Abstract

The operating points of pulsed dual-cavity doubly resonant optical parametric oscillators have been investigated, taking into account the influence of the optical dispersion. A diagram is proposed to determine the spectral separation of doubly resonant positions for any optical lengths of both cavities. From the analysis of the distribution of doubly resonant coincidences, original conditions for stable single-mode operation are specified. This approach is validated by use of a type II phase-matched β-barium borate crystal. Frequency stability and tuning characteristics are also reported. To our best knowledge, this is the first demonstration of single-mode operation that uses a dual-cavity doubly resonant optical parametric oscillator in the nanosecond pulsed regime.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Bosenberg and R. C. Eckardt, eds., optical parametric devices feature, J. Opt. Soc. Am. B 12, 2084–2322 (1995).
  2. F. K. Tittel, ed., Environmental trace gas detection using laser spectroscopy feature, Appl. Phys. B 67, 273–397 (1998).
    [CrossRef]
  3. J. E. Bjorkholm and H. G. Danielmeyer, “Frequency control of a pulsed parametric oscillator by radiation injection,” Appl. Phys. Lett. 15, 171–173 (1969).
    [CrossRef]
  4. D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, “High power injection-seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
    [CrossRef]
  5. A. Fix and R. Wallenstein, “Spectral properties of pulsed nanosecond optical parametric oscillators: experimental investigation and numerical analysis,” J. Opt. Soc. Am. B 13, 2484–2497 (1996).
    [CrossRef]
  6. A. Fix, T. Schröder, R. Wallenstein, J. G. Haub, M. J. Johnson, and B. J. Orr, “Tunable β-barium borate optical parametric oscillator operating characteristics with and without injection seeding,” J. Opt. Soc. Am. B 10, 1744–1750 (1993).
    [CrossRef]
  7. M. Lefebvre, B. Scherrer, and J.-C. Lestel, “Raman injected optical parametric oscillator,” Opt. Commun. 139, 241–246 (1997).
    [CrossRef]
  8. A. Fix, R. Urshel, G. Goeritz, A. Borsuutzky, and R. Wallenstein, “Single-mode BBO/KNB optical parametric oscillator-amplifier system, broadly tunable from the visible (0.4 μm) to the infrared (4 μm),” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 199–200.
  9. L. B. Kreuzer, “Single mode oscillation of a pulsed singly resonant optical parametric oscillator,” Appl. Phys. Lett. 15, 263–265 (1969).
    [CrossRef]
  10. F. Huisken, M. Kaloudis, J. Marquez, Yu. L. Chutavkov, S. N. Orlov, Yu. N. Polivanov, and V. V. Smirnov, “Single-mode KTiPO4 optical parametric oscillator,” Opt. Lett. 20, 2306–2308 (1995).
    [CrossRef]
  11. W. R. Bosenberg and D. R. Guyer, “Single-frequency optical parametric oscillator,” Appl. Phys. Lett. 61, 387–389 (1992).
    [CrossRef]
  12. J. M. Boon-Engering, L. A. Gloster, W. E. van der Veer, I. T. McKinnie, T. A. King, and W. Hogervorst, “Highly efficient single-longitudinal-mode β-BaB2O4 optical parametric oscillator with a new cavity design,” Opt. Lett. 20, 2087–2089 (1995).
    [CrossRef] [PubMed]
  13. J. Pinard and J. F. Young, “Interferometric stabilization of an optical parametric oscillator,” Opt. Commun. 4, 425–427 (1969).
    [CrossRef]
  14. J. E. Bjorkholm, “Improvement of optical parametric oscillators by nonresonant pump reflexion,” Appl. Phys. Lett. 13, 399–401 (1968).
    [CrossRef]
  15. J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. QE-7, 230–235 (1971).
    [CrossRef]
  16. R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, and R. L. Byer, “Optical parametric oscillator frequency tuning and control,” J. Opt. Soc. Am. B 8, 646–667 (1991).
    [CrossRef]
  17. F. G. Colville, M. J. Padgett, and M. H. Dunn, “Cw dual-cavity doubly resonant optical parametric oscillator,” Appl. Phys. Lett. 64, 1490–1492 (1994).
    [CrossRef]
  18. J. A. Giordmaine and R. C. Miller, “Optical parametric oscillation in LiNbO3,” in Physics of Quantum Electronics, P. L. Kelley, B. Lax, and P. E. Tannenwald, eds. (McGraw-Hill, New York, 1966), pp. 31–42.
  19. R. G. Smith, “Optical parametric oscillators,” in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois eds. (North-Holland, Amsterdam, 1992), Vol. 1, pp. 837–895.
  20. R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
    [CrossRef]
  21. R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–541 (1973).
    [CrossRef]
  22. A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behavior and stability requirements,” Opt. Commun. 119, 256–264 (1995).
    [CrossRef]
  23. M. J. Padgett, F. G. Colville, and M. H. Dunn, “Mode selection in doubly-resonant optical parametric oscillators,” IEEE J. Quantum Electron. 30, 2979–2985 (1994).
    [CrossRef]
  24. S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and line width studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
    [CrossRef]
  25. J. G. Haub, M. J. Johnson, A. J. Powell, and B. J. Orr, “Bandwidth characteristics of a pulsed optical parametric oscillator: application to degenerate four-wave mixing spectroscopy,” Opt. Lett. 20, 1637–1639 (1995).
    [CrossRef] [PubMed]
  26. J. E. Bjorkholm, A. Ashkin, and R. G. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflexion,” IEEE J. Quantum Electron. QE-6, 797–799 (1970).
    [CrossRef]
  27. D. Eimerl, L. David, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1983).
    [CrossRef]
  28. K. Kato, “Second harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. QE-22, 1013–1014 (1986).
    [CrossRef]

1998

F. K. Tittel, ed., Environmental trace gas detection using laser spectroscopy feature, Appl. Phys. B 67, 273–397 (1998).
[CrossRef]

1997

M. Lefebvre, B. Scherrer, and J.-C. Lestel, “Raman injected optical parametric oscillator,” Opt. Commun. 139, 241–246 (1997).
[CrossRef]

1996

1995

1994

M. J. Padgett, F. G. Colville, and M. H. Dunn, “Mode selection in doubly-resonant optical parametric oscillators,” IEEE J. Quantum Electron. 30, 2979–2985 (1994).
[CrossRef]

F. G. Colville, M. J. Padgett, and M. H. Dunn, “Cw dual-cavity doubly resonant optical parametric oscillator,” Appl. Phys. Lett. 64, 1490–1492 (1994).
[CrossRef]

1993

1992

W. R. Bosenberg and D. R. Guyer, “Single-frequency optical parametric oscillator,” Appl. Phys. Lett. 61, 387–389 (1992).
[CrossRef]

1991

R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, and R. L. Byer, “Optical parametric oscillator frequency tuning and control,” J. Opt. Soc. Am. B 8, 646–667 (1991).
[CrossRef]

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, “High power injection-seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

1986

K. Kato, “Second harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. QE-22, 1013–1014 (1986).
[CrossRef]

1983

D. Eimerl, L. David, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1983).
[CrossRef]

1979

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and line width studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[CrossRef]

1973

R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–541 (1973).
[CrossRef]

1971

J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. QE-7, 230–235 (1971).
[CrossRef]

1970

J. E. Bjorkholm, A. Ashkin, and R. G. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflexion,” IEEE J. Quantum Electron. QE-6, 797–799 (1970).
[CrossRef]

1969

J. Pinard and J. F. Young, “Interferometric stabilization of an optical parametric oscillator,” Opt. Commun. 4, 425–427 (1969).
[CrossRef]

J. E. Bjorkholm and H. G. Danielmeyer, “Frequency control of a pulsed parametric oscillator by radiation injection,” Appl. Phys. Lett. 15, 171–173 (1969).
[CrossRef]

L. B. Kreuzer, “Single mode oscillation of a pulsed singly resonant optical parametric oscillator,” Appl. Phys. Lett. 15, 263–265 (1969).
[CrossRef]

1968

J. E. Bjorkholm, “Improvement of optical parametric oscillators by nonresonant pump reflexion,” Appl. Phys. Lett. 13, 399–401 (1968).
[CrossRef]

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
[CrossRef]

Ashkin, A.

J. E. Bjorkholm, A. Ashkin, and R. G. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflexion,” IEEE J. Quantum Electron. QE-6, 797–799 (1970).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm, A. Ashkin, and R. G. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflexion,” IEEE J. Quantum Electron. QE-6, 797–799 (1970).
[CrossRef]

J. E. Bjorkholm and H. G. Danielmeyer, “Frequency control of a pulsed parametric oscillator by radiation injection,” Appl. Phys. Lett. 15, 171–173 (1969).
[CrossRef]

J. E. Bjorkholm, “Improvement of optical parametric oscillators by nonresonant pump reflexion,” Appl. Phys. Lett. 13, 399–401 (1968).
[CrossRef]

Boon-Engering, J. M.

Bosenberg, W. R.

W. R. Bosenberg and R. C. Eckardt, eds., optical parametric devices feature, J. Opt. Soc. Am. B 12, 2084–2322 (1995).

W. R. Bosenberg and D. R. Guyer, “Single-frequency optical parametric oscillator,” Appl. Phys. Lett. 61, 387–389 (1992).
[CrossRef]

Brosnan, S. J.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and line width studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[CrossRef]

Byer, R. L.

R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, and R. L. Byer, “Optical parametric oscillator frequency tuning and control,” J. Opt. Soc. Am. B 8, 646–667 (1991).
[CrossRef]

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and line width studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[CrossRef]

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
[CrossRef]

Chutavkov, Yu. L.

Colville, F. G.

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behavior and stability requirements,” Opt. Commun. 119, 256–264 (1995).
[CrossRef]

F. G. Colville, M. J. Padgett, and M. H. Dunn, “Cw dual-cavity doubly resonant optical parametric oscillator,” Appl. Phys. Lett. 64, 1490–1492 (1994).
[CrossRef]

M. J. Padgett, F. G. Colville, and M. H. Dunn, “Mode selection in doubly-resonant optical parametric oscillators,” IEEE J. Quantum Electron. 30, 2979–2985 (1994).
[CrossRef]

Danielmeyer, H. G.

J. E. Bjorkholm and H. G. Danielmeyer, “Frequency control of a pulsed parametric oscillator by radiation injection,” Appl. Phys. Lett. 15, 171–173 (1969).
[CrossRef]

David, L.

D. Eimerl, L. David, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1983).
[CrossRef]

Dunn, M. H.

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behavior and stability requirements,” Opt. Commun. 119, 256–264 (1995).
[CrossRef]

F. G. Colville, M. J. Padgett, and M. H. Dunn, “Cw dual-cavity doubly resonant optical parametric oscillator,” Appl. Phys. Lett. 64, 1490–1492 (1994).
[CrossRef]

M. J. Padgett, F. G. Colville, and M. H. Dunn, “Mode selection in doubly-resonant optical parametric oscillators,” IEEE J. Quantum Electron. 30, 2979–2985 (1994).
[CrossRef]

Eckardt, R. C.

Eimerl, D.

D. Eimerl, L. David, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1983).
[CrossRef]

Falk, J.

J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. QE-7, 230–235 (1971).
[CrossRef]

Fix, A.

Gloster, L. A.

Graham, E. K.

D. Eimerl, L. David, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1983).
[CrossRef]

Guyer, D. R.

W. R. Bosenberg and D. R. Guyer, “Single-frequency optical parametric oscillator,” Appl. Phys. Lett. 61, 387–389 (1992).
[CrossRef]

Harris, S. E.

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
[CrossRef]

Haub, J. G.

Henderson, A. J.

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behavior and stability requirements,” Opt. Commun. 119, 256–264 (1995).
[CrossRef]

Hogervorst, W.

Hovde, D. C.

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, “High power injection-seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Huisken, F.

Johnson, M. J.

Kaloudis, M.

Kato, K.

K. Kato, “Second harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. QE-22, 1013–1014 (1986).
[CrossRef]

King, T. A.

Kozlovsky, W. J.

Kreuzer, L. B.

L. B. Kreuzer, “Single mode oscillation of a pulsed singly resonant optical parametric oscillator,” Appl. Phys. Lett. 15, 263–265 (1969).
[CrossRef]

Lefebvre, M.

M. Lefebvre, B. Scherrer, and J.-C. Lestel, “Raman injected optical parametric oscillator,” Opt. Commun. 139, 241–246 (1997).
[CrossRef]

Lehmann, K. K.

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, “High power injection-seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Lestel, J.-C.

M. Lefebvre, B. Scherrer, and J.-C. Lestel, “Raman injected optical parametric oscillator,” Opt. Commun. 139, 241–246 (1997).
[CrossRef]

Marquez, J.

McKinnie, I. T.

Nabors, C. D.

Orlov, S. N.

Orr, B. J.

Padgett, M. J.

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behavior and stability requirements,” Opt. Commun. 119, 256–264 (1995).
[CrossRef]

M. J. Padgett, F. G. Colville, and M. H. Dunn, “Mode selection in doubly-resonant optical parametric oscillators,” IEEE J. Quantum Electron. 30, 2979–2985 (1994).
[CrossRef]

F. G. Colville, M. J. Padgett, and M. H. Dunn, “Cw dual-cavity doubly resonant optical parametric oscillator,” Appl. Phys. Lett. 64, 1490–1492 (1994).
[CrossRef]

Pinard, J.

J. Pinard and J. F. Young, “Interferometric stabilization of an optical parametric oscillator,” Opt. Commun. 4, 425–427 (1969).
[CrossRef]

Polivanov, Yu. N.

Powell, A. J.

Scherrer, B.

M. Lefebvre, B. Scherrer, and J.-C. Lestel, “Raman injected optical parametric oscillator,” Opt. Commun. 139, 241–246 (1997).
[CrossRef]

Schröder, T.

Scoles, G.

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, “High power injection-seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Smirnov, V. V.

Smith, R. G.

R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–541 (1973).
[CrossRef]

J. E. Bjorkholm, A. Ashkin, and R. G. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflexion,” IEEE J. Quantum Electron. QE-6, 797–799 (1970).
[CrossRef]

Timmermans, J. H.

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, “High power injection-seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Tittel, F. K.

F. K. Tittel, ed., Environmental trace gas detection using laser spectroscopy feature, Appl. Phys. B 67, 273–397 (1998).
[CrossRef]

van der Veer, W. E.

Velsko, S.

D. Eimerl, L. David, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1983).
[CrossRef]

Wallenstein, R.

Young, J. F.

J. Pinard and J. F. Young, “Interferometric stabilization of an optical parametric oscillator,” Opt. Commun. 4, 425–427 (1969).
[CrossRef]

Zalkin, A.

D. Eimerl, L. David, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1983).
[CrossRef]

Zhang, J.

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behavior and stability requirements,” Opt. Commun. 119, 256–264 (1995).
[CrossRef]

Appl. Phys. B

F. K. Tittel, ed., Environmental trace gas detection using laser spectroscopy feature, Appl. Phys. B 67, 273–397 (1998).
[CrossRef]

Appl. Phys. Lett.

J. E. Bjorkholm and H. G. Danielmeyer, “Frequency control of a pulsed parametric oscillator by radiation injection,” Appl. Phys. Lett. 15, 171–173 (1969).
[CrossRef]

L. B. Kreuzer, “Single mode oscillation of a pulsed singly resonant optical parametric oscillator,” Appl. Phys. Lett. 15, 263–265 (1969).
[CrossRef]

W. R. Bosenberg and D. R. Guyer, “Single-frequency optical parametric oscillator,” Appl. Phys. Lett. 61, 387–389 (1992).
[CrossRef]

J. E. Bjorkholm, “Improvement of optical parametric oscillators by nonresonant pump reflexion,” Appl. Phys. Lett. 13, 399–401 (1968).
[CrossRef]

F. G. Colville, M. J. Padgett, and M. H. Dunn, “Cw dual-cavity doubly resonant optical parametric oscillator,” Appl. Phys. Lett. 64, 1490–1492 (1994).
[CrossRef]

IEEE J. Quantum Electron.

J. Falk, “Instabilities in the doubly resonant parametric oscillator: a theoretical analysis,” IEEE J. Quantum Electron. QE-7, 230–235 (1971).
[CrossRef]

R. G. Smith, “A study of factors affecting the performance of a continuously pumped doubly resonant optical parametric oscillator,” IEEE J. Quantum Electron. QE-9, 530–541 (1973).
[CrossRef]

M. J. Padgett, F. G. Colville, and M. H. Dunn, “Mode selection in doubly-resonant optical parametric oscillators,” IEEE J. Quantum Electron. 30, 2979–2985 (1994).
[CrossRef]

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and line width studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[CrossRef]

J. E. Bjorkholm, A. Ashkin, and R. G. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflexion,” IEEE J. Quantum Electron. QE-6, 797–799 (1970).
[CrossRef]

K. Kato, “Second harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. QE-22, 1013–1014 (1986).
[CrossRef]

J. Appl. Phys.

D. Eimerl, L. David, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, mechanical and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1983).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

M. Lefebvre, B. Scherrer, and J.-C. Lestel, “Raman injected optical parametric oscillator,” Opt. Commun. 139, 241–246 (1997).
[CrossRef]

D. C. Hovde, J. H. Timmermans, G. Scoles, and K. K. Lehmann, “High power injection-seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

J. Pinard and J. F. Young, “Interferometric stabilization of an optical parametric oscillator,” Opt. Commun. 4, 425–427 (1969).
[CrossRef]

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behavior and stability requirements,” Opt. Commun. 119, 256–264 (1995).
[CrossRef]

Opt. Lett.

Phys. Rev.

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
[CrossRef]

Other

A. Fix, R. Urshel, G. Goeritz, A. Borsuutzky, and R. Wallenstein, “Single-mode BBO/KNB optical parametric oscillator-amplifier system, broadly tunable from the visible (0.4 μm) to the infrared (4 μm),” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 199–200.

J. A. Giordmaine and R. C. Miller, “Optical parametric oscillation in LiNbO3,” in Physics of Quantum Electronics, P. L. Kelley, B. Lax, and P. E. Tannenwald, eds. (McGraw-Hill, New York, 1966), pp. 31–42.

R. G. Smith, “Optical parametric oscillators,” in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois eds. (North-Holland, Amsterdam, 1992), Vol. 1, pp. 837–895.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic representation of doubly resonant operating points, also called exact coincidences. The signal frequency increases from left to right, whereas the idler frequency increases in the opposite direction. The ticks show the location of cavity modes for each frequency. The two vertical dashed lines illustrate two exact coincidences.

Fig. 2
Fig. 2

Diagram showing the location of exact coincidences against the difference in length of dual-cavity DROPO’s. The initial exact coincidence (ωs0, ωi0) is located along the horizontal axis. Successive curves are plotted for |g|=0 to 4; the g=0 solution is superimposed with the ordinate axis; internal curves are for |g|=1. Doubly resonant coincidences are obtained each time that any horizontal line associated with an integer value of Δn crosses the successive curves; the dashed line gives an example for Δn=100.

Fig. 3
Fig. 3

Zoom of the first quadrant of Fig. 2. Full points are used if Δn and g are prime to each other; otherwise crosses are plotted. Dashed lines illustrate two different situations: (Δn, g)=(4, 1) and (5, 2).

Fig. 4
Fig. 4

Giordmaine and Miller’s diagram for two different pairs of integers: (Δn, g)=(4, 1) and (5, 2) noticed in (a) and (b), respectively (see also the related points shown in Fig. 3). Only two adjacent doubly resonant positions are shown in Fig. 4; other solutions shown with crosses in Fig. 3 are found periodically with a spectral separation given by Eq. (11). From Fig. 4(b) it is seen that the minimum frequency mismatch between signal and idler modes is given by (Δωi-Δωs)/g, as is demonstrated in Appendix B.

Fig. 5
Fig. 5

Evolution of Δn against the difference in length of dual-cavity DROPO’s. The dashed curve is related to the first order of approximation [Eq. (10)], and the solid curve illustrates the dependence of Δn taking into account the second order of development [Eq. (12)]; calculation has been done for K=1.7×106 and g=0,±1. Note the small variations in the normalized length (±1%) that are reported in this figure.

Fig. 6
Fig. 6

Evolution of the constants of dispersion (curves b and d) versus the signal wavelength. Calculated curves are for a type II phase-matched BBO crystal; see Appendix A.

Fig. 7
Fig. 7

Distribution of the nearest exact coincidences. The horizontal straight line (Δn=4) is for the half-width of the parametric-gain bandwidth (assuming that ΔΩ/2=4Δωi). The upper decreasing curve is for condition (19) (assuming a finesse of ten for each cavity). In region I, operating points lie within the parametric-gain curve; in region II, both conditions (15) and (19) are fulfilled; in region III, condition (15) is verified, whereas inequality (19) is not satisfied.

Fig. 8
Fig. 8

Evolution of Fsm versus (Δl-Δl0)/L˜i for a parametric-gain bandwidth ΔΩ/2=4Δωi. Fsm represents the minimum value of the cavity finesse necessary for obtaining single-mode operation. Regions of single-mode operation are depicted for a finesse value of 20 (dashed line).

Fig. 9
Fig. 9

Representation of the two Lorentzian functions Li(x) and Ls(x) that are used to calculate the modes’ overlapping; x1 and x2 are the intersecting points of the two curves, whereas x0 is the oscillating point of the OPO; a and b are the half-widths at half-maximum of the idler and the signal modes, respectively. For clarity the values of a and b have been chosen as more different than they are in reality.

Fig. 10
Fig. 10

(a) Representation with various shades of gray of the overlap area related to different doubly resonant operating points; the two dashed lines illustrate two different gain bandwidths. (b), (c) Cross sections (a) showing the evolution of the overlap area of the coincidences contained in each gain curve; the dashed lines shown in (b) and (c) are for ΔSmin given in Eq. (20).

Fig. 11
Fig. 11

Schematic top view of the dual-cavity DROPO: M1M2, signal cavity; M1M3, idler cavity; S, dichroic splitter, PZT’s; piezoelectric translators. Pump, signal, and idler fields are, respectively, extraordinary, ordinary, and extraordinary waves; the pump beam is vertically polarized.

Fig. 12
Fig. 12

Comparison of experimental and first-order theoretical evolution of Δωsi versus the difference in length of the two cavities: dots represent experimental results; the curve represents the theoretical evolution given by Eq. (11) with g=±1.

Fig. 13
Fig. 13

Interferograms of (a) the second harmonic of the Nd:YAG laser and (b) the OPO output; the mean oscillation wavelength is 539 nm.

Fig. 14
Fig. 14

Time evolution of the OPO frequency; the mean oscillation wavelength is 551 nm: (a) the pumping level is 12 mJ with a 20-ns-long pulse; (b) pumping conditions are 10 mJ and 5 ns.

Fig. 15
Fig. 15

Mode hops obtained by changing (a) the idler or (b) the signal PZT voltage.

Fig. 16
Fig. 16

Scheme of discrete tuning with mode hops. Initially, the exact coincidence is obtained with the mode m0, then the idler mode structure is shifted to the right by changing the idler PZT voltage, and consequently, the signal frequency jumps to the mode m0-1.

Tables (1)

Tables Icon

Table 1 Spectral Characteristics of the Optical Components

Equations (59)

Equations on this page are rendered with MathJax. Learn more.

ϕ(ωs)=2πm0,ϕ(ωi)=2πn0,
ωs+ωi=ωp.
ϕ(ω)=2ωj ljvj,
ϕ(ωs0+Δωsi)=2π(m0+Δm),
ϕ(ωi0-Δωsi)=2π(n0-Δn),
2πg=ϕsωsωs0-ϕiωiωi0Δωsi+12 2ϕsωs2ωs0+2ϕiωi2ωi0Δωsi2,
2πΔn=ϕiωiωi0Δωsi-12 2ϕiωi2ωi0Δωsi2,
ϕs=2ωsc(ls+lcns)=2ωscLs,
πg=Δlc+blcΔωsi+dlcΔωsi2,
Δn=ΔωsiΔωi,
Δl=ls-li,
Δωi-1=1πc li+lcni+ωi niωi,
b=1c ns-ni+ωs nsωs-ωi niωi,
d=1c nsωs+niωi+ωs2 2nsωs2+ωi2 2niωi2.
g=Δl-Δl0L˜iΔn+Δn2K,
L˜i=Li+lcωi niωi=πcΔωi,
Δl0=-cblc,
K=πdlcΔωi2.
Δn=g L˜i(Δl-Δl0)=g ΔωsΔωi-Δωs,
Δωsi=πgc(Δl-Δl0)=g ΔωiΔωsΔωi-Δωs.
Δn=K (Δl-Δl0)2L˜i×-1±1+gK(Δl-Δl0)2L˜i2.
Δn=-K (Δl-Δl0)L˜i.
|Δωsi|>ΔΩ2,
|Δn|>ΔΩ2Δωi.
δsi=|δs+δi|=FiΔωs+FsΔωi2FiFs,
Δωi-Δωsg>δsi.
|Δωsi|<21FsΔωi+1FiΔωs-1.
|Δn|<F1+12 (Δl-Δl0)L˜iF.
ΔSmin=2π arctan2ΔωiΔωs+ΔωsΔωi0.5.
ΔΩ=2πcblcp,
ns=no(ωs),
1ni2=cos2 θno2(ωi)+sin2 θne2(ωi),
no,(e)2(λ)=Ao, (e)+Bo, (e)λ2-Co, (e)-Do, (e)λ2.
-λs nsλs=ωs nsωs=λs2no Bo(λs2-Co)2Do,
2 nsωs+ωs 2nsωs2=λs32πc 4Boλs2(λs2-Co)3+noλs noλs-noλs.
niωi=cos2 θnino3 noωi+sin2 θnine3 neωi,
2niωi2=cos2 θnino32noωi2+3 noωi 1ni niωi-1no noωi+sin2 θnine32neωi2+3 neωi 1ni niωi-1ne neωi,
δ(m, n)=|mΔωs-nΔωi|.
δ(Δm, Δn)=0,
Δωsi=ΔmΔωs=ΔnΔωi,
g=Δm-Δn.
δ(m, n)=ΔωsΔωiΔωsi|Δnm-Δmn|.
δmin=|Δωi-Δωs|g=ΔωsΔn=ΔωiΔm.
δ(m, n)<δsi,
|mΔn-nΔm|<12F(Δn+Δm),
|Δn(m-n)-ng|<2Δn+g2F.
F<1m-n-n gΔn=1m-n-nΔl-Δl0L˜i.
Fsm=1min(m-n)-nΔl-Δl0L˜i,
n=0 ,, nmax;m=0 ,, mmax,
F>Fsm,
Li=aπ 1a2+x2,
LS=bπ 1b2+(x-δsi)2,
ΔS=-x1Ls(x)dx+x1x2Li(x)dx+x2+Ls(x)dx.
ΔS=1+1π arctan x1-δsib+arctan x2a-arctan x1a-arctan x2-δsib.
x1=-β-Δ2α,
x2=-β+Δ2α,
δsΔωs=δiΔωi,
δi=a,δs=b.
ΔSmin=2π arctan2ab+ba.

Metrics