1996).
[CrossRef] [PubMed]

1995

H. F. Dobele, “Generation of coherent VUV radiation and its application to plasma diagnostics,” Plasma Sources Sci. Technol. 4, 224–233 (1995).
[CrossRef]

1994

1993

G. W. Faris and M. J. Dyer, “Raman-shifting ArF excimer laser radiation for vacuum-ultraviolet multiphoton spectroscopy,” J. Opt. Soc. Am. B 10, 2273–2286 (1993).
[CrossRef]

G. W. Faris and M. J. Dyer, “Two-photon excitation of neon at 133 nm,” Opt. Lett. 18, 382–384 (1993).
[CrossRef] [PubMed]

Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent extreme-ultraviolet radiation at wavelengths as low as 66 nm by resonant four-wave mixing,” Opt. Lett. 18, 735–737 (1993).
[CrossRef] [PubMed]

A. V. Kanaev, V. Zafiropulos, M. Ait-Kaci, L. Museur, H. Nkwawo, and M. C. Castex, “Excimer formation mechanism in gaseous krypton and Kr/N2 mixtures,” Z. Phys. D 27, 29–37 (1993).
[CrossRef]

R. J. Gordon, S.-P. Lu, S. M. Park, K. Trentelman, Y. Xie, L. Zhu, A. Kumar, and W. J. Meath, “The use of coherent phase control of multiphoton ionization to measure the refractive indices of H2 and Ar between 1100 and 1150 Å,” J. Chem. Phys. 98, 9481–9486 (1993).
[CrossRef]

1992

K. Hakuta, L. Marmet, and B. P. Stoicheff, “Nonlinear optical generation with reduced absorption using electric-field coupling in atomic hydrogen,” Phys. Rev. A 45, 5152–5159 (1992).
[CrossRef] [PubMed]

P. Bogen, Ph. Mertens, E. Pasch, and H. F. Döbele, “Detection of atomic oxygen and hydrogen in the vacuum UV using a frequency-doubled, Raman-shifted dye laser,” J. Opt. Soc. Am. B 9, 2137–2141 (1992).
[CrossRef]

1991

C. E. M. Strauss and D. J. Funk, “Broadly tunable difference-frequency generation of VUV using two-photon resonances in H2 and Kr,” Opt. Lett. 16, 1192–1194 (1991).
[CrossRef] [PubMed]

U. Czarnetzki and H. F. Döbele, “Generation of vacuum-ultraviolet radiation in H2 by nonlinear optical processes near the EF- and B-state resonances,” Phys. Rev. A 44, 7530–7546 (1991).
[CrossRef] [PubMed]

1990

K. Tsukiyama, M. Momose, M. Tsukakoshi, and T. Kasuya, “Generation of XUV radiation by four-wave mixing in CO,” Opt. Commun. 79, 88–92 (1990).
[CrossRef]

F. G. Celii, H. R. Thorsheim, J. E. Butler, L. S. Plano, and J. M. Pinneo, “Detection of ground-state atomic hydrogen in a dc plasma using third-harmonic generation,” J. Appl. Phys. 68, 3814–3817 (1990).
[CrossRef]

J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson, and J. P. Connerade, “Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum-difference frequency mixing in krypton,” J. Opt. Soc. Am. B 7, 1254–1259 (1990).
[CrossRef]

1989

G. I. Chashchina and E. Ya. Shreider, “Determination of hydrogen refraction in the vacuum spectral range,” Opt. Spectrosc. 66, 274–275 (1989).

U. Czarnetzki, H. F. Döbele, and B. Rückle, “Stimulated IR- and vacuum-UV emission following two-photon-excitation of molecular hydrogen using an ArF laser,” Appl. Phys. B: Photophys. Laser Chem. 48, 37–40 (1989).
[CrossRef]

J. C. Miller, “Two-photon resonant multiphoton ionization and stimulated emission in krypton and xenon,” Phys. Rev. A 40, 6969–6976 (1989).
[CrossRef] [PubMed]

U. Czarnetzki, U. Wojak, and H. F. Döbele, “Observation of stimulated hyper-Raman scattering in H2,” Phys. Rev. A 40, 6120–6123 (1989).
[CrossRef] [PubMed]

K. Miyazaki, H. Sakai, and T. Sato, “Two-photon resonances in Xe and Kr for the generation of tunable coherent extreme UV radiation,” Appl. Opt. 28, 699–702 (1989).
[CrossRef] [PubMed]

1988

M. Krumrey, E. Tegeler, J. Barth, M. Krisch, F. Schäfers, and R. Wolf, “Schottky type photodiodes as detectors in the VUV and soft x-ray range,” Appl. Opt. 27, 4336–4341 (1988).
[CrossRef] [PubMed]

G. C. Herring, M. J. Dyer, L. E. Jusinski, and W. K. Bischel, “Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm,” Opt. Lett. 13, 360–362 (1988).
[CrossRef] [PubMed]

C. H. Muller III, D. D. Lowenthal, M. A. DeFaccio, and A. V. Smith, “High-efficiency, energy-scalable, coherent 130-nm source by four-wave mixing in Hg vapor,” Opt. Lett. 13, 651–653 (1988).
[CrossRef]

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38, 6231–6239 (1988).
[CrossRef] [PubMed]

G. C. Stutzin, A. T. Young, A. S. Schlachter, J. W. Stearns, K. N. Leung, W. B. Kunkel, G. T. Worth, and R. R. Stevens, “VUV laser absorption spectrometer system for measurement of H0 density and temperature in a plasma,” Rev. Sci. Instrum. 59, 1363–1368 (1988).
[CrossRef]

M. Shahidi, T. S. Luk, and C. K. Rhodes, “Generation of infrared and extreme-ultraviolet radiation in krypton with picosecond irradiation at 193 nm,” J. Opt. Soc. Am. B 5, 2386–2394 (1988).
[CrossRef]

R. S. Turley, R. A. McFarlane, J. Remillard, and D. G. Steel, “Production of intense, coherent, tunable, narrow-band Lyman-alpha radiation,” Proc. SPIE 912, 116–121 (1988).
[CrossRef]

1987

L. Cabaret, C. Delsart, and C. Blondel, “High resolution spectroscopy of the hydrogen Lyman-α line Stark structure using a vuv single mode pulsed laser system,” Opt. Commun. 61, 116–119 (1987).
[CrossRef]

Ph. Mertens and P. Bogen, “Densities and velocity distributions of atomic hydrogen and carbon, measured by laser-induced fluorescence with frequency-tripling into the vacuum UV,” Appl. Phys. A 43, 197–204 (1987).
[CrossRef]

G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4, 1753–1764 (1987).
[CrossRef]

W. R. Ferrell, M. G. Payne, and W. R. Garrett, “Determination of optical constants of noble gases through multiphoton ionization measurements,” Phys. Rev. A 35, 5020–5031 (1987).
[CrossRef] [PubMed]

H. F. Döbele, M. Hörl, and M. Röwenkamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
[CrossRef]

A. Lago, G. Hilber, and R. Wallenstein, “Optical-frequency conversion in gaseous media,” Phys. Rev. A 36, 3827–3836 (1987).
[CrossRef] [PubMed]

1986

V. I. Gladushchak, S. A. Moshkalev, G. T. Razdobarin, and E. Ya. Shreider, “Coherent sources of vacuum ultraviolet radiation,” Sov. Phys. Tech. Phys. 31, 855–873 (1986).

R. Hilbig, G. Hilber, A. Lago, B. Wolff, and R. Wallenstein, “Tunable coherent VUV radiation generated by nonlinear optical frequency conversion in gases,” Comments At. Mol. Phys. 18, 157–180 (1986).

1985

T. S. Luk, H. Egger, W. Müller, H. Pummer, and C. K. Rhodes, “The observation of stimulated emission in the 119 to 149 nm range from HD excited by picosecond 193 nm radiation,” J. Chem. Phys. 82, 4479–4482 (1985).
[CrossRef]

K. D. Bonin and T. J. McIlrath, “Generation of tunable coherent radiation below 1000 Å by four-wave mixing in krypton,” J. Opt. Soc. Am. B 2, 527–534 (1985).
[CrossRef]

1984

S. Himeno, E. Noda, Q. Q. Lü, S. Kogoshi, Y. Iida, M. Katsurai, and T. Sekiguchi, “Generation of coherent Lyman-alpha radiation with an alexandrite laser for diagnostics of neutral hydrogen density,” J. Nucl. Mater. 128–129, 974–976 (1984).
[CrossRef]

I. Dabrowski, “The Lyman and Werner bands of H2,” Can. J. Phys. 62, 1639–1664 (1984).
[CrossRef]

K. G. H. Baldwin, J. P. Marangos, and D. D. Burgess, “Application of coherent VUV radiation to the measurement of Lyman-α absorption lineshapes in a dense Z-pinch plasma,” J. Phys. D 17, L169–L173 (1984).
[CrossRef]

1983

R. Hilbig and R. Wallenstein, “Resonant sum and difference frequency mixing in Hg,” IEEE J. Quantum Electron. 19, 1759–1770 (1983).
[CrossRef]

T. Srinivasan, H. Egger, H. Pummer, and C. K. Rhodes, “Generation of extreme ultraviolet radiation at 79 nm by sum frequency mixing,” IEEE J. Quantum Electron. 19, 1270–1276 (1983).
[CrossRef]

H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited moleclar hydrogen,” Phys. Rev. A 28, 795–801 (1983).
[CrossRef]

R. Hilbig and R. Wallenstein, “Tunable VUV radiation generated by two-photon resonant frequency mixing in xenon,” IEEE J. Quantum Electron. 19, 194–201 (1983).
[CrossRef]

H. Scheingraber and C. R. Vidal, “Saturation of resonant third-harmonic generation due to self-defocusing and a redistribution of the population densities,” IEEE J. Quantum Electron. 19, 1747–1758 (1983).
[CrossRef]

1982

1981

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton, and xenon in the 253.7–140.4-nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25, 395–402 (1981).
[CrossRef]

V. P. Gladushchak, S. A. Moshkalev, G. I. Chashchina, and E. Ya. Shreider, “Use of third-harmonic generation for determining the refractive indices of gases in the vacuum ultraviolet spectral region,” Opt. Spectrosc. 51, 608–609 (1981).

H. Zacharias, H. Rottke, J. Danon, and K. H. Welge, “Resonant two photon ionization of H and D atoms,” Opt. Commun. 37, 15–19 (1981).
[CrossRef]

R. Hilbig and R. Wallenstein, “Enhanced production of tunable vuv radiation by phase-matched frequency tripling in krypton and xenon,” IEEE J. Quantum Electron. 17, 1566–1573 (1981).
[CrossRef]

1980

R. Wallenstein, “Generation of narrowband tunable VUV radiation at the Lyman-α wavelength,” Opt. Commun. 33, 119–122 (1980).
[CrossRef]

H. Langer, H. Puell, and H. Röhr, “Lyman alpha (1216 Å) generation in krypton,” Opt. Commun. 34, 137–142 (1980).
[CrossRef]

H. Puell, H. Scheingraber, and C. R. Vidal, “Saturation of resonant third-harmonic generation in phase-matched systems,” Phys. Rev. A 22, 1165–1178 (1980).
[CrossRef]

R. Mahon and Y. M. Yiu, “Generation of Lyman-α radiation in phase-matched rare-gas mixtures,” Opt. Lett. 5, 279–281 (1980).
[CrossRef] [PubMed]

1979

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15, 444–451 (1979).
[CrossRef]

D. Cotter, “Tunable, narrow-band coherent VUV source for the Lyman-alpha region,” Opt. Commun. 31, 397–400 (1979).
[CrossRef]

W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, “Nonlinear optical processes in atoms and molecules using rare-gas halide lasers,” IEEE J. Quantum Electron. 15, 380–392 (1979).
[CrossRef]

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV: SRS of excimer laser wavelengths,” IEEE J. Quantum Electron. 15, 337–342 (1979).
[CrossRef]

1978

1977

S. A. Batishche, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A. Mostovnikov, P. A. Naumenkov, G. T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Ya. Shreider, “Laser action near the Lα line in hydrogen and deuterium,” Sov. Tech. Phys. Lett. 3, 473 (1977).

1975

G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287–296 (1975).
[CrossRef]

1974

P. D. Chopra and D. W. O. Heddle, “Polarization free measurements of Rayleigh scattering of Lyman α,” J. Phys. B 7, 2421–2428 (1974).
[CrossRef]

P. J. Leonard, “Refractive indices, Verdet constants, and polarizabilities of the inert gases,” At. Data Nucl. Data Tables 14, 21–37 (1974).
[CrossRef]

R. T. Hodgson, P. P. Sorokin, and J. J. Wynne, “Tunable coherent vacuum-ultraviolet generation in atomic vapors,” Phys. Rev. Lett. 32, 343–346 (1974).
[CrossRef]

1972

G. Herzberg and C. Jungen, “Rydberg series and ionization potential of the H2 molecule,” J. Mol. Spectrosc. 41, 425–486 (1972).
[CrossRef]

1969

R. J. Spindler, Jr., “Franck–Condon factors for band systems of molecular hydrogen—I,” J. Quant. Spectrosc. Radiat. Transfer 9, 597–626 (1969).
[CrossRef]

J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57–72 (1969).
[CrossRef]

1968

G. I. Chashchina, V. I. Gladushchak, and E. Ya. Shreider, “Determination of the refractive index of argon and the oscillator strength of its resonance lines,” Opt. Spectrosc. 24, 542–543 (1968).

Abjean, R.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton, and xenon in the 253.7–140.4-nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25, 395–402 (1981).
[CrossRef]

Ait-Kaci, M.

A. V. Kanaev, V. Zafiropulos, M. Ait-Kaci, L. Museur, H. Nkwawo, and M. C. Castex, “Excimer formation mechanism in gaseous krypton and Kr/N2 mixtures,” Z. Phys. D 27, 29–37 (1993).
[CrossRef]

Baldwin, K. G. H.

K. G. H. Baldwin, J. P. Marangos, and D. D. Burgess, “Application of coherent VUV radiation to the measurement of Lyman-α absorption lineshapes in a dense Z-pinch plasma,” J. Phys. D 17, L169–L173 (1984).
[CrossRef]

Barker, D. L.

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV: SRS of excimer laser wavelengths,” IEEE J. Quantum Electron. 15, 337–342 (1979).
[CrossRef]

Barth, J.

Batishche, S. A.

S. A. Batishche, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A. Mostovnikov, P. A. Naumenkov, G. T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Ya. Shreider, “Laser action near the Lα line in hydrogen and deuterium,” Sov. Tech. Phys. Lett. 3, 473 (1977).

Bershader, D.

S. A. Meyer, D. Bershader, and S. P. Sharma, “Resonance broadening measurements of atomic oxygen at 130 nm,” J. Quant. Spectrosc. Radiat. Transfer 60, 53–68 (1998).
[CrossRef]

Bideau-Mehu, A.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton, and xenon in the 253.7–140.4-nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25, 395–402 (1981).
[CrossRef]

Bischel, W. K.

G. C. Herring, M. J. Dyer, L. E. Jusinski, and W. K. Bischel, “Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm,” Opt. Lett. 13, 360–362 (1988).
[CrossRef] [PubMed]

W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, “Nonlinear optical processes in atoms and molecules using rare-gas halide lasers,” IEEE J. Quantum Electron. 15, 380–392 (1979).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287–296 (1975).
[CrossRef]

Blondel, C.

L. Cabaret, C. Delsart, and C. Blondel, “High resolution spectroscopy of the hydrogen Lyman-α line Stark structure using a vuv single mode pulsed laser system,” Opt. Commun. 61, 116–119 (1987).
[CrossRef]

Bogen, P.

P. Bogen, Ph. Mertens, E. Pasch, and H. F. Döbele, “Detection of atomic oxygen and hydrogen in the vacuum UV using a frequency-doubled, Raman-shifted dye laser,” J. Opt. Soc. Am. B 9, 2137–2141 (1992).
[CrossRef]

Ph. Mertens and P. Bogen, “Densities and velocity distributions of atomic hydrogen and carbon, measured by laser-induced fluorescence with frequency-tripling into the vacuum UV,” Appl. Phys. A 43, 197–204 (1987).
[CrossRef]

Bokor, J.

W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, “Nonlinear optical processes in atoms and molecules using rare-gas halide lasers,” IEEE J. Quantum Electron. 15, 380–392 (1979).
[CrossRef]

Bonin, K. D.

Brink, D. J.

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38, 6231–6239 (1988).
[CrossRef] [PubMed]

Brownsword, R. A.

R. A. Brownsword, M. Hillenkamp, T. Laurent, R. K. Vatsa, H.-R. Volpp, and J. Wolfrum, “Photodissociation dynamics of the chloromethanes at the Lyman-α wavelength (121.6 nm),” J. Chem. Phys. 106, 1359–1366 (1997).
[CrossRef]

Bulanin, M. O.

M. O. Bulanin and I. M. Kislyakov, “Dynamic polarizabilities of rare-gas atoms: krypton and xenon,” Opt. Spectrosc. 85, 819–825 (1998).

Burakov, V. S.

S. A. Batishche, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A. Mostovnikov, P. A. Naumenkov, G. T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Ya. Shreider, “Laser action near the Lα line in hydrogen and deuterium,” Sov. Tech. Phys. Lett. 3, 473 (1977).

Burgess, D. D.

K. G. H. Baldwin, J. P. Marangos, and D. D. Burgess, “Application of coherent VUV radiation to the measurement of Lyman-α absorption lineshapes in a dense Z-pinch plasma,” J. Phys. D 17, L169–L173 (1984).
[CrossRef]

Butler, J. E.

F. G. Celii, H. R. Thorsheim, J. E. Butler, L. S. Plano, and J. M. Pinneo, “Detection of ground-state atomic hydrogen in a dc plasma using third-harmonic generation,” J. Appl. Phys. 68, 3814–3817 (1990).
[CrossRef]

Cabaret, L.

L. Cabaret, C. Delsart, and C. Blondel, “High resolution spectroscopy of the hydrogen Lyman-α line Stark structure using a vuv single mode pulsed laser system,” Opt. Commun. 61, 116–119 (1987).
[CrossRef]

Castex, M. C.

A. V. Kanaev, V. Zafiropulos, M. Ait-Kaci, L. Museur, H. Nkwawo, and M. C. Castex, “Excimer formation mechanism in gaseous krypton and Kr/N2 mixtures,” Z. Phys. D 27, 29–37 (1993).
[CrossRef]

Celii, F. G.

F. G. Celii, H. R. Thorsheim, J. E. Butler, L. S. Plano, and J. M. Pinneo, “Detection of ground-state atomic hydrogen in a dc plasma using third-harmonic generation,” J. Appl. Phys. 68, 3814–3817 (1990).
[CrossRef]

Chashchina, G. I.

G. I. Chashchina and E. Ya. Shreider, “Determination of hydrogen refraction in the vacuum spectral range,” Opt. Spectrosc. 66, 274–275 (1989).

V. P. Gladushchak, S. A. Moshkalev, G. I. Chashchina, and E. Ya. Shreider, “Use of third-harmonic generation for determining the refractive indices of gases in the vacuum ultraviolet spectral region,” Opt. Spectrosc. 51, 608–609 (1981).

G. I. Chashchina, V. I. Gladushchak, and E. Ya. Shreider, “Determination of the refractive index of argon and the oscillator strength of its resonance lines,” Opt. Spectrosc. 24, 542–543 (1968).

Chopra, P. D.

P. D. Chopra and D. W. O. Heddle, “Polarization free measurements of Rayleigh scattering of Lyman α,” J. Phys. B 7, 2421–2428 (1974).
[CrossRef]

Connerade, J. P.

Cotter, D.

D. Cotter, “Tunable, narrow-band coherent VUV source for the Lyman-alpha region,” Opt. Commun. 31, 397–400 (1979).
[CrossRef]

Czarnetzki, U.

A. Goehlich, U. Czarnetzki, and H. F. Dobele, “Increased efficiency of vacuum ultraviolet generation by stimulated anti-Stokes Raman scattering with Stokes seeding,” Appl. Opt. 37, 8453–8459 (1998).
[CrossRef]

U. Czarnetzki and H. F. Döbele, “Generation of vacuum-ultraviolet radiation in H2 by nonlinear optical processes near the EF- and B-state resonances,” Phys. Rev. A 44, 7530–7546 (1991).
[CrossRef] [PubMed]

U. Czarnetzki, H. F. Döbele, and B. Rückle, “Stimulated IR- and vacuum-UV emission following two-photon-excitation of molecular hydrogen using an ArF laser,” Appl. Phys. B: Photophys. Laser Chem. 48, 37–40 (1989).
[CrossRef]

U. Czarnetzki, U. Wojak, and H. F. Döbele, “Observation of stimulated hyper-Raman scattering in H2,” Phys. Rev. A 40, 6120–6123 (1989).
[CrossRef] [PubMed]

Dabrowski, I.

I. Dabrowski, “The Lyman and Werner bands of H2,” Can. J. Phys. 62, 1639–1664 (1984).
[CrossRef]

Danon, J.

H. Zacharias, H. Rottke, J. Danon, and K. H. Welge, “Resonant two photon ionization of H and D atoms,” Opt. Commun. 37, 15–19 (1981).
[CrossRef]

Datskos, P. G.

P. G. Datskos, L. A. Pinnaduwage, and J. F. Kielkopf, “Photophysical and electron attachment properties of ArF-excimer-laser irradiated H2,” Phys. Rev. A 55, 4131–4142 (1997).
[CrossRef]

DeFaccio, M. A.

Delsart, C.

L. Cabaret, C. Delsart, and C. Blondel, “High resolution spectroscopy of the hydrogen Lyman-α line Stark structure using a vuv single mode pulsed laser system,” Opt. Commun. 61, 116–119 (1987).
[CrossRef]

Dikmen, B.

D. Wagner, B. Dikmen, and H. F. Döbele, “Vacuum ultraviolet absorption spectroscopy in the spectral interval of Lyman-α of atomic hydrogen and deuterium in an ion source plasma,” Rev. Sci. Instrum. 67, 1800–1806 (1996).
[CrossRef]

Dobele, H. F.

Döbele, H. F.

D. Wagner, B. Dikmen, and H. F. Döbele, “Vacuum ultraviolet absorption spectroscopy in the spectral interval of Lyman-α of atomic hydrogen and deuterium in an ion source plasma,” Rev. Sci. Instrum. 67, 1800–1806 (1996).
[CrossRef]

P. Bogen, Ph. Mertens, E. Pasch, and H. F. Döbele, “Detection of atomic oxygen and hydrogen in the vacuum UV using a frequency-doubled, Raman-shifted dye laser,” J. Opt. Soc. Am. B 9, 2137–2141 (1992).
[CrossRef]

U. Czarnetzki and H. F. Döbele, “Generation of vacuum-ultraviolet radiation in H2 by nonlinear optical processes near the EF- and B-state resonances,” Phys. Rev. A 44, 7530–7546 (1991).
[CrossRef] [PubMed]

U. Czarnetzki, H. F. Döbele, and B. Rückle, “Stimulated IR- and vacuum-UV emission following two-photon-excitation of molecular hydrogen using an ArF laser,” Appl. Phys. B: Photophys. Laser Chem. 48, 37–40 (1989).
[CrossRef]

U. Czarnetzki, U. Wojak, and H. F. Döbele, “Observation of stimulated hyper-Raman scattering in H2,” Phys. Rev. A 40, 6120–6123 (1989).
[CrossRef] [PubMed]

H. F. Döbele, M. Hörl, and M. Röwenkamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
[CrossRef]

Dyer, M. J.

Egger, H.

T. S. Luk, H. Egger, W. Müller, H. Pummer, and C. K. Rhodes, “The observation of stimulated emission in the 119 to 149 nm range from HD excited by picosecond 193 nm radiation,” J. Chem. Phys. 82, 4479–4482 (1985).
[CrossRef]

T. Srinivasan, H. Egger, H. Pummer, and C. K. Rhodes, “Generation of extreme ultraviolet radiation at 79 nm by sum frequency mixing,” IEEE J. Quantum Electron. 19, 1270–1276 (1983).
[CrossRef]

H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited moleclar hydrogen,” Phys. Rev. A 28, 795–801 (1983).
[CrossRef]

Eikema, K.

K. Eikema, J. Walz, and T. Hansch, “Continuous wave coherent Lyman-alpha radiation,” Phys. Rev. Lett. 83, 3828–3831 (1999).
[CrossRef]

Eyler, E. E.

Faris, G. W.

Ferrell, W. R.

W. R. Ferrell, M. G. Payne, and W. R. Garrett, “Determination of optical constants of noble gases through multiphoton ionization measurements,” Phys. Rev. A 35, 5020–5031 (1987).
[CrossRef] [PubMed]

Funk, D. J.

Gangopadhyay, S.

Garrett, W. R.

W. R. Ferrell, M. G. Payne, and W. R. Garrett, “Determination of optical constants of noble gases through multiphoton ionization measurements,” Phys. Rev. A 35, 5020–5031 (1987).
[CrossRef] [PubMed]

Gibson, S. T.

J. Lacouriére, S. A. Meyer, G. W. Faris, T. G. Slanger, B. R. Lewis, and S. T. Gibson, “The O(1D) yield from O2 photodissocation near H Lyman-α (121.6 nm),” J. Chem. Phys. 110, 1949–1958 (1999).
[CrossRef]

Gladushchak, V. I.

V. I. Gladushchak, S. A. Moshkalev, G. T. Razdobarin, and E. Ya. Shreider, “Coherent sources of vacuum ultraviolet radiation,” Sov. Phys. Tech. Phys. 31, 855–873 (1986).

S. A. Batishche, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A. Mostovnikov, P. A. Naumenkov, G. T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Ya. Shreider, “Laser action near the Lα line in hydrogen and deuterium,” Sov. Tech. Phys. Lett. 3, 473 (1977).

G. I. Chashchina, V. I. Gladushchak, and E. Ya. Shreider, “Determination of the refractive index of argon and the oscillator strength of its resonance lines,” Opt. Spectrosc. 24, 542–543 (1968).

Gladushchak, V. P.

V. P. Gladushchak, S. A. Moshkalev, G. I. Chashchina, and E. Ya. Shreider, “Use of third-harmonic generation for determining the refractive indices of gases in the vacuum ultraviolet spectral region,” Opt. Spectrosc. 51, 608–609 (1981).

Goehlich, A.

Gordon, R. J.

R. J. Gordon, S.-P. Lu, S. M. Park, K. Trentelman, Y. Xie, L. Zhu, A. Kumar, and W. J. Meath, “The use of coherent phase control of multiphoton ionization to measure the refractive indices of H2 and Ar between 1100 and 1150 Å,” J. Chem. Phys. 98, 9481–9486 (1993).
[CrossRef]

Guern, Y.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton, and xenon in the 253.7–140.4-nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25, 395–402 (1981).
[CrossRef]

Hakuta, K.

G. Z. Zhang, D. W. Tokaryk, B. P. Stoicheff, and K. Hakuta, “Nonlinear generation of extreme-ultraviolet radiation in atomic hydrogen using electromagnetically induced transparency,” Phys. Rev. A 56, 813–819 (1997).
[CrossRef]

K. Hakuta, L. Marmet, and B. P. Stoicheff, “Nonlinear optical generation with reduced absorption using electric-field coupling in atomic hydrogen,” Phys. Rev. A 45, 5152–5159 (1992).
[CrossRef] [PubMed]

Halpern, J. B.

P. Löffler, E. Wrede, L. Schnieder, J. B. Halpern, W. M. Jackson, and K. H. Welge, “Dissociation dynamics of acetylene Rydberg states as a function of excited state lifetime,” J. Chem. Phys. 109, 5231–5246 (1998).
[CrossRef]

Hansch, T.

K. Eikema, J. Walz, and T. Hansch, “Continuous wave coherent Lyman-alpha radiation,” Phys. Rev. Lett. 83, 3828–3831 (1999).
[CrossRef]

Heddle, D. W. O.

P. D. Chopra and D. W. O. Heddle, “Polarization free measurements of Rayleigh scattering of Lyman α,” J. Phys. B 7, 2421–2428 (1974).
[CrossRef]

Herring, G. C.

Hertel, I. V.

Herzberg, G.

G. Herzberg and C. Jungen, “Rydberg series and ionization potential of the H2 molecule,” J. Mol. Spectrosc. 41, 425–486 (1972).
[CrossRef]

Hilber, G.

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38, 6231–6239 (1988).
[CrossRef] [PubMed]

G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4, 1753–1764 (1987).
[CrossRef]

A. Lago, G. Hilber, and R. Wallenstein, “Optical-frequency conversion in gaseous media,” Phys. Rev. A 36, 3827–3836 (1987).
[CrossRef] [PubMed]

R. Hilbig, G. Hilber, A. Lago, B. Wolff, and R. Wallenstein, “Tunable coherent VUV radiation generated by nonlinear optical frequency conversion in gases,” Comments At. Mol. Phys. 18, 157–180 (1986).

Hilbig, R.

R. Hilbig, G. Hilber, A. Lago, B. Wolff, and R. Wallenstein, “Tunable coherent VUV radiation generated by nonlinear optical frequency conversion in gases,” Comments At. Mol. Phys. 18, 157–180 (1986).

R. Hilbig and R. Wallenstein, “Resonant sum and difference frequency mixing in Hg,” IEEE J. Quantum Electron. 19, 1759–1770 (1983).
[CrossRef]

R. Hilbig and R. Wallenstein, “Tunable VUV radiation generated by two-photon resonant frequency mixing in xenon,” IEEE J. Quantum Electron. 19, 194–201 (1983).
[CrossRef]

R. Hilbig and R. Wallenstein, “Enhanced production of tunable vuv radiation by phase-matched frequency tripling in krypton and xenon,” IEEE J. Quantum Electron. 17, 1566–1573 (1981).
[CrossRef]

Hillenkamp, M.

R. A. Brownsword, M. Hillenkamp, T. Laurent, R. K. Vatsa, H.-R. Volpp, and J. Wolfrum, “Photodissociation dynamics of the chloromethanes at the Lyman-α wavelength (121.6 nm),” J. Chem. Phys. 106, 1359–1366 (1997).
[CrossRef]

Himeno, S.

S. Himeno, E. Noda, Q. Q. Lü, S. Kogoshi, Y. Iida, M. Katsurai, and T. Sekiguchi, “Generation of coherent Lyman-alpha radiation with an alexandrite laser for diagnostics of neutral hydrogen density,” J. Nucl. Mater. 128–129, 974–976 (1984).
[CrossRef]

Hirakawa, Y.

Hodgson, R. T.

R. T. Hodgson, P. P. Sorokin, and J. J. Wynne, “Tunable coherent vacuum-ultraviolet generation in atomic vapors,” Phys. Rev. Lett. 32, 343–346 (1974).
[CrossRef]

Hooker, S. M.

S. M. Hooker and C. E. Webb, “Progress in vacuum-ultraviolet lasers,” Prog. Quantum Electron. 18, 227–274 (1994).
[CrossRef]

Hörl, M.

H. F. Döbele, M. Hörl, and M. Röwenkamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
[CrossRef]

Hutchinson, M. H. R.

Iida, Y.

S. Himeno, E. Noda, Q. Q. Lü, S. Kogoshi, Y. Iida, M. Katsurai, and T. Sekiguchi, “Generation of coherent Lyman-alpha radiation with an alexandrite laser for diagnostics of neutral hydrogen density,” J. Nucl. Mater. 128–129, 974–976 (1984).
[CrossRef]

Jackson, W. M.

P. Löffler, E. Wrede, L. Schnieder, J. B. Halpern, W. M. Jackson, and K. H. Welge, “Dissociation dynamics of acetylene Rydberg states as a function of excited state lifetime,” J. Chem. Phys. 109, 5231–5246 (1998).
[CrossRef]

Johannin-Gilles, A.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton, and xenon in the 253.7–140.4-nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25, 395–402 (1981).
[CrossRef]

Jungen, C.

G. Herzberg and C. Jungen, “Rydberg series and ionization potential of the H2 molecule,” J. Mol. Spectrosc. 41, 425–486 (1972).
[CrossRef]

Jusinski, L. E.

Kanaev, A. V.

A. V. Kanaev, V. Zafiropulos, M. Ait-Kaci, L. Museur, H. Nkwawo, and M. C. Castex, “Excimer formation mechanism in gaseous krypton and Kr/N2 mixtures,” Z. Phys. D 27, 29–37 (1993).
[CrossRef]

Kasuya, T.

K. Tsukiyama, M. Momose, M. Tsukakoshi, and T. Kasuya, “Generation of XUV radiation by four-wave mixing in CO,” Opt. Commun. 79, 88–92 (1990).
[CrossRef]

Katsurai, M.

S. Himeno, E. Noda, Q. Q. Lü, S. Kogoshi, Y. Iida, M. Katsurai, and T. Sekiguchi, “Generation of coherent Lyman-alpha radiation with an alexandrite laser for diagnostics of neutral hydrogen density,” J. Nucl. Mater. 128–129, 974–976 (1984).
[CrossRef]

Kielkopf, J. F.

P. G. Datskos, L. A. Pinnaduwage, and J. F. Kielkopf, “Photophysical and electron attachment properties of ArF-excimer-laser irradiated H2,” Phys. Rev. A 55, 4131–4142 (1997).
[CrossRef]

Kislyakov, I. M.

M. O. Bulanin and I. M. Kislyakov, “Dynamic polarizabilities of rare-gas atoms: krypton and xenon,” Opt. Spectrosc. 85, 819–825 (1998).

Kittelmann, O.

Kligler, D. J.

W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, “Nonlinear optical processes in atoms and molecules using rare-gas halide lasers,” IEEE J. Quantum Electron. 15, 380–392 (1979).
[CrossRef]

Kogoshi, S.

S. Himeno, E. Noda, Q. Q. Lü, S. Kogoshi, Y. Iida, M. Katsurai, and T. Sekiguchi, “Generation of coherent Lyman-alpha radiation with an alexandrite laser for diagnostics of neutral hydrogen density,” J. Nucl. Mater. 128–129, 974–976 (1984).
[CrossRef]

Komatsu, R.

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887–5892 (1998).
[CrossRef]

Koopman, D. W.

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15, 444–451 (1979).
[CrossRef]

R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33, 305–307 (1978).
[CrossRef]

Korn, G.

Krisch, M.

Krumrey, M.

Kumar, A.

R. J. Gordon, S.-P. Lu, S. M. Park, K. Trentelman, Y. Xie, L. Zhu, A. Kumar, and W. J. Meath, “The use of coherent phase control of multiphoton ionization to measure the refractive indices of H2 and Ar between 1100 and 1150 Å,” J. Chem. Phys. 98, 9481–9486 (1993).
[CrossRef]

Kunkel, W. B.

G. C. Stutzin, A. T. Young, A. S. Schlachter, J. W. Stearns, K. N. Leung, W. B. Kunkel, G. T. Worth, and R. R. Stevens, “VUV laser absorption spectrometer system for measurement of H0 density and temperature in a plasma,” Rev. Sci. Instrum. 59, 1363–1368 (1988).
[CrossRef]

Lacouriére, J.

J. Lacouriére, S. A. Meyer, G. W. Faris, T. G. Slanger, B. R. Lewis, and S. T. Gibson, “The O(1D) yield from O2 photodissocation near H Lyman-α (121.6 nm),” J. Chem. Phys. 110, 1949–1958 (1999).
[CrossRef]

Lago, A.

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38, 6231–6239 (1988).
[CrossRef] [PubMed]

G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4, 1753–1764 (1987).
[CrossRef]

A. Lago, G. Hilber, and R. Wallenstein, “Optical-frequency conversion in gaseous media,” Phys. Rev. A 36, 3827–3836 (1987).
[CrossRef] [PubMed]

R. Hilbig, G. Hilber, A. Lago, B. Wolff, and R. Wallenstein, “Tunable coherent VUV radiation generated by nonlinear optical frequency conversion in gases,” Comments At. Mol. Phys. 18, 157–180 (1986).

Langer, H.

H. Langer, H. Puell, and H. Röhr, “Lyman alpha (1216 Å) generation in krypton,” Opt. Commun. 34, 137–142 (1980).
[CrossRef]

Laurent, T.

R. A. Brownsword, M. Hillenkamp, T. Laurent, R. K. Vatsa, H.-R. Volpp, and J. Wolfrum, “Photodissociation dynamics of the chloromethanes at the Lyman-α wavelength (121.6 nm),” J. Chem. Phys. 106, 1359–1366 (1997).
[CrossRef]

Leonard, P. J.

P. J. Leonard, “Refractive indices, Verdet constants, and polarizabilities of the inert gases,” At. Data Nucl. Data Tables 14, 21–37 (1974).
[CrossRef]

Leung, K. N.

G. C. Stutzin, A. T. Young, A. S. Schlachter, J. W. Stearns, K. N. Leung, W. B. Kunkel, G. T. Worth, and R. R. Stevens, “VUV laser absorption spectrometer system for measurement of H0 density and temperature in a plasma,” Rev. Sci. Instrum. 59, 1363–1368 (1988).
[CrossRef]

Lewis, B. R.

J. Lacouriére, S. A. Meyer, G. W. Faris, T. G. Slanger, B. R. Lewis, and S. T. Gibson, “The O(1D) yield from O2 photodissocation near H Lyman-α (121.6 nm),” J. Chem. Phys. 110, 1949–1958 (1999).
[CrossRef]

Löffler, P.

P. Löffler, E. Wrede, L. Schnieder, J. B. Halpern, W. M. Jackson, and K. H. Welge, “Dissociation dynamics of acetylene Rydberg states as a function of excited state lifetime,” J. Chem. Phys. 109, 5231–5246 (1998).
[CrossRef]

Loree, T. R.

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV: SRS of excimer laser wavelengths,” IEEE J. Quantum Electron. 15, 337–342 (1979).
[CrossRef]

Lowenthal, D. D.

Lu, S.-P.

R. J. Gordon, S.-P. Lu, S. M. Park, K. Trentelman, Y. Xie, L. Zhu, A. Kumar, and W. J. Meath, “The use of coherent phase control of multiphoton ionization to measure the refractive indices of H2 and Ar between 1100 and 1150 Å,” J. Chem. Phys. 98, 9481–9486 (1993).
[CrossRef]

Lü, Q. Q.

S. Himeno, E. Noda, Q. Q. Lü, S. Kogoshi, Y. Iida, M. Katsurai, and T. Sekiguchi, “Generation of coherent Lyman-alpha radiation with an alexandrite laser for diagnostics of neutral hydrogen density,” J. Nucl. Mater. 128–129, 974–976 (1984).
[CrossRef]

Luk, T. S.

M. Shahidi, T. S. Luk, and C. K. Rhodes, “Generation of infrared and extreme-ultraviolet radiation in krypton with picosecond irradiation at 193 nm,” J. Opt. Soc. Am. B 5, 2386–2394 (1988).
[CrossRef]

T. S. Luk, H. Egger, W. Müller, H. Pummer, and C. K. Rhodes, “The observation of stimulated emission in the 119 to 149 nm range from HD excited by picosecond 193 nm radiation,” J. Chem. Phys. 82, 4479–4482 (1985).
[CrossRef]

H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited moleclar hydrogen,” Phys. Rev. A 28, 795–801 (1983).
[CrossRef]

Ma, H.

Maeda, M.

Mahon, R.

R. Mahon and Y. M. Yiu, “Generation of Lyman-α radiation in phase-matched rare-gas mixtures,” Opt. Lett. 5, 279–281 (1980).
[CrossRef] [PubMed]

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15, 444–451 (1979).
[CrossRef]

R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33, 305–307 (1978).
[CrossRef]

Marangos, J. P.

J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson, and J. P. Connerade, “Broadly tunable vacuum-ultraviolet radiation source employing resonant enhanced sum-difference frequency mixing in krypton,” J. Opt. Soc. Am. B 7, 1254–1259 (1990).
[CrossRef]

K. G. H. Baldwin, J. P. Marangos, and D. D. Burgess, “Application of coherent VUV radiation to the measurement of Lyman-α absorption lineshapes in a dense Z-pinch plasma,” J. Phys. D 17, L169–L173 (1984).
[CrossRef]

Marmet, L.

K. Hakuta, L. Marmet, and B. P. Stoicheff, “Nonlinear optical generation with reduced absorption using electric-field coupling in atomic hydrogen,” Phys. Rev. A 45, 5152–5159 (1992).
[CrossRef] [PubMed]

McFarlane, R. A.

R. S. Turley, R. A. McFarlane, J. Remillard, and D. G. Steel, “Production of intense, coherent, tunable, narrow-band Lyman-alpha radiation,” Proc. SPIE 912, 116–121 (1988).
[CrossRef]

McIlrath, T. J.

K. D. Bonin and T. J. McIlrath, “Generation of tunable coherent radiation below 1000 Å by four-wave mixing in krypton,” J. Opt. Soc. Am. B 2, 527–534 (1985).
[CrossRef]

Y.-M. Yiu, K. D. Bonin, and T. J. McIlrath, “Two-photon resonant upconversion in xenon,” Opt. Lett. 7, 268–270 (1982).
[CrossRef] [PubMed]

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15, 444–451 (1979).
[CrossRef]

R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33, 305–307 (1978).
[CrossRef]

McKee, T. J.

Meath, W. J.

R. J. Gordon, S.-P. Lu, S. M. Park, K. Trentelman, Y. Xie, L. Zhu, A. Kumar, and W. J. Meath, “The use of coherent phase control of multiphoton ionization to measure the refractive indices of H2 and Ar between 1100 and 1150 Å,” J. Chem. Phys. 98, 9481–9486 (1993).
[CrossRef]

Melikechi, N.

Mertens, Ph.

Ph. Mertens and M. Silz, “Radial profiles of atomic deuterium measured in the boundary of TEXTOR 94 with laser-induced fluorescence,” J. Nucl. Mater. 241–243, 842–847 (1997).
[CrossRef]

P. Bogen, Ph. Mertens, E. Pasch, and H. F. Döbele, “Detection of atomic oxygen and hydrogen in the vacuum UV using a frequency-doubled, Raman-shifted dye laser,” J. Opt. Soc. Am. B 9, 2137–2141 (1992).
[CrossRef]

Ph. Mertens and P. Bogen, “Densities and velocity distributions of atomic hydrogen and carbon, measured by laser-induced fluorescence with frequency-tripling into the vacuum UV,” Appl. Phys. A 43, 197–204 (1987).
[CrossRef]

Meyer, S. A.

J. Lacouriére, S. A. Meyer, G. W. Faris, T. G. Slanger, B. R. Lewis, and S. T. Gibson, “The O(1D) yield from O2 photodissocation near H Lyman-α (121.6 nm),” J. Chem. Phys. 110, 1949–1958 (1999).
[CrossRef]

S. A. Meyer and G. W. Faris, “High-power Lyman-α source generated with an ArF excimer laser,” Opt. Lett. 23, 204–206 (1998).
[CrossRef]

S. A. Meyer, D. Bershader, and S. P. Sharma, “Resonance broadening measurements of atomic oxygen at 130 nm,” J. Quant. Spectrosc. Radiat. Transfer 60, 53–68 (1998).
[CrossRef]

Miller, J. C.

J. C. Miller, “Two-photon resonant multiphoton ionization and stimulated emission in krypton and xenon,” Phys. Rev. A 40, 6969–6976 (1989).
[CrossRef] [PubMed]

Miyazaki, K.

Momose, M.

K. Tsukiyama, M. Momose, M. Tsukakoshi, and T. Kasuya, “Generation of XUV radiation by four-wave mixing in CO,” Opt. Commun. 79, 88–92 (1990).
[CrossRef]

Moshkalev, S. A.

V. I. Gladushchak, S. A. Moshkalev, G. T. Razdobarin, and E. Ya. Shreider, “Coherent sources of vacuum ultraviolet radiation,” Sov. Phys. Tech. Phys. 31, 855–873 (1986).

V. P. Gladushchak, S. A. Moshkalev, G. I. Chashchina, and E. Ya. Shreider, “Use of third-harmonic generation for determining the refractive indices of gases in the vacuum ultraviolet spectral region,” Opt. Spectrosc. 51, 608–609 (1981).

Mostovnikov, V. A.

S. A. Batishche, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A. Mostovnikov, P. A. Naumenkov, G. T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Ya. Shreider, “Laser action near the Lα line in hydrogen and deuterium,” Sov. Tech. Phys. Lett. 3, 473 (1977).

Müller, W.

T. S. Luk, H. Egger, W. Müller, H. Pummer, and C. K. Rhodes, “The observation of stimulated emission in the 119 to 149 nm range from HD excited by picosecond 193 nm radiation,” J. Chem. Phys. 82, 4479–4482 (1985).
[CrossRef]

Muller III, C. H.

Muraoka, K.

Museur, L.

A. V. Kanaev, V. Zafiropulos, M. Ait-Kaci, L. Museur, H. Nkwawo, and M. C. Castex, “Excimer formation mechanism in gaseous krypton and Kr/N2 mixtures,” Z. Phys. D 27, 29–37 (1993).
[CrossRef]

Myerscough, V. P.

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15, 444–451 (1979).
[CrossRef]

Nagai, A.

Naumenkov, P. A.

S. A. Batishche, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A. Mostovnikov, P. A. Naumenkov, G. T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Ya. Shreider, “Laser action near the Lα line in hydrogen and deuterium,” Sov. Tech. Phys. Lett. 3, 473 (1977).

Nazarkin, A.

New, G. H. C.

J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57–72 (1969).
[CrossRef]

Nkwawo, H.

A. V. Kanaev, V. Zafiropulos, M. Ait-Kaci, L. Museur, H. Nkwawo, and M. C. Castex, “Excimer formation mechanism in gaseous krypton and Kr/N2 mixtures,” Z. Phys. D 27, 29–37 (1993).
[CrossRef]

Noack, F.

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887–5892 (1998).
[CrossRef]

F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,” Opt. Lett. 19, 1538–1540 (1994).
[CrossRef] [PubMed]

Noda, E.

S. Himeno, E. Noda, Q. Q. Lü, S. Kogoshi, Y. Iida, M. Katsurai, and T. Sekiguchi, “Generation of coherent Lyman-alpha radiation with an alexandrite laser for diagnostics of neutral hydrogen density,” J. Nucl. Mater. 128–129, 974–976 (1984).
[CrossRef]

Okada, T.

Park, S. M.

R. J. Gordon, S.-P. Lu, S. M. Park, K. Trentelman, Y. Xie, L. Zhu, A. Kumar, and W. J. Meath, “The use of coherent phase control of multiphoton ionization to measure the refractive indices of H2 and Ar between 1100 and 1150 Å,” J. Chem. Phys. 98, 9481–9486 (1993).
[CrossRef]

Pasch, E.

Payne, M. G.

W. R. Ferrell, M. G. Payne, and W. R. Garrett, “Determination of optical constants of noble gases through multiphoton ionization measurements,” Phys. Rev. A 35, 5020–5031 (1987).
[CrossRef] [PubMed]

Petrov, V.

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887–5892 (1998).
[CrossRef]

F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,” Opt. Lett. 19, 1538–1540 (1994).
[CrossRef] [PubMed]

Pinnaduwage, L. A.

P. G. Datskos, L. A. Pinnaduwage, and J. F. Kielkopf, “Photophysical and electron attachment properties of ArF-excimer-laser irradiated H2,” Phys. Rev. A 55, 4131–4142 (1997).
[CrossRef]

Pinneo, J. M.

F. G. Celii, H. R. Thorsheim, J. E. Butler, L. S. Plano, and J. M. Pinneo, “Detection of ground-state atomic hydrogen in a dc plasma using third-harmonic generation,” J. Appl. Phys. 68, 3814–3817 (1990).
[CrossRef]

Plano, L. S.

F. G. Celii, H. R. Thorsheim, J. E. Butler, L. S. Plano, and J. M. Pinneo, “Detection of ground-state atomic hydrogen in a dc plasma using third-harmonic generation,” J. Appl. Phys. 68, 3814–3817 (1990).
[CrossRef]

Puell, H.

H. Puell, H. Scheingraber, and C. R. Vidal, “Saturation of resonant third-harmonic generation in phase-matched systems,” Phys. Rev. A 22, 1165–1178 (1980).
[CrossRef]

H. Langer, H. Puell, and H. Röhr, “Lyman alpha (1216 Å) generation in krypton,” Opt. Commun. 34, 137–142 (1980).
[CrossRef]

Pummer, H.

T. S. Luk, H. Egger, W. Müller, H. Pummer, and C. K. Rhodes, “The observation of stimulated emission in the 119 to 149 nm range from HD excited by picosecond 193 nm radiation,” J. Chem. Phys. 82, 4479–4482 (1985).
[CrossRef]

T. Srinivasan, H. Egger, H. Pummer, and C. K. Rhodes, “Generation of extreme ultraviolet radiation at 79 nm by sum frequency mixing,” IEEE J. Quantum Electron. 19, 1270–1276 (1983).
[CrossRef]

H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited moleclar hydrogen,” Phys. Rev. A 28, 795–801 (1983).
[CrossRef]

Razdobarin, G. T.

V. I. Gladushchak, S. A. Moshkalev, G. T. Razdobarin, and E. Ya. Shreider, “Coherent sources of vacuum ultraviolet radiation,” Sov. Phys. Tech. Phys. 31, 855–873 (1986).

S. A. Batishche, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A. Mostovnikov, P. A. Naumenkov, G. T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Ya. Shreider, “Laser action near the Lα line in hydrogen and deuterium,” Sov. Tech. Phys. Lett. 3, 473 (1977).

Remillard, J.

R. S. Turley, R. A. McFarlane, J. Remillard, and D. G. Steel, “Production of intense, coherent, tunable, narrow-band Lyman-alpha radiation,” Proc. SPIE 912, 116–121 (1988).
[CrossRef]

Rhodes, C. K.

M. Shahidi, T. S. Luk, and C. K. Rhodes, “Generation of infrared and extreme-ultraviolet radiation in krypton with picosecond irradiation at 193 nm,” J. Opt. Soc. Am. B 5, 2386–2394 (1988).
[CrossRef]

T. S. Luk, H. Egger, W. Müller, H. Pummer, and C. K. Rhodes, “The observation of stimulated emission in the 119 to 149 nm range from HD excited by picosecond 193 nm radiation,” J. Chem. Phys. 82, 4479–4482 (1985).
[CrossRef]

T. Srinivasan, H. Egger, H. Pummer, and C. K. Rhodes, “Generation of extreme ultraviolet radiation at 79 nm by sum frequency mixing,” IEEE J. Quantum Electron. 19, 1270–1276 (1983).
[CrossRef]

H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited moleclar hydrogen,” Phys. Rev. A 28, 795–801 (1983).
[CrossRef]

W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, “Nonlinear optical processes in atoms and molecules using rare-gas halide lasers,” IEEE J. Quantum Electron. 15, 380–392 (1979).
[CrossRef]

Ringling, J.

Röhr, H.

H. Langer, H. Puell, and H. Röhr, “Lyman alpha (1216 Å) generation in krypton,” Opt. Commun. 34, 137–142 (1980).
[CrossRef]

Rotermund, F.

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887–5892 (1998).
[CrossRef]

Rottke, H.

H. Zacharias, H. Rottke, J. Danon, and K. H. Welge, “Resonant two photon ionization of H and D atoms,” Opt. Commun. 37, 15–19 (1981).
[CrossRef]

Röwenkamp, M.

H. F. Döbele, M. Hörl, and M. Röwenkamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
[CrossRef]

Rubinov, A. N.

S. A. Batishche, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A. Mostovnikov, P. A. Naumenkov, G. T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Ya. Shreider, “Laser action near the Lα line in hydrogen and deuterium,” Sov. Tech. Phys. Lett. 3, 473 (1977).

Rückle, B.

U. Czarnetzki, H. F. Döbele, and B. Rückle, “Stimulated IR- and vacuum-UV emission following two-photon-excitation of molecular hydrogen using an ArF laser,” Appl. Phys. B: Photophys. Laser Chem. 48, 37–40 (1989).
[CrossRef]

Sakai, H.

Sato, T.

Schäfers, F.

Scheingraber, H.

H. Scheingraber and C. R. Vidal, “Saturation of resonant third-harmonic generation due to self-defocusing and a redistribution of the population densities,” IEEE J. Quantum Electron. 19, 1747–1758 (1983).
[CrossRef]

H. Puell, H. Scheingraber, and C. R. Vidal, “Saturation of resonant third-harmonic generation in phase-matched systems,” Phys. Rev. A 22, 1165–1178 (1980).
[CrossRef]

Schlachter, A. S.

G. C. Stutzin, A. T. Young, A. S. Schlachter, J. W. Stearns, K. N. Leung, W. B. Kunkel, G. T. Worth, and R. R. Stevens, “VUV laser absorption spectrometer system for measurement of H0 density and temperature in a plasma,” Rev. Sci. Instrum. 59, 1363–1368 (1988).
[CrossRef]

Schnieder, L.

P. Löffler, E. Wrede, L. Schnieder, J. B. Halpern, W. M. Jackson, and K. H. Welge, “Dissociation dynamics of acetylene Rydberg states as a function of excited state lifetime,” J. Chem. Phys. 109, 5231–5246 (1998).
[CrossRef]

Scott, P. B.

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV: SRS of excimer laser wavelengths,” IEEE J. Quantum Electron. 15, 337–342 (1979).
[CrossRef]

Seifert, F.

Sekiguchi, T.

S. Himeno, E. Noda, Q. Q. Lü, S. Kogoshi, Y. Iida, M. Katsurai, and T. Sekiguchi, “Generation of coherent Lyman-alpha radiation with an alexandrite laser for diagnostics of neutral hydrogen density,” J. Nucl. Mater. 128–129, 974–976 (1984).
[CrossRef]

Semenov, V. V.

S. A. Batishche, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A. Mostovnikov, P. A. Naumenkov, G. T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Ya. Shreider, “Laser action near the Lα line in hydrogen and deuterium,” Sov. Tech. Phys. Lett. 3, 473 (1977).

Shahidi, M.

Sharma, S. P.

S. A. Meyer, D. Bershader, and S. P. Sharma, “Resonance broadening measurements of atomic oxygen at 130 nm,” J. Quant. Spectrosc. Radiat. Transfer 60, 53–68 (1998).
[CrossRef]

Shen, N.

Shreider, E. Ya.

G. I. Chashchina and E. Ya. Shreider, “Determination of hydrogen refraction in the vacuum spectral range,” Opt. Spectrosc. 66, 274–275 (1989).

V. I. Gladushchak, S. A. Moshkalev, G. T. Razdobarin, and E. Ya. Shreider, “Coherent sources of vacuum ultraviolet radiation,” Sov. Phys. Tech. Phys. 31, 855–873 (1986).

V. P. Gladushchak, S. A. Moshkalev, G. I. Chashchina, and E. Ya. Shreider, “Use of third-harmonic generation for determining the refractive indices of gases in the vacuum ultraviolet spectral region,” Opt. Spectrosc. 51, 608–609 (1981).

S. A. Batishche, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A. Mostovnikov, P. A. Naumenkov, G. T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Ya. Shreider, “Laser action near the Lα line in hydrogen and deuterium,” Sov. Tech. Phys. Lett. 3, 473 (1977).

G. I. Chashchina, V. I. Gladushchak, and E. Ya. Shreider, “Determination of the refractive index of argon and the oscillator strength of its resonance lines,” Opt. Spectrosc. 24, 542–543 (1968).

Silz, M.

Ph. Mertens and M. Silz, “Radial profiles of atomic deuterium measured in the boundary of TEXTOR 94 with laser-induced fluorescence,” J. Nucl. Mater. 241–243, 842–847 (1997).
[CrossRef]

Slanger, T. G.

J. Lacouriére, S. A. Meyer, G. W. Faris, T. G. Slanger, B. R. Lewis, and S. T. Gibson, “The O(1D) yield from O2 photodissocation near H Lyman-α (121.6 nm),” J. Chem. Phys. 110, 1949–1958 (1999).
[CrossRef]

Smith, A. V.

Sorokin, P. P.

R. T. Hodgson, P. P. Sorokin, and J. J. Wynne, “Tunable coherent vacuum-ultraviolet generation in atomic vapors,” Phys. Rev. Lett. 32, 343–346 (1974).
[CrossRef]

Spindler Jr., R. J.

R. J. Spindler, Jr., “Franck–Condon factors for band systems of molecular hydrogen—I,” J. Quant. Spectrosc. Radiat. Transfer 9, 597–626 (1969).
[CrossRef]

Srinivasan, T.

T. Srinivasan, H. Egger, H. Pummer, and C. K. Rhodes, “Generation of extreme ultraviolet radiation at 79 nm by sum frequency mixing,” IEEE J. Quantum Electron. 19, 1270–1276 (1983).
[CrossRef]

H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited moleclar hydrogen,” Phys. Rev. A 28, 795–801 (1983).
[CrossRef]

Stearns, J. W.

G. C. Stutzin, A. T. Young, A. S. Schlachter, J. W. Stearns, K. N. Leung, W. B. Kunkel, G. T. Worth, and R. R. Stevens, “VUV laser absorption spectrometer system for measurement of H0 density and temperature in a plasma,” Rev. Sci. Instrum. 59, 1363–1368 (1988).
[CrossRef]

Steel, D. G.

R. S. Turley, R. A. McFarlane, J. Remillard, and D. G. Steel, “Production of intense, coherent, tunable, narrow-band Lyman-alpha radiation,” Proc. SPIE 912, 116–121 (1988).
[CrossRef]

Stevens, R. R.

G. C. Stutzin, A. T. Young, A. S. Schlachter, J. W. Stearns, K. N. Leung, W. B. Kunkel, G. T. Worth, and R. R. Stevens, “VUV laser absorption spectrometer system for measurement of H0 density and temperature in a plasma,” Rev. Sci. Instrum. 59, 1363–1368 (1988).
[CrossRef]

Stoicheff, B. P.

G. Z. Zhang, D. W. Tokaryk, B. P. Stoicheff, and K. Hakuta, “Nonlinear generation of extreme-ultraviolet radiation in atomic hydrogen using electromagnetically induced transparency,” Phys. Rev. A 56, 813–819 (1997).
[CrossRef]

K. Hakuta, L. Marmet, and B. P. Stoicheff, “Nonlinear optical generation with reduced absorption using electric-field coupling in atomic hydrogen,” Phys. Rev. A 45, 5152–5159 (1992).
[CrossRef] [PubMed]

T. J. McKee, B. P. Stoicheff, and S. C. Wallace, “Tunable, coherent radiation in the Lyman-α region (1210–1290 Å) using magnesium vapor,” Opt. Lett. 3, 207–208 (1978).
[CrossRef] [PubMed]

Strauss, C. E. M.

Stutzin, G. C.

G. C. Stutzin, A. T. Young, A. S. Schlachter, J. W. Stearns, K. N. Leung, W. B. Kunkel, G. T. Worth, and R. R. Stevens, “VUV laser absorption spectrometer system for measurement of H0 density and temperature in a plasma,” Rev. Sci. Instrum. 59, 1363–1368 (1988).
[CrossRef]

Sugawara, T.

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887–5892 (1998).
[CrossRef]

Sze, R. C.

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV: SRS of excimer laser wavelengths,” IEEE J. Quantum Electron. 15, 337–342 (1979).
[CrossRef]

Tarasenko, N. V.

S. A. Batishche, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A. Mostovnikov, P. A. Naumenkov, G. T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Ya. Shreider, “Laser action near the Lα line in hydrogen and deuterium,” Sov. Tech. Phys. Lett. 3, 473 (1977).

Tegeler, E.

Thorsheim, H. R.

F. G. Celii, H. R. Thorsheim, J. E. Butler, L. S. Plano, and J. M. Pinneo, “Detection of ground-state atomic hydrogen in a dc plasma using third-harmonic generation,” J. Appl. Phys. 68, 3814–3817 (1990).
[CrossRef]

Tokaryk, D. W.

G. Z. Zhang, D. W. Tokaryk, B. P. Stoicheff, and K. Hakuta, “Nonlinear generation of extreme-ultraviolet radiation in atomic hydrogen using electromagnetically induced transparency,” Phys. Rev. A 56, 813–819 (1997).
[CrossRef]

Trentelman, K.

R. J. Gordon, S.-P. Lu, S. M. Park, K. Trentelman, Y. Xie, L. Zhu, A. Kumar, and W. J. Meath, “The use of coherent phase control of multiphoton ionization to measure the refractive indices of H2 and Ar between 1100 and 1150 Å,” J. Chem. Phys. 98, 9481–9486 (1993).
[CrossRef]

Tsukakoshi, M.

K. Tsukiyama, M. Momose, M. Tsukakoshi, and T. Kasuya, “Generation of XUV radiation by four-wave mixing in CO,” Opt. Commun. 79, 88–92 (1990).
[CrossRef]

Tsukiyama, K.

K. Tsukiyama, M. Momose, M. Tsukakoshi, and T. Kasuya, “Generation of XUV radiation by four-wave mixing in CO,” Opt. Commun. 79, 88–92 (1990).
[CrossRef]

Turley, R. S.

R. S. Turley, R. A. McFarlane, J. Remillard, and D. G. Steel, “Production of intense, coherent, tunable, narrow-band Lyman-alpha radiation,” Proc. SPIE 912, 116–121 (1988).
[CrossRef]

Uda, S.

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887–5892 (1998).
[CrossRef]

Vatsa, R. K.

R. A. Brownsword, M. Hillenkamp, T. Laurent, R. K. Vatsa, H.-R. Volpp, and J. Wolfrum, “Photodissociation dynamics of the chloromethanes at the Lyman-α wavelength (121.6 nm),” J. Chem. Phys. 106, 1359–1366 (1997).
[CrossRef]

Vidal, C. R.

H. Scheingraber and C. R. Vidal, “Saturation of resonant third-harmonic generation due to self-defocusing and a redistribution of the population densities,” IEEE J. Quantum Electron. 19, 1747–1758 (1983).
[CrossRef]

H. Puell, H. Scheingraber, and C. R. Vidal, “Saturation of resonant third-harmonic generation in phase-matched systems,” Phys. Rev. A 22, 1165–1178 (1980).
[CrossRef]

Volpp, H.-R.

R. A. Brownsword, M. Hillenkamp, T. Laurent, R. K. Vatsa, H.-R. Volpp, and J. Wolfrum, “Photodissociation dynamics of the chloromethanes at the Lyman-α wavelength (121.6 nm),” J. Chem. Phys. 106, 1359–1366 (1997).
[CrossRef]

Voronin, V. G.

S. A. Batishche, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A. Mostovnikov, P. A. Naumenkov, G. T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Ya. Shreider, “Laser action near the Lα line in hydrogen and deuterium,” Sov. Tech. Phys. Lett. 3, 473 (1977).

Wagner, D.

D. Wagner, B. Dikmen, and H. F. Döbele, “Vacuum ultraviolet absorption spectroscopy in the spectral interval of Lyman-α of atomic hydrogen and deuterium in an ion source plasma,” Rev. Sci. Instrum. 67, 1800–1806 (1996).
[CrossRef]

Wallace, S. C.

Wallenstein, R.

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38, 6231–6239 (1988).
[CrossRef] [PubMed]

G. Hilber, A. Lago, and R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4, 1753–1764 (1987).
[CrossRef]

A. Lago, G. Hilber, and R. Wallenstein, “Optical-frequency conversion in gaseous media,” Phys. Rev. A 36, 3827–3836 (1987).
[CrossRef] [PubMed]

R. Hilbig, G. Hilber, A. Lago, B. Wolff, and R. Wallenstein, “Tunable coherent VUV radiation generated by nonlinear optical frequency conversion in gases,” Comments At. Mol. Phys. 18, 157–180 (1986).

R. Hilbig and R. Wallenstein, “Resonant sum and difference frequency mixing in Hg,” IEEE J. Quantum Electron. 19, 1759–1770 (1983).
[CrossRef]

R. Hilbig and R. Wallenstein, “Tunable VUV radiation generated by two-photon resonant frequency mixing in xenon,” IEEE J. Quantum Electron. 19, 194–201 (1983).
[CrossRef]

R. Hilbig and R. Wallenstein, “Enhanced production of tunable vuv radiation by phase-matched frequency tripling in krypton and xenon,” IEEE J. Quantum Electron. 17, 1566–1573 (1981).
[CrossRef]

R. Wallenstein, “Generation of narrowband tunable VUV radiation at the Lyman-α wavelength,” Opt. Commun. 33, 119–122 (1980).
[CrossRef]

Walz, J.

K. Eikema, J. Walz, and T. Hansch, “Continuous wave coherent Lyman-alpha radiation,” Phys. Rev. Lett. 83, 3828–3831 (1999).
[CrossRef]

Ward, J. F.

J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57–72 (1969).
[CrossRef]

Webb, C. E.

S. M. Hooker and C. E. Webb, “Progress in vacuum-ultraviolet lasers,” Prog. Quantum Electron. 18, 227–274 (1994).
[CrossRef]

Welge, K. H.

P. Löffler, E. Wrede, L. Schnieder, J. B. Halpern, W. M. Jackson, and K. H. Welge, “Dissociation dynamics of acetylene Rydberg states as a function of excited state lifetime,” J. Chem. Phys. 109, 5231–5246 (1998).
[CrossRef]

H. Zacharias, H. Rottke, J. Danon, and K. H. Welge, “Resonant two photon ionization of H and D atoms,” Opt. Commun. 37, 15–19 (1981).
[CrossRef]

Wojak, U.

U. Czarnetzki, U. Wojak, and H. F. Döbele, “Observation of stimulated hyper-Raman scattering in H2,” Phys. Rev. A 40, 6120–6123 (1989).
[CrossRef] [PubMed]

Wolf, R.

Wolff, B.

R. Hilbig, G. Hilber, A. Lago, B. Wolff, and R. Wallenstein, “Tunable coherent VUV radiation generated by nonlinear optical frequency conversion in gases,” Comments At. Mol. Phys. 18, 157–180 (1986).

Wolfrum, J.

R. A. Brownsword, M. Hillenkamp, T. Laurent, R. K. Vatsa, H.-R. Volpp, and J. Wolfrum, “Photodissociation dynamics of the chloromethanes at the Lyman-α wavelength (121.6 nm),” J. Chem. Phys. 106, 1359–1366 (1997).
[CrossRef]

Worth, G. T.

G. C. Stutzin, A. T. Young, A. S. Schlachter, J. W. Stearns, K. N. Leung, W. B. Kunkel, G. T. Worth, and R. R. Stevens, “VUV laser absorption spectrometer system for measurement of H0 density and temperature in a plasma,” Rev. Sci. Instrum. 59, 1363–1368 (1988).
[CrossRef]

Wrede, E.

P. Löffler, E. Wrede, L. Schnieder, J. B. Halpern, W. M. Jackson, and K. H. Welge, “Dissociation dynamics of acetylene Rydberg states as a function of excited state lifetime,” J. Chem. Phys. 109, 5231–5246 (1998).
[CrossRef]

Wynne, J. J.

R. T. Hodgson, P. P. Sorokin, and J. J. Wynne, “Tunable coherent vacuum-ultraviolet generation in atomic vapors,” Phys. Rev. Lett. 32, 343–346 (1974).
[CrossRef]

Xie, Y.

R. J. Gordon, S.-P. Lu, S. M. Park, K. Trentelman, Y. Xie, L. Zhu, A. Kumar, and W. J. Meath, “The use of coherent phase control of multiphoton ionization to measure the refractive indices of H2 and Ar between 1100 and 1150 Å,” J. Chem. Phys. 98, 9481–9486 (1993).
[CrossRef]

Yiu, Y. M.

Yiu, Y.-M.

Young, A. T.

G. C. Stutzin, A. T. Young, A. S. Schlachter, J. W. Stearns, K. N. Leung, W. B. Kunkel, G. T. Worth, and R. R. Stevens, “VUV laser absorption spectrometer system for measurement of H0 density and temperature in a plasma,” Rev. Sci. Instrum. 59, 1363–1368 (1988).
[CrossRef]

Zacharias, H.

H. Zacharias, H. Rottke, J. Danon, and K. H. Welge, “Resonant two photon ionization of H and D atoms,” Opt. Commun. 37, 15–19 (1981).
[CrossRef]

Zafiropulos, V.

A. V. Kanaev, V. Zafiropulos, M. Ait-Kaci, L. Museur, H. Nkwawo, and M. C. Castex, “Excimer formation mechanism in gaseous krypton and Kr/N2 mixtures,” Z. Phys. D 27, 29–37 (1993).
[CrossRef]

Zhang, G. Z.

G. Z. Zhang, D. W. Tokaryk, B. P. Stoicheff, and K. Hakuta, “Nonlinear generation of extreme-ultraviolet radiation in atomic hydrogen using electromagnetically induced transparency,” Phys. Rev. A 56, 813–819 (1997).
[CrossRef]

Zhu, L.

R. J. Gordon, S.-P. Lu, S. M. Park, K. Trentelman, Y. Xie, L. Zhu, A. Kumar, and W. J. Meath, “The use of coherent phase control of multiphoton ionization to measure the refractive indices of H2 and Ar between 1100 and 1150 Å,” J. Chem. Phys. 98, 9481–9486 (1993).
[CrossRef]

Appl. Opt.

Appl. Phys. A

Ph. Mertens and P. Bogen, “Densities and velocity distributions of atomic hydrogen and carbon, measured by laser-induced fluorescence with frequency-tripling into the vacuum UV,” Appl. Phys. A 43, 197–204 (1987).
[CrossRef]

Appl. Phys. B

H. F. Döbele, M. Hörl, and M. Röwenkamp, “Tuning ranges of KrF and ArF excimer laser amplifiers and of associated vacuum ultraviolet anti-Stokes Raman lines,” Appl. Phys. B 42, 67–72 (1987).
[CrossRef]

Appl. Phys. B: Photophys. Laser Chem.

U. Czarnetzki, H. F. Döbele, and B. Rückle, “Stimulated IR- and vacuum-UV emission following two-photon-excitation of molecular hydrogen using an ArF laser,” Appl. Phys. B: Photophys. Laser Chem. 48, 37–40 (1989).
[CrossRef]

Appl. Phys. Lett.

R. Mahon, T. J. McIlrath, and D. W. Koopman, “Nonlinear generation of Lyman-alpha radiation,” Appl. Phys. Lett. 33, 305–307 (1978).
[CrossRef]

At. Data Nucl. Data Tables

P. J. Leonard, “Refractive indices, Verdet constants, and polarizabilities of the inert gases,” At. Data Nucl. Data Tables 14, 21–37 (1974).
[CrossRef]

Can. J. Phys.

I. Dabrowski, “The Lyman and Werner bands of H2,” Can. J. Phys. 62, 1639–1664 (1984).
[CrossRef]

Comments At. Mol. Phys.

R. Hilbig, G. Hilber, A. Lago, B. Wolff, and R. Wallenstein, “Tunable coherent VUV radiation generated by nonlinear optical frequency conversion in gases,” Comments At. Mol. Phys. 18, 157–180 (1986).

IEEE J. Quantum Electron.

R. Hilbig and R. Wallenstein, “Resonant sum and difference frequency mixing in Hg,” IEEE J. Quantum Electron. 19, 1759–1770 (1983).
[CrossRef]

W. K. Bischel, J. Bokor, D. J. Kligler, and C. K. Rhodes, “Nonlinear optical processes in atoms and molecules using rare-gas halide lasers,” IEEE J. Quantum Electron. 15, 380–392 (1979).
[CrossRef]

G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287–296 (1975).
[CrossRef]

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV: SRS of excimer laser wavelengths,” IEEE J. Quantum Electron. 15, 337–342 (1979).
[CrossRef]

R. Hilbig and R. Wallenstein, “Enhanced production of tunable vuv radiation by phase-matched frequency tripling in krypton and xenon,” IEEE J. Quantum Electron. 17, 1566–1573 (1981).
[CrossRef]

R. Mahon, T. J. McIlrath, V. P. Myerscough, and D. W. Koopman, “Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15, 444–451 (1979).
[CrossRef]

T. Srinivasan, H. Egger, H. Pummer, and C. K. Rhodes, “Generation of extreme ultraviolet radiation at 79 nm by sum frequency mixing,” IEEE J. Quantum Electron. 19, 1270–1276 (1983).
[CrossRef]

H. Scheingraber and C. R. Vidal, “Saturation of resonant third-harmonic generation due to self-defocusing and a redistribution of the population densities,” IEEE J. Quantum Electron. 19, 1747–1758 (1983).
[CrossRef]

R. Hilbig and R. Wallenstein, “Tunable VUV radiation generated by two-photon resonant frequency mixing in xenon,” IEEE J. Quantum Electron. 19, 194–201 (1983).
[CrossRef]

J. Appl. Phys.

F. G. Celii, H. R. Thorsheim, J. E. Butler, L. S. Plano, and J. M. Pinneo, “Detection of ground-state atomic hydrogen in a dc plasma using third-harmonic generation,” J. Appl. Phys. 68, 3814–3817 (1990).
[CrossRef]

V. Petrov, F. Rotermund, F. Noack, R. Komatsu, T. Sugawara, and S. Uda, “Vacuum ultraviolet application of Li2B4O7 crystals: generation of 100 fs pulses down to 170 nm,” J. Appl. Phys. 84, 5887–5892 (1998).
[CrossRef]

J. Chem. Phys.

R. A. Brownsword, M. Hillenkamp, T. Laurent, R. K. Vatsa, H.-R. Volpp, and J. Wolfrum, “Photodissociation dynamics of the chloromethanes at the Lyman-α wavelength (121.6 nm),” J. Chem. Phys. 106, 1359–1366 (1997).
[CrossRef]

P. Löffler, E. Wrede, L. Schnieder, J. B. Halpern, W. M. Jackson, and K. H. Welge, “Dissociation dynamics of acetylene Rydberg states as a function of excited state lifetime,” J. Chem. Phys. 109, 5231–5246 (1998).
[CrossRef]

J. Lacouriére, S. A. Meyer, G. W. Faris, T. G. Slanger, B. R. Lewis, and S. T. Gibson, “The O(1D) yield from O2 photodissocation near H Lyman-α (121.6 nm),” J. Chem. Phys. 110, 1949–1958 (1999).
[CrossRef]

T. S. Luk, H. Egger, W. Müller, H. Pummer, and C. K. Rhodes, “The observation of stimulated emission in the 119 to 149 nm range from HD excited by picosecond 193 nm radiation,” J. Chem. Phys. 82, 4479–4482 (1985).
[CrossRef]

R. J. Gordon, S.-P. Lu, S. M. Park, K. Trentelman, Y. Xie, L. Zhu, A. Kumar, and W. J. Meath, “The use of coherent phase control of multiphoton ionization to measure the refractive indices of H2 and Ar between 1100 and 1150 Å,” J. Chem. Phys. 98, 9481–9486 (1993).
[CrossRef]

J. Mol. Spectrosc.

G. Herzberg and C. Jungen, “Rydberg series and ionization potential of the H2 molecule,” J. Mol. Spectrosc. 41, 425–486 (1972).
[CrossRef]

J. Nucl. Mater.

S. Himeno, E. Noda, Q. Q. Lü, S. Kogoshi, Y. Iida, M. Katsurai, and T. Sekiguchi, “Generation of coherent Lyman-alpha radiation with an alexandrite laser for diagnostics of neutral hydrogen density,” J. Nucl. Mater. 128–129, 974–976 (1984).
[CrossRef]

Ph. Mertens and M. Silz, “Radial profiles of atomic deuterium measured in the boundary of TEXTOR 94 with laser-induced fluorescence,” J. Nucl. Mater. 241–243, 842–847 (1997).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

P. D. Chopra and D. W. O. Heddle, “Polarization free measurements of Rayleigh scattering of Lyman α,” J. Phys. B 7, 2421–2428 (1974).
[CrossRef]

J. Phys. D

K. G. H. Baldwin, J. P. Marangos, and D. D. Burgess, “Application of coherent VUV radiation to the measurement of Lyman-α absorption lineshapes in a dense Z-pinch plasma,” J. Phys. D 17, L169–L173 (1984).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton, and xenon in the 253.7–140.4-nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J. Quant. Spectrosc. Radiat. Transf. 25, 395–402 (1981).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

R. J. Spindler, Jr., “Franck–Condon factors for band systems of molecular hydrogen—I,” J. Quant. Spectrosc. Radiat. Transfer 9, 597–626 (1969).
[CrossRef]

S. A. Meyer, D. Bershader, and S. P. Sharma, “Resonance broadening measurements of atomic oxygen at 130 nm,” J. Quant. Spectrosc. Radiat. Transfer 60, 53–68 (1998).
[CrossRef]

Opt. Commun.

D. Cotter, “Tunable, narrow-band coherent VUV source for the Lyman-alpha region,” Opt. Commun. 31, 397–400 (1979).
[CrossRef]

R. Wallenstein, “Generation of narrowband tunable VUV radiation at the Lyman-α wavelength,” Opt. Commun. 33, 119–122 (1980).
[CrossRef]

H. Langer, H. Puell, and H. Röhr, “Lyman alpha (1216 Å) generation in krypton,” Opt. Commun. 34, 137–142 (1980).
[CrossRef]

L. Cabaret, C. Delsart, and C. Blondel, “High resolution spectroscopy of the hydrogen Lyman-α line Stark structure using a vuv single mode pulsed laser system,” Opt. Commun. 61, 116–119 (1987).
[CrossRef]

H. Zacharias, H. Rottke, J. Danon, and K. H. Welge, “Resonant two photon ionization of H and D atoms,” Opt. Commun. 37, 15–19 (1981).
[CrossRef]

K. Tsukiyama, M. Momose, M. Tsukakoshi, and T. Kasuya, “Generation of XUV radiation by four-wave mixing in CO,” Opt. Commun. 79, 88–92 (1990).
[CrossRef]

Opt. Lett.

R. Mahon and Y. M. Yiu, “Generation of Lyman-α radiation in phase-matched rare-gas mixtures,” Opt. Lett. 5, 279–281 (1980).
[CrossRef] [PubMed]

Y.-M. Yiu, K. D. Bonin, and T. J. McIlrath, “Two-photon resonant upconversion in xenon,” Opt. Lett. 7, 268–270 (1982).
[CrossRef] [PubMed]

G. C. Herring, M. J. Dyer, L. E. Jusinski, and W. K. Bischel, “Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm,” Opt. Lett. 13, 360–362 (1988).
[CrossRef] [PubMed]

C. H. Muller III, D. D. Lowenthal, M. A. DeFaccio, and A. V. Smith, “High-efficiency, energy-scalable, coherent 130-nm source by four-wave mixing in Hg vapor,” Opt. Lett. 13, 651–653 (1988).
[CrossRef]

C. E. M. Strauss and D. J. Funk, “Broadly tunable difference-frequency generation of VUV using two-photon resonances in H2 and Kr,” Opt. Lett. 16, 1192–1194 (1991).
[CrossRef] [PubMed]

G. W. Faris and M. J. Dyer, “Two-photon excitation of neon at 133 nm,” Opt. Lett. 18, 382–384 (1993).
[CrossRef] [PubMed]

Y. Hirakawa, A. Nagai, K. Muraoka, T. Okada, and M. Maeda, “Generation of tunable coherent extreme-ultraviolet radiation at wavelengths as low as 66 nm by resonant four-wave mixing,” Opt. Lett. 18, 735–737 (1993).
[CrossRef] [PubMed]

F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,” Opt. Lett. 19, 1538–1540 (1994).
[CrossRef] [PubMed]

S. A. Meyer and G. W. Faris, “High-power Lyman-α source generated with an ArF excimer laser,” Opt. Lett. 23, 204–206 (1998).
[CrossRef]

O. Kittelmann, J. Ringling, G. Korn, A. Nazarkin, and I. V. Hertel, “Generation of broadly tunable femtosecond vacuum-ultraviolet pulses,” Opt. Lett. 21, 1159–1161 (1996).
[CrossRef] [PubMed]

T. J. McKee, B. P. Stoicheff, and S. C. Wallace, “Tunable, coherent radiation in the Lyman-α region (1210–1290 Å) using magnesium vapor,” Opt. Lett. 3, 207–208 (1978).
[CrossRef] [PubMed]

Opt. Spectrosc.

G. I. Chashchina and E. Ya. Shreider, “Determination of hydrogen refraction in the vacuum spectral range,” Opt. Spectrosc. 66, 274–275 (1989).

M. O. Bulanin and I. M. Kislyakov, “Dynamic polarizabilities of rare-gas atoms: krypton and xenon,” Opt. Spectrosc. 85, 819–825 (1998).

V. P. Gladushchak, S. A. Moshkalev, G. I. Chashchina, and E. Ya. Shreider, “Use of third-harmonic generation for determining the refractive indices of gases in the vacuum ultraviolet spectral region,” Opt. Spectrosc. 51, 608–609 (1981).

G. I. Chashchina, V. I. Gladushchak, and E. Ya. Shreider, “Determination of the refractive index of argon and the oscillator strength of its resonance lines,” Opt. Spectrosc. 24, 542–543 (1968).

Phys. Rev.

J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57–72 (1969).
[CrossRef]

Phys. Rev. A

U. Czarnetzki, U. Wojak, and H. F. Döbele, “Observation of stimulated hyper-Raman scattering in H2,” Phys. Rev. A 40, 6120–6123 (1989).
[CrossRef] [PubMed]

U. Czarnetzki and H. F. Döbele, “Generation of vacuum-ultraviolet radiation in H2 by nonlinear optical processes near the EF- and B-state resonances,” Phys. Rev. A 44, 7530–7546 (1991).
[CrossRef] [PubMed]

W. R. Ferrell, M. G. Payne, and W. R. Garrett, “Determination of optical constants of noble gases through multiphoton ionization measurements,” Phys. Rev. A 35, 5020–5031 (1987).
[CrossRef] [PubMed]

G. Hilber, D. J. Brink, A. Lago, and R. Wallenstein, “Optical-frequency conversion in gases using Gaussian laser beams with different confocal parameters,” Phys. Rev. A 38, 6231–6239 (1988).
[CrossRef] [PubMed]

A. Lago, G. Hilber, and R. Wallenstein, “Optical-frequency conversion in gaseous media,” Phys. Rev. A 36, 3827–3836 (1987).
[CrossRef] [PubMed]

H. Puell, H. Scheingraber, and C. R. Vidal, “Saturation of resonant third-harmonic generation in phase-matched systems,” Phys. Rev. A 22, 1165–1178 (1980).
[CrossRef]

G. Z. Zhang, D. W. Tokaryk, B. P. Stoicheff, and K. Hakuta, “Nonlinear generation of extreme-ultraviolet radiation in atomic hydrogen using electromagnetically induced transparency,” Phys. Rev. A 56, 813–819 (1997).
[CrossRef]

J. C. Miller, “Two-photon resonant multiphoton ionization and stimulated emission in krypton and xenon,” Phys. Rev. A 40, 6969–6976 (1989).
[CrossRef] [PubMed]

P. G. Datskos, L. A. Pinnaduwage, and J. F. Kielkopf, “Photophysical and electron attachment properties of ArF-excimer-laser irradiated H2,” Phys. Rev. A 55, 4131–4142 (1997).
[CrossRef]

K. Hakuta, L. Marmet, and B. P. Stoicheff, “Nonlinear optical generation with reduced absorption using electric-field coupling in atomic hydrogen,” Phys. Rev. A 45, 5152–5159 (1992).
[CrossRef] [PubMed]

H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited moleclar hydrogen,” Phys. Rev. A 28, 795–801 (1983).
[CrossRef]

Phys. Rev. Lett.

K. Eikema, J. Walz, and T. Hansch, “Continuous wave coherent Lyman-alpha radiation,” Phys. Rev. Lett. 83, 3828–3831 (1999).
[CrossRef]

R. T. Hodgson, P. P. Sorokin, and J. J. Wynne, “Tunable coherent vacuum-ultraviolet generation in atomic vapors,” Phys. Rev. Lett. 32, 343–346 (1974).
[CrossRef]

Plasma Sources Sci. Technol.

H. F. Dobele, “Generation of coherent VUV radiation and its application to plasma diagnostics,” Plasma Sources Sci. Technol. 4, 224–233 (1995).
[CrossRef]

Proc. SPIE

R. S. Turley, R. A. McFarlane, J. Remillard, and D. G. Steel, “Production of intense, coherent, tunable, narrow-band Lyman-alpha radiation,” Proc. SPIE 912, 116–121 (1988).
[CrossRef]

Prog. Quantum Electron.

S. M. Hooker and C. E. Webb, “Progress in vacuum-ultraviolet lasers,” Prog. Quantum Electron. 18, 227–274 (1994).
[CrossRef]

Rev. Sci. Instrum.

D. Wagner, B. Dikmen, and H. F. Döbele, “Vacuum ultraviolet absorption spectroscopy in the spectral interval of Lyman-α of atomic hydrogen and deuterium in an ion source plasma,” Rev. Sci. Instrum. 67, 1800–1806 (1996).
[CrossRef]

G. C. Stutzin, A. T. Young, A. S. Schlachter, J. W. Stearns, K. N. Leung, W. B. Kunkel, G. T. Worth, and R. R. Stevens, “VUV laser absorption spectrometer system for measurement of H0 density and temperature in a plasma,” Rev. Sci. Instrum. 59, 1363–1368 (1988).
[CrossRef]

Sov. Phys. Tech. Phys.

V. I. Gladushchak, S. A. Moshkalev, G. T. Razdobarin, and E. Ya. Shreider, “Coherent sources of vacuum ultraviolet radiation,” Sov. Phys. Tech. Phys. 31, 855–873 (1986).

Sov. Tech. Phys. Lett.

S. A. Batishche, V. S. Burakov, V. G. Voronin, V. I. Gladushchak, V. A. Mostovnikov, P. A. Naumenkov, G. T. Razdobarin, A. N. Rubinov, V. V. Semenov, N. V. Tarasenko, and E. Ya. Shreider, “Laser action near the Lα line in hydrogen and deuterium,” Sov. Tech. Phys. Lett. 3, 473 (1977).

Z. Phys. D

A. V. Kanaev, V. Zafiropulos, M. Ait-Kaci, L. Museur, H. Nkwawo, and M. C. Castex, “Excimer formation mechanism in gaseous krypton and Kr/N2 mixtures,” Z. Phys. D 27, 29–37 (1993).
[CrossRef]

Other

C. R. Vidal, “Four-wave frequency mixing in gases,” in Tunable Lasers, L. F. Mollenauer and J. C. White, eds., Topics in Applied Physics (Springer-Verlag, Berlin, 1987), Vol. 59, pp. 57–113.
[CrossRef]

W. Jamroz and B. P. Stoicheff, “Generation of tunable coherent vacuum-ultraviolet radiation,” in Progress in Optics XX, E. Wolf, ed. (North-Holland, Amsterdam, 1983), pp. 325–381.

J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, New York, 1984).

R. W. Dreyfus, P. Bogen, and H. Langer, “Atomic H and D concentrations and velocities measured with harmonically generated Lyman-α (1215 Å) radiation,” in Laser Techniques for Extreme Ultraviolet Spectroscopy, T. J. McIlrath and R. R. Freeman, eds. (American Institute of Physics, New York, 1982), pp. 57–68.

R. Hilbig, G. Hilber, A. Timmerman, and R. Wallenstein, “Broadly tunable VUV radiation generated by frequency mixing in gases,” in Laser Techniques in the Extreme Ultraviolet, S. E. Harris and T. B. Lucatorto, eds. (American Institute of Physics, New York, 1984), pp. 1–9.

To achieve agreement with Refs. 52 and 54, and the figures of Ref. 53, we use only positive k values in Eq. (3) of Ref. 53. We do not use a negative sign for the parametrized distance, ε, for the difference (dye) wavelength.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 682–685.

R. S. Hargrove and J. A. Paisner, “Tunable, efficient VUV generation using ArF-pumped stimulated Raman scattering in H2,” in Digest of Topical Meeting on Excimer Lasers (Optical Society of America, Washington, D.C., 1979), paper ThA6.

C. E. M. Strauss, Los Alamos National Laboratory, Los Alamos, New Mexico (personal communication, 1997).

W. L. Wiese and G. A. Martin, “Atomic transition probabilities,” in CRC Handbook of Chemistry and Physics, 59th ed., R. C. Weast, ed. (CRC, West Palm Beach, Fl., 1978), pp. D112–D140.

G. W. Faris and M. J. Dyer, “Multiphoton spectroscopy using tunable VUV radiation from a Raman-shifted excimer laser,” in Short-Wavelength Coherent Radiation: Generation and Applications, P. H. Bucksbaum and N. M. Ceglio, eds., Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 58–61.

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Pied, Lincoln, Nebr., 1967), pp. 263–295.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Vibration curves for three cases of four-wave mixing: (a) third-harmonic generation, (b) difference-frequency mixing for b¯=1, and (c) difference-frequency mixing for b¯=4. Inset graphs show the phase-matching integral F as a function of b1Δk.

Fig. 2
Fig. 2

Phase mismatch per atom or molecule for Kr, Ar, and H2 for two-photon-resonant difference-frequency mixing with an ArF excimer laser. Regions of negative phase mismatch for Kr are indicated with dashed curves.

Fig. 3
Fig. 3

Experimental arrangement for VUV generation. Wavelengths shown are for Lyman-α generation.

Fig. 4
Fig. 4

VUV ASE generated on pumping the E,F1Σg+ (v=6)X 1Σg+ (v=0)Q(1) transition in H2. The emission strengths have not been corrected for the spectral response of the spectrometer and photomultiplier tube. Lyman-band line positions are shown at the top of the figure.

Fig. 5
Fig. 5

VUV ASE on the (1, 2) Lyman band.

Fig. 6
Fig. 6

VUV energy generated in pure H2 in the region of Lyman-α at a pressure of 65 mbar. The dashed curve is a theoretical tuning profile from Eqs. (2)–(5). Possible line assignments for spectral features are shown at the top of the figure.

Fig. 7
Fig. 7

VUV generation near Lyman-α with pure Kr and a mixture of Kr and H2.

Fig. 8
Fig. 8

Expanded view of Lyman-α generation in pure H2. The upper curve has been multiplied by a factor of 10.

Fig. 9
Fig. 9

VUV generation in a phase-matched mixture of Kr and Ar at Lyman-α (solid curve) and fit tuning profile from Eqs. (2)–(5).

Fig. 10
Fig. 10

(a) Transmission and (b) 1+1 REMPI spectra for Xe with 147-nm radiation. The energy-level diagram for 1+1 REMPI is shown as an inset.

Fig. 11
Fig. 11

Power dependence of the ion signal from 1+1 REMPI in Xe.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P4N2[χ(3)]2[P1]2P2F,
F(b1, b¯, Δk, za, zb)=4b¯0ρ-2za/b12zb/b11a(u) exp-ρ2f(u)×exp-ib1Δku2du2dρ,
f(u)=(1+iu)(1±ib¯u)g(u)-iu-2zbb1,
a(u)=f(u)g(u)(1+iu),
g(u)=2k1(1±ib¯u)+b¯k2(1+iu)k=(2k1+b¯k2)k±ib¯u.
F=π2(bΔk)2 exp(bΔk)forΔk00forΔk0,
F=b¯2π1+b¯2 exp(b1Δk)forΔk0b¯2π1+b¯2 exp-b1Δkb¯forΔk0.

Metrics