Abstract

We present a comprehensive theoretical model with experimental results on four-wave mixing in a distributed feedback laser with two pump modes. Here the twin lasing modes serve as pump waves for the four-wave mixing, which takes place within the laser cavity. We show what we believe are new experimental measurements of the two-pump four-wave mixing conversion efficiency spectrum and show that, to first order, there is no fundamental dependence of the conversion efficiency on pump separation. This result indicates significant improvement in the probe and conjugate wavelength separation and in the conversion efficiency. Our theoretical model agrees quite well with the measured data and predicts the key experimentally observed phenomena, including the relative invariance of the conversion efficiency on pump separation, and the strong enhancement of certain conjugate waves when the probe detuning is close to the pump separation.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
    [CrossRef]
  2. T. Mukai and T. Saitoh, “Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 26, 865–875 (1990).
    [CrossRef]
  3. J. Zhou, N. Park, K. Vahala, M. Newkirk, and B. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6, 984–987 (1994).
    [CrossRef]
  4. F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9, 746–748 (1997).
    [CrossRef]
  5. S. Murata, A. Tomita, J. Shimuzu, H. Kitamura, and A. Suzuki, “Observation of highly non-degenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
    [CrossRef]
  6. A. Mecozzi, A. D’Ottani, and R. Hui, “Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold,” IEEE J. Quantum Electron. 29, 1477–1487 (1993).
    [CrossRef]
  7. R. Hui, S. Benedetto, and I. Montrosset, “Optical frequency conversion using nearly degenerate four-wave mixing in a distributed-feedback semiconductor laser: theory and experiment,” J. Lightwave Technol. 11, 2026–2031 (1993).
    [CrossRef]
  8. H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long-cavity λ/4-shifted DFB laser,” Electron. Lett. 31, 2108–2110 (1995).
    [CrossRef]
  9. J. Minch, C. S. Chang, and S. L. Chuang, “Wavelength conversion in distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 569–576 (1997).
    [CrossRef]
  10. G. Grosskopf, R. Ludwig, and H. G. Weber, “140 Mbit/s DPSK transmission using an all-optical frequency converter with a 4000 Ghz conversion range,” Electron. Lett. 24, 1106–1107 (1988).
    [CrossRef]
  11. G. Grosskopf, L. Kuller, R. Ludwig, R. Schnabel, and H. G. Weber, “Semiconductor laser optical amplifiers in switching and distribution networks,” Opt. Quantum Electron. 21, S59–S79 (1989).
    [CrossRef]
  12. N. Schunk, G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency conversion by nearly-degenerate four-wave mixing in traveling-wave semiconductor laser amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
    [CrossRef]
  13. N. Schunk, “All-optical frequency conversion in a traveling wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 27, 1271–1279 (1991).
    [CrossRef]
  14. K. Inoue, “Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights,” IEEE Photon. Technol. Lett. 6, 1451–1453 (1994).
    [CrossRef]
  15. I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
    [CrossRef]
  16. T. Morgan, J. Lacey, and R. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10, 1401–1403 (1998).
    [CrossRef]
  17. I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Performance of a reconfigurable wavelength convertor based on dual-pump four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 10, 1404–1406 (1998).
    [CrossRef]
  18. G. Hunziker, R. Paiella, D. Geraghty, K. Vahala, and U. Koren, “Polarization-independent wavelength conversion at 2.5 Gb/s by dual-pump four-wave mixing in a strained semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 8, 1633–1635 (1996).
    [CrossRef]
  19. P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Polarization dependence and efficiency in a fiber four-wave mixing phase conjugator with orthogonal pump waves,” IEEE Photon. Technol. Lett. 8, 776–778 (1996).
    [CrossRef]
  20. M. Eiselt, R. Schnabel, and E. Dietrich, “Polarization insensitive frequency converter with the capability of chirp removal,” IEEE Photon. Technol. Lett. 10, 63–65 (1998).
    [CrossRef]
  21. I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 352–354 (1998).
    [CrossRef]
  22. A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Gueskos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10, 355–357 (1998).
    [CrossRef]
  23. A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D’Ottavi, P. Spano, R. Dall’Ara, and J. Eckner, “Polarization-insensitive four-wave mixing in a semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2651–2653 (1998).
    [CrossRef]
  24. G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D’Ottavi, P. Spano, G. Gueskos, R. Dall’Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 1398–1400 (1998).
    [CrossRef]
  25. J. Minch, C. S. Chang, and S. L. Chuang, “Wavelength conversion using two-pump four-wave mixing in a double-moded distributed-feedback laser,” presented at Lasers and Electro-Optics Society 1997 Meeting of the IEEE, San Francisco, Calif., Nov. 10–13, 1997, paper MN3.
  26. W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 2, 547–554 (1997).
    [CrossRef]
  27. P. Szczepanski, “Semiclassical theory of multimode operation of a distributed feedback laser,” IEEE J. Quantum Electron. 24, 1248–1257 (1988).
    [CrossRef]
  28. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995).
  29. G. Agrawal, “Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. B 5, 147–159 (1988).
    [CrossRef]
  30. W. Yee and K. Shore, “Nearly degenerate four-wave mixing in laser diodes with nonuniform longitudinal gain distribution,” J. Opt. Soc. Am. B 11, 1221–1228 (1994).
    [CrossRef]
  31. S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal mode laser diodes,” IEEE Photon. Technol. Lett. 7, 959–961 (1995).
    [CrossRef]

1998 (8)

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

T. Morgan, J. Lacey, and R. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10, 1401–1403 (1998).
[CrossRef]

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Performance of a reconfigurable wavelength convertor based on dual-pump four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 10, 1404–1406 (1998).
[CrossRef]

M. Eiselt, R. Schnabel, and E. Dietrich, “Polarization insensitive frequency converter with the capability of chirp removal,” IEEE Photon. Technol. Lett. 10, 63–65 (1998).
[CrossRef]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 352–354 (1998).
[CrossRef]

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Gueskos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10, 355–357 (1998).
[CrossRef]

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D’Ottavi, P. Spano, R. Dall’Ara, and J. Eckner, “Polarization-insensitive four-wave mixing in a semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2651–2653 (1998).
[CrossRef]

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D’Ottavi, P. Spano, G. Gueskos, R. Dall’Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 1398–1400 (1998).
[CrossRef]

1997 (3)

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 2, 547–554 (1997).
[CrossRef]

J. Minch, C. S. Chang, and S. L. Chuang, “Wavelength conversion in distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 569–576 (1997).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9, 746–748 (1997).
[CrossRef]

1996 (3)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[CrossRef]

G. Hunziker, R. Paiella, D. Geraghty, K. Vahala, and U. Koren, “Polarization-independent wavelength conversion at 2.5 Gb/s by dual-pump four-wave mixing in a strained semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 8, 1633–1635 (1996).
[CrossRef]

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Polarization dependence and efficiency in a fiber four-wave mixing phase conjugator with orthogonal pump waves,” IEEE Photon. Technol. Lett. 8, 776–778 (1996).
[CrossRef]

1995 (2)

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long-cavity λ/4-shifted DFB laser,” Electron. Lett. 31, 2108–2110 (1995).
[CrossRef]

S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal mode laser diodes,” IEEE Photon. Technol. Lett. 7, 959–961 (1995).
[CrossRef]

1994 (3)

W. Yee and K. Shore, “Nearly degenerate four-wave mixing in laser diodes with nonuniform longitudinal gain distribution,” J. Opt. Soc. Am. B 11, 1221–1228 (1994).
[CrossRef]

K. Inoue, “Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights,” IEEE Photon. Technol. Lett. 6, 1451–1453 (1994).
[CrossRef]

J. Zhou, N. Park, K. Vahala, M. Newkirk, and B. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6, 984–987 (1994).
[CrossRef]

1993 (2)

A. Mecozzi, A. D’Ottani, and R. Hui, “Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold,” IEEE J. Quantum Electron. 29, 1477–1487 (1993).
[CrossRef]

R. Hui, S. Benedetto, and I. Montrosset, “Optical frequency conversion using nearly degenerate four-wave mixing in a distributed-feedback semiconductor laser: theory and experiment,” J. Lightwave Technol. 11, 2026–2031 (1993).
[CrossRef]

1991 (2)

S. Murata, A. Tomita, J. Shimuzu, H. Kitamura, and A. Suzuki, “Observation of highly non-degenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
[CrossRef]

N. Schunk, “All-optical frequency conversion in a traveling wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 27, 1271–1279 (1991).
[CrossRef]

1990 (2)

T. Mukai and T. Saitoh, “Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 26, 865–875 (1990).
[CrossRef]

N. Schunk, G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency conversion by nearly-degenerate four-wave mixing in traveling-wave semiconductor laser amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
[CrossRef]

1989 (1)

G. Grosskopf, L. Kuller, R. Ludwig, R. Schnabel, and H. G. Weber, “Semiconductor laser optical amplifiers in switching and distribution networks,” Opt. Quantum Electron. 21, S59–S79 (1989).
[CrossRef]

1988 (3)

G. Grosskopf, R. Ludwig, and H. G. Weber, “140 Mbit/s DPSK transmission using an all-optical frequency converter with a 4000 Ghz conversion range,” Electron. Lett. 24, 1106–1107 (1988).
[CrossRef]

P. Szczepanski, “Semiclassical theory of multimode operation of a distributed feedback laser,” IEEE J. Quantum Electron. 24, 1248–1257 (1988).
[CrossRef]

G. Agrawal, “Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. B 5, 147–159 (1988).
[CrossRef]

Agrawal, G.

Andrekson, P. A.

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Polarization dependence and efficiency in a fiber four-wave mixing phase conjugator with orthogonal pump waves,” IEEE Photon. Technol. Lett. 8, 776–778 (1996).
[CrossRef]

Benedetto, S.

R. Hui, S. Benedetto, and I. Montrosset, “Optical frequency conversion using nearly degenerate four-wave mixing in a distributed-feedback semiconductor laser: theory and experiment,” J. Lightwave Technol. 11, 2026–2031 (1993).
[CrossRef]

Caroubalos, C.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Performance of a reconfigurable wavelength convertor based on dual-pump four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 10, 1404–1406 (1998).
[CrossRef]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Chang, C. S.

J. Minch, C. S. Chang, and S. L. Chuang, “Wavelength conversion in distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 569–576 (1997).
[CrossRef]

Chuang, S. L.

J. Minch, C. S. Chang, and S. L. Chuang, “Wavelength conversion in distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 569–576 (1997).
[CrossRef]

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 2, 547–554 (1997).
[CrossRef]

Contestabile, G.

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Gueskos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10, 355–357 (1998).
[CrossRef]

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D’Ottavi, P. Spano, R. Dall’Ara, and J. Eckner, “Polarization-insensitive four-wave mixing in a semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2651–2653 (1998).
[CrossRef]

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D’Ottavi, P. Spano, G. Gueskos, R. Dall’Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 1398–1400 (1998).
[CrossRef]

D’Ottani, A.

A. Mecozzi, A. D’Ottani, and R. Hui, “Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold,” IEEE J. Quantum Electron. 29, 1477–1487 (1993).
[CrossRef]

D’Ottavi, A.

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D’Ottavi, P. Spano, G. Gueskos, R. Dall’Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 1398–1400 (1998).
[CrossRef]

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D’Ottavi, P. Spano, R. Dall’Ara, and J. Eckner, “Polarization-insensitive four-wave mixing in a semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2651–2653 (1998).
[CrossRef]

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Gueskos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10, 355–357 (1998).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9, 746–748 (1997).
[CrossRef]

Dall’Ara, R.

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Gueskos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10, 355–357 (1998).
[CrossRef]

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D’Ottavi, P. Spano, R. Dall’Ara, and J. Eckner, “Polarization-insensitive four-wave mixing in a semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2651–2653 (1998).
[CrossRef]

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D’Ottavi, P. Spano, G. Gueskos, R. Dall’Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 1398–1400 (1998).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9, 746–748 (1997).
[CrossRef]

Dietrich, E.

M. Eiselt, R. Schnabel, and E. Dietrich, “Polarization insensitive frequency converter with the capability of chirp removal,” IEEE Photon. Technol. Lett. 10, 63–65 (1998).
[CrossRef]

Eckner, J.

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D’Ottavi, P. Spano, R. Dall’Ara, and J. Eckner, “Polarization-insensitive four-wave mixing in a semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2651–2653 (1998).
[CrossRef]

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Gueskos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10, 355–357 (1998).
[CrossRef]

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D’Ottavi, P. Spano, G. Gueskos, R. Dall’Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 1398–1400 (1998).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9, 746–748 (1997).
[CrossRef]

Eiselt, M.

M. Eiselt, R. Schnabel, and E. Dietrich, “Polarization insensitive frequency converter with the capability of chirp removal,” IEEE Photon. Technol. Lett. 10, 63–65 (1998).
[CrossRef]

Fang, W.

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 2, 547–554 (1997).
[CrossRef]

Geraghty, D.

G. Hunziker, R. Paiella, D. Geraghty, K. Vahala, and U. Koren, “Polarization-independent wavelength conversion at 2.5 Gb/s by dual-pump four-wave mixing in a strained semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 8, 1633–1635 (1996).
[CrossRef]

Girardin, F.

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Gueskos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10, 355–357 (1998).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9, 746–748 (1997).
[CrossRef]

Graziani, L.

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D’Ottavi, P. Spano, R. Dall’Ara, and J. Eckner, “Polarization-insensitive four-wave mixing in a semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2651–2653 (1998).
[CrossRef]

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Gueskos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10, 355–357 (1998).
[CrossRef]

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D’Ottavi, P. Spano, G. Gueskos, R. Dall’Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 1398–1400 (1998).
[CrossRef]

Grosskopf, G.

N. Schunk, G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency conversion by nearly-degenerate four-wave mixing in traveling-wave semiconductor laser amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
[CrossRef]

G. Grosskopf, L. Kuller, R. Ludwig, R. Schnabel, and H. G. Weber, “Semiconductor laser optical amplifiers in switching and distribution networks,” Opt. Quantum Electron. 21, S59–S79 (1989).
[CrossRef]

G. Grosskopf, R. Ludwig, and H. G. Weber, “140 Mbit/s DPSK transmission using an all-optical frequency converter with a 4000 Ghz conversion range,” Electron. Lett. 24, 1106–1107 (1988).
[CrossRef]

Guekos, G.

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9, 746–748 (1997).
[CrossRef]

Gueskos, G.

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D’Ottavi, P. Spano, G. Gueskos, R. Dall’Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 1398–1400 (1998).
[CrossRef]

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Gueskos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10, 355–357 (1998).
[CrossRef]

Hedekvist, P. O.

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Polarization dependence and efficiency in a fiber four-wave mixing phase conjugator with orthogonal pump waves,” IEEE Photon. Technol. Lett. 8, 776–778 (1996).
[CrossRef]

Hidaka, T.

S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal mode laser diodes,” IEEE Photon. Technol. Lett. 7, 959–961 (1995).
[CrossRef]

Hirata, T.

S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal mode laser diodes,” IEEE Photon. Technol. Lett. 7, 959–961 (1995).
[CrossRef]

Hsu, A.

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 2, 547–554 (1997).
[CrossRef]

Hui, R.

A. Mecozzi, A. D’Ottani, and R. Hui, “Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold,” IEEE J. Quantum Electron. 29, 1477–1487 (1993).
[CrossRef]

R. Hui, S. Benedetto, and I. Montrosset, “Optical frequency conversion using nearly degenerate four-wave mixing in a distributed-feedback semiconductor laser: theory and experiment,” J. Lightwave Technol. 11, 2026–2031 (1993).
[CrossRef]

Hunziker, G.

G. Hunziker, R. Paiella, D. Geraghty, K. Vahala, and U. Koren, “Polarization-independent wavelength conversion at 2.5 Gb/s by dual-pump four-wave mixing in a strained semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 8, 1633–1635 (1996).
[CrossRef]

Iio, S.

S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal mode laser diodes,” IEEE Photon. Technol. Lett. 7, 959–961 (1995).
[CrossRef]

Inoue, K.

K. Inoue, “Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights,” IEEE Photon. Technol. Lett. 6, 1451–1453 (1994).
[CrossRef]

Ishikawa, H.

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long-cavity λ/4-shifted DFB laser,” Electron. Lett. 31, 2108–2110 (1995).
[CrossRef]

Karlsson, M.

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Polarization dependence and efficiency in a fiber four-wave mixing phase conjugator with orthogonal pump waves,” IEEE Photon. Technol. Lett. 8, 776–778 (1996).
[CrossRef]

Kitamura, H.

S. Murata, A. Tomita, J. Shimuzu, H. Kitamura, and A. Suzuki, “Observation of highly non-degenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
[CrossRef]

Koren, U.

G. Hunziker, R. Paiella, D. Geraghty, K. Vahala, and U. Koren, “Polarization-independent wavelength conversion at 2.5 Gb/s by dual-pump four-wave mixing in a strained semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 8, 1633–1635 (1996).
[CrossRef]

Kuller, L.

G. Grosskopf, L. Kuller, R. Ludwig, R. Schnabel, and H. G. Weber, “Semiconductor laser optical amplifiers in switching and distribution networks,” Opt. Quantum Electron. 21, S59–S79 (1989).
[CrossRef]

Kuwatsuka, H.

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long-cavity λ/4-shifted DFB laser,” Electron. Lett. 31, 2108–2110 (1995).
[CrossRef]

Lacey, J.

T. Morgan, J. Lacey, and R. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10, 1401–1403 (1998).
[CrossRef]

Ludwig, R.

N. Schunk, G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency conversion by nearly-degenerate four-wave mixing in traveling-wave semiconductor laser amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
[CrossRef]

G. Grosskopf, L. Kuller, R. Ludwig, R. Schnabel, and H. G. Weber, “Semiconductor laser optical amplifiers in switching and distribution networks,” Opt. Quantum Electron. 21, S59–S79 (1989).
[CrossRef]

G. Grosskopf, R. Ludwig, and H. G. Weber, “140 Mbit/s DPSK transmission using an all-optical frequency converter with a 4000 Ghz conversion range,” Electron. Lett. 24, 1106–1107 (1988).
[CrossRef]

Martelli, F.

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Gueskos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10, 355–357 (1998).
[CrossRef]

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D’Ottavi, P. Spano, R. Dall’Ara, and J. Eckner, “Polarization-insensitive four-wave mixing in a semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2651–2653 (1998).
[CrossRef]

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D’Ottavi, P. Spano, G. Gueskos, R. Dall’Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 1398–1400 (1998).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9, 746–748 (1997).
[CrossRef]

Matsuda, M.

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long-cavity λ/4-shifted DFB laser,” Electron. Lett. 31, 2108–2110 (1995).
[CrossRef]

Mecozzi, A.

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D’Ottavi, P. Spano, G. Gueskos, R. Dall’Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 1398–1400 (1998).
[CrossRef]

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D’Ottavi, P. Spano, R. Dall’Ara, and J. Eckner, “Polarization-insensitive four-wave mixing in a semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2651–2653 (1998).
[CrossRef]

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Gueskos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10, 355–357 (1998).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9, 746–748 (1997).
[CrossRef]

A. Mecozzi, A. D’Ottani, and R. Hui, “Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold,” IEEE J. Quantum Electron. 29, 1477–1487 (1993).
[CrossRef]

Miller, B.

J. Zhou, N. Park, K. Vahala, M. Newkirk, and B. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6, 984–987 (1994).
[CrossRef]

Minch, J.

J. Minch, C. S. Chang, and S. L. Chuang, “Wavelength conversion in distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 569–576 (1997).
[CrossRef]

Montrosset, I.

R. Hui, S. Benedetto, and I. Montrosset, “Optical frequency conversion using nearly degenerate four-wave mixing in a distributed-feedback semiconductor laser: theory and experiment,” J. Lightwave Technol. 11, 2026–2031 (1993).
[CrossRef]

Morgan, T.

T. Morgan, J. Lacey, and R. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10, 1401–1403 (1998).
[CrossRef]

Mukai, T.

T. Mukai and T. Saitoh, “Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 26, 865–875 (1990).
[CrossRef]

Murata, S.

S. Murata, A. Tomita, J. Shimuzu, H. Kitamura, and A. Suzuki, “Observation of highly non-degenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
[CrossRef]

Newkirk, M.

J. Zhou, N. Park, K. Vahala, M. Newkirk, and B. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6, 984–987 (1994).
[CrossRef]

Paiella, R.

G. Hunziker, R. Paiella, D. Geraghty, K. Vahala, and U. Koren, “Polarization-independent wavelength conversion at 2.5 Gb/s by dual-pump four-wave mixing in a strained semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 8, 1633–1635 (1996).
[CrossRef]

Park, N.

J. Zhou, N. Park, K. Vahala, M. Newkirk, and B. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6, 984–987 (1994).
[CrossRef]

Roditi, E.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Performance of a reconfigurable wavelength convertor based on dual-pump four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 10, 1404–1406 (1998).
[CrossRef]

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Saitoh, T.

T. Mukai and T. Saitoh, “Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 26, 865–875 (1990).
[CrossRef]

Schnabel, R.

M. Eiselt, R. Schnabel, and E. Dietrich, “Polarization insensitive frequency converter with the capability of chirp removal,” IEEE Photon. Technol. Lett. 10, 63–65 (1998).
[CrossRef]

N. Schunk, G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency conversion by nearly-degenerate four-wave mixing in traveling-wave semiconductor laser amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
[CrossRef]

G. Grosskopf, L. Kuller, R. Ludwig, R. Schnabel, and H. G. Weber, “Semiconductor laser optical amplifiers in switching and distribution networks,” Opt. Quantum Electron. 21, S59–S79 (1989).
[CrossRef]

Schunk, N.

N. Schunk, “All-optical frequency conversion in a traveling wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 27, 1271–1279 (1991).
[CrossRef]

N. Schunk, G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency conversion by nearly-degenerate four-wave mixing in traveling-wave semiconductor laser amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
[CrossRef]

Scotti, S.

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9, 746–748 (1997).
[CrossRef]

Sergent, A. M.

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 2, 547–554 (1997).
[CrossRef]

Shimuzu, J.

S. Murata, A. Tomita, J. Shimuzu, H. Kitamura, and A. Suzuki, “Observation of highly non-degenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
[CrossRef]

Shoji, H.

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long-cavity λ/4-shifted DFB laser,” Electron. Lett. 31, 2108–2110 (1995).
[CrossRef]

Shore, K.

Spano, P.

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Gueskos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10, 355–357 (1998).
[CrossRef]

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D’Ottavi, P. Spano, G. Gueskos, R. Dall’Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 1398–1400 (1998).
[CrossRef]

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D’Ottavi, P. Spano, R. Dall’Ara, and J. Eckner, “Polarization-insensitive four-wave mixing in a semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2651–2653 (1998).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9, 746–748 (1997).
[CrossRef]

Sphicopoulos, T.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Performance of a reconfigurable wavelength convertor based on dual-pump four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 10, 1404–1406 (1998).
[CrossRef]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Suehiro, M.

S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal mode laser diodes,” IEEE Photon. Technol. Lett. 7, 959–961 (1995).
[CrossRef]

Suzuki, A.

S. Murata, A. Tomita, J. Shimuzu, H. Kitamura, and A. Suzuki, “Observation of highly non-degenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
[CrossRef]

Syvridis, D.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Performance of a reconfigurable wavelength convertor based on dual-pump four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 10, 1404–1406 (1998).
[CrossRef]

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Szczepanski, P.

P. Szczepanski, “Semiclassical theory of multimode operation of a distributed feedback laser,” IEEE J. Quantum Electron. 24, 1248–1257 (1988).
[CrossRef]

Tanbun-Ek, T.

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 2, 547–554 (1997).
[CrossRef]

Tomita, A.

S. Murata, A. Tomita, J. Shimuzu, H. Kitamura, and A. Suzuki, “Observation of highly non-degenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
[CrossRef]

Tomkos, I.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Performance of a reconfigurable wavelength convertor based on dual-pump four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 10, 1404–1406 (1998).
[CrossRef]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Tucker, R.

T. Morgan, J. Lacey, and R. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10, 1401–1403 (1998).
[CrossRef]

Vahala, K.

G. Hunziker, R. Paiella, D. Geraghty, K. Vahala, and U. Koren, “Polarization-independent wavelength conversion at 2.5 Gb/s by dual-pump four-wave mixing in a strained semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 8, 1633–1635 (1996).
[CrossRef]

J. Zhou, N. Park, K. Vahala, M. Newkirk, and B. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6, 984–987 (1994).
[CrossRef]

Weber, H. G.

N. Schunk, G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency conversion by nearly-degenerate four-wave mixing in traveling-wave semiconductor laser amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
[CrossRef]

G. Grosskopf, L. Kuller, R. Ludwig, R. Schnabel, and H. G. Weber, “Semiconductor laser optical amplifiers in switching and distribution networks,” Opt. Quantum Electron. 21, S59–S79 (1989).
[CrossRef]

G. Grosskopf, R. Ludwig, and H. G. Weber, “140 Mbit/s DPSK transmission using an all-optical frequency converter with a 4000 Ghz conversion range,” Electron. Lett. 24, 1106–1107 (1988).
[CrossRef]

Yee, W.

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[CrossRef]

Zacharopoulos, I.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Performance of a reconfigurable wavelength convertor based on dual-pump four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 10, 1404–1406 (1998).
[CrossRef]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 352–354 (1998).
[CrossRef]

Zhou, J.

J. Zhou, N. Park, K. Vahala, M. Newkirk, and B. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6, 984–987 (1994).
[CrossRef]

Appl. Phys. Lett. (3)

S. Murata, A. Tomita, J. Shimuzu, H. Kitamura, and A. Suzuki, “Observation of highly non-degenerate four-wave mixing (>1 THz) in an InGaAsP multiple quantum well laser,” Appl. Phys. Lett. 58, 1458–1460 (1991).
[CrossRef]

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2499–2501 (1998).
[CrossRef]

A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D’Ottavi, P. Spano, R. Dall’Ara, and J. Eckner, “Polarization-insensitive four-wave mixing in a semiconductor optical amplifier,” Appl. Phys. Lett. 72, 2651–2653 (1998).
[CrossRef]

Electron. Lett. (2)

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “THz frequency conversion using nondegenerate four-wave mixing process in a lasing long-cavity λ/4-shifted DFB laser,” Electron. Lett. 31, 2108–2110 (1995).
[CrossRef]

G. Grosskopf, R. Ludwig, and H. G. Weber, “140 Mbit/s DPSK transmission using an all-optical frequency converter with a 4000 Ghz conversion range,” Electron. Lett. 24, 1106–1107 (1988).
[CrossRef]

IEE Proc. Optoelectron. (1)

N. Schunk, G. Grosskopf, R. Ludwig, R. Schnabel, and H. G. Weber, “Frequency conversion by nearly-degenerate four-wave mixing in traveling-wave semiconductor laser amplifiers,” IEE Proc. Optoelectron. 137, 209–214 (1990).
[CrossRef]

IEEE J. Quantum Electron. (4)

N. Schunk, “All-optical frequency conversion in a traveling wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 27, 1271–1279 (1991).
[CrossRef]

P. Szczepanski, “Semiclassical theory of multimode operation of a distributed feedback laser,” IEEE J. Quantum Electron. 24, 1248–1257 (1988).
[CrossRef]

A. Mecozzi, A. D’Ottani, and R. Hui, “Nearly degenerate four-wave mixing in distributed feedback semiconductor lasers operating above threshold,” IEEE J. Quantum Electron. 29, 1477–1487 (1993).
[CrossRef]

T. Mukai and T. Saitoh, “Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-μm traveling-wave semiconductor laser amplifier,” IEEE J. Quantum Electron. 26, 865–875 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

J. Minch, C. S. Chang, and S. L. Chuang, “Wavelength conversion in distributed-feedback lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 569–576 (1997).
[CrossRef]

W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Measurement and modeling of distributed-feedback lasers with spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 2, 547–554 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (12)

K. Inoue, “Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights,” IEEE Photon. Technol. Lett. 6, 1451–1453 (1994).
[CrossRef]

G. Contestabile, F. Martelli, A. Mecozzi, L. Graziani, A. D’Ottavi, P. Spano, G. Gueskos, R. Dall’Ara, and J. Eckner, “Efficiency flattening and equalization of frequency up- and down-conversion using four-wave mixing in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 1398–1400 (1998).
[CrossRef]

S. Iio, M. Suehiro, T. Hirata, and T. Hidaka, “Two-longitudinal mode laser diodes,” IEEE Photon. Technol. Lett. 7, 959–961 (1995).
[CrossRef]

J. Zhou, N. Park, K. Vahala, M. Newkirk, and B. Miller, “Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift,” IEEE Photon. Technol. Lett. 6, 984–987 (1994).
[CrossRef]

F. Girardin, J. Eckner, G. Guekos, R. Dall’Ara, A. Mecozzi, A. D’Ottavi, F. Martelli, S. Scotti, and P. Spano, “Low-noise and very high-efficiency four-wave mixing in 1.5-mm-long semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9, 746–748 (1997).
[CrossRef]

T. Morgan, J. Lacey, and R. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10, 1401–1403 (1998).
[CrossRef]

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Performance of a reconfigurable wavelength convertor based on dual-pump four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 10, 1404–1406 (1998).
[CrossRef]

G. Hunziker, R. Paiella, D. Geraghty, K. Vahala, and U. Koren, “Polarization-independent wavelength conversion at 2.5 Gb/s by dual-pump four-wave mixing in a strained semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 8, 1633–1635 (1996).
[CrossRef]

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Polarization dependence and efficiency in a fiber four-wave mixing phase conjugator with orthogonal pump waves,” IEEE Photon. Technol. Lett. 8, 776–778 (1996).
[CrossRef]

M. Eiselt, R. Schnabel, and E. Dietrich, “Polarization insensitive frequency converter with the capability of chirp removal,” IEEE Photon. Technol. Lett. 10, 63–65 (1998).
[CrossRef]

I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 10, 352–354 (1998).
[CrossRef]

A. Mecozzi, G. Contestabile, F. Martelli, L. Graziani, A. D’Ottavi, P. Spano, R. Dall’Ara, J. Eckner, F. Girardin, and G. Gueskos, “Optical spectral inversion without frequency shift by four-wave mixing using two pumps with orthogonal polarization,” IEEE Photon. Technol. Lett. 10, 355–357 (1998).
[CrossRef]

J. Lightwave Technol. (2)

R. Hui, S. Benedetto, and I. Montrosset, “Optical frequency conversion using nearly degenerate four-wave mixing in a distributed-feedback semiconductor laser: theory and experiment,” J. Lightwave Technol. 11, 2026–2031 (1993).
[CrossRef]

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955–966 (1996).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Quantum Electron. (1)

G. Grosskopf, L. Kuller, R. Ludwig, R. Schnabel, and H. G. Weber, “Semiconductor laser optical amplifiers in switching and distribution networks,” Opt. Quantum Electron. 21, S59–S79 (1989).
[CrossRef]

Other (2)

S. L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995).

J. Minch, C. S. Chang, and S. L. Chuang, “Wavelength conversion using two-pump four-wave mixing in a double-moded distributed-feedback laser,” presented at Lasers and Electro-Optics Society 1997 Meeting of the IEEE, San Francisco, Calif., Nov. 10–13, 1997, paper MN3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Definitions of the optical electric fields in the frequency spectrum relevant to this study of two-pump FWM. EA and EB represent the lasing modes of the laser that serve as pump waves. E1 is the probe wave, and the other lines are conjugates created by the mixing of these fields. EAC and EBC are the conjugate waves created by the two pumps alone.

Fig. 2
Fig. 2

Typical lasing power spectrum of the mixing two-mode DFB laser. EA and EB are the two lasing modes, and EAC and EBC are the conjugates created by the mixing of these modes.

Fig. 3
Fig. 3

(a) Light output power versus the bias current (symbols), for the two lasing modes as well as the created conjugates shown in Fig. 2. The dashed curves represent theoretical fits of the photon density in each mode. (b) Power of each conjugate wave plotted versus the proper power dependence on the lasing field powers as described in the text [Eqs. (58)].

Fig. 4
Fig. 4

Typical FWM power spectra for the case of an injected probe wave with a small detuning on the left-hand side of pump EA. For each probe detuning shown, three conjugate waves E2, EB1, and EB2 are produced.

Fig. 5
Fig. 5

Conversion efficiency (symbols) for each of the generated conjugate waves, plotted versus the probe wavelength. The curves are theoretical fits of the conversion efficiency, with the solid curves representing E2 and the dashed curves representing the shifted conjugates (EB1 and EB2). There is relatively little difference in conversion efficiency for the first conjugate and the shifted conjugates.

Fig. 6
Fig. 6

Conversion efficiency (symbols) for the conjugate waves in another DFB laser with two pump wavelengths ∼6 nm apart. The solid curve represents the laser power spectrum or the amplified spontaneous emission spectrum without the injected probe wave. Again, there is relatively little difference in conversion efficiency for the first conjugate and the shifted conjugates.

Fig. 7
Fig. 7

Comparison of the conversion efficiency for two-pump FWM and single-pump FWM9 in DFB lasers. The conversion efficiency is shown versus the probe detuning for the single-pump case. For the two-pump case, zero detuning is chosen to be midway between the pump waves so that a comparison can be made on the basis of the same overall frequency shift. For small enough probe detunings, the two-pump case gives conversion efficiencies between 100 and 1000 times larger.

Fig. 8
Fig. 8

(a) Typical FWM power spectra for the case in which the probe detuning is close to the probe separation. In this case conjugates E2 and EB1 experience a large enhancement, while new conjugates Ex and EBx are also created. (b) Close-up of newly created conjugate EBx.

Fig. 9
Fig. 9

Conversion efficiencies for the four conjugates that experience a large resonance when the probe detuning is near the pump separation.

Fig. 10
Fig. 10

Normalized magnitude of the carrier beating terms important in the creation of the observed conjugates. The x axis corresponds to the position of the injected probe wave. When the probe detuning is near the pump separation frequency the large resonance in δNx causes the observed enhancement of the conjugates shown in Figs. 8 and 9.

Tables (1)

Tables Icon

Table 1 Parameters Used in the Theoretical Calculations

Equations (83)

Equations on this page are rendered with MathJax. Learn more.

E(t, z)={EA+EB exp(iΔt)+EAC exp(-iΔt)+EBC exp(i2Δt)+E1 exp(-iΩt)+E2 exp(iΩt)+EB1 exp[i(Δ-Ω)t]+EB2 exp[i(Δ+Ω)t]+Ex exp[-i(Δ-Ω)t]+EBx exp[i(2Δ-Ω)t]}exp(-iωAt).
dNdt=IqV-Nτ-vga(N-N0)[1-(SA+SB)]×(SA+SB),
dSAdt=Γvga(N-N0)[1-(SA+SB)]SA-SAτA+βRsp,
dSBdt=Γvga(N-N0)[1-(SA+SB)]SB-SBτB+βRsp,
SA=τA y-τBxτA-τB,
SB=τB τAx-yτA-τB,
y=-b1±(b12-4a1c1)1/22a1,
x=Γc1+2βRsp,
a1=vga(Ns-N0),
b1=-vga(Ns-N0),
c1=IqV-Nsτ.
Ns=(SA/τp1)-βRspΓvga[1-(SA+SB)]SA+N0.
dNdt=IqV-Nτ-vga(N-N0)[1-|E(t)|2]|E(t)|2.
N(t)=Ns+δNΔ exp(-iΔt)+δNΔ* exp(iΔt)
Ns=IτqV+vgaτN0(1-|Es|2)|Es|21+vgaτ(1-|Es|2)|Es|2,
δNΔ=-vgaτ(Ns-N0)(1-2|Es|2)EAEB*1+vgaτ(1-|Es|2)|Es|2-iΔτ,
|Es|2=|EA|2+|EB|2=SA+SB.
2E-n2c22Et2=10c22Pt2
E(x, y, z, t)=U(x, y)jEj(z)exp(-iωjt),
P(x, y, z, t)=U(x, y)jPj(z)exp(-iωjt).
d2Ejdz2+n2ωj2c2Ej=-Γωj20c2Pj.
P=0χE,
χ=-ncω0vga(N-N0)[α+i(1-|E|2)].
PAC=-0ncaωA({δNΔ[α+i(1-|Es|2)]-i(Ns-N0)EAEB*}EA+(Ns-N0)[α+i(1-|Es|2)]EAC),
PBC=-0ncaωA({δNΔ*[α+i(1-|Es|2)]-i(Ns-N0)EA*EB}EB+(Ns-N0)[α+i(1-|Es|2)]EBC).
Ej=Aj exp(ikjz),
Ajz=iωjΓ2n0cPj exp(-ikjz).
EAC=12(1-|Es|2)×vgaτ(1-2|Es|2)[α+i(1-|Es|2)]1+vgτ(1-|Es|2)|Es|2-iΔτ+i×EA2EB*,
EBC=12(1-|Es|2)×vgaτ(1-2|Es|2)[α+i(1-|Es|2)]1+vgτ(1-|Es|2)|Es|2+iΔτ+i×EB2EA*.
N(t)=NS+δNΩ exp(-iΩt)+δNΩ* exp(iΩt).
δNΩ=-(Ns-N0)(1-2|Es|2)SΩ/Ps1+(1-|Es|2)P0-iΩτ,
SΩ=E1EA*+EAE2*+EB1EB*+EBEB2*.
PA=-0ncaωA(Ns-N0)[α+i(1-|Es|2)]EA,
PB=-0ncaωA(Ns-N0)[α+i(1-|Es|2)]EB,
P1=-0ncaωA((Ns-N0)[α+i(1-|Es|2)]E1+{δNΩ[α+i(1-|Es|2)]-i(Ns-N0)SΩ}EA),
P2=-0ncaωA((Ns-N0)[α+i(1-|Es|2)]E2+{δNΩ*[α+i(1-|Es|2)]-i(Ns-N0)SΩ*}EA),
PB1=-0ncaωA((Ns-N0)[α+i(1-|Es|2)]EB1+{δNΩ[α+i(1-|Es|2)]-i(Ns-N0)SΩ}EB),
PB2=-0ncaωA((Ns-N0)[α+i(1-|Es|2)]EB2+{δNΩ*[α+i(1-|Es|2)]-i(Ns-N0)SΩ*}EB).
-kA,B2EA,B+n2ωA,B2c2EA,B=-ωA,B2Γ0c2PA,B
ΩE1,B1=ωAΓ2n2ncaωA(Ns-N0)[α+i(1-|Es|2)]×E1,B1-P1,B10+κ1,B1Ei,
-ΩE2,B2=ωAΓ2n2ncaωA(Ns-N0)×[α+i(1-|Es|2)]E2,B2-P2,B20,
M¯¯E1E2*EB1EB2*=κEi000,
M11=Ω-K-BPsA-i|EA|2,
M12=-K-BPsA-iEA2,
M13=-K-BPsA-iEB*EA,
M14=-K-BPsA-iEBEA,
M21=-K-B*PsA+iEA*2,
M22=-Ω-K-B*PsA+i|EA|2,
M23=-K-B*PsA+iEA*EB*,
M24=-K-B*PsA+iEA*EB,
M31=-K-BPsA-iEA*EB,
M32=-K-BPsA-iEAEB,
M33=Ω-K-BPsA-i|EB|2,
M34=-K-BPsA-iEB2,
M41=-K-B*PsA+iEA*EB*,
M42=-K-B*PsA+iEAEB*,
M43=-K-B*PsA+iEB*2,
M44=-Ω-K-B*PsA+i|EB|2,
A=1+(1-|Es|2)P0-iΩτ,
B=[α+i(1-|Es|2)](1-2|Es|2),
K=Γca(Ns-N0)2n.
E2*κEi=(M¯¯-1)21=EA*2UD,
EB1κEi=(M¯¯-1)31=EA*EBU*D,
EB2*κEi=(M¯¯-1)41=EA*EB*UD,
U=Γca(Ns-N0)2nPs{-[α+i(1-|Es|2)]×(1-2|Es|2)+iPs(1+P0-iΩτ)},
D=Ω(-Ω(1+P0)-i(ΩR2-Ω2)τ+{ΩPsP02-iΩR2τ[Ps(1+P0-iΩτ)-2PsP0]}),
ΩR2=P0τΓvga(Ns-N0).
N(t)=Ns+δNΔ exp(-iΔt)+δNΔ* exp(iΔt)+δNΩ exp(-iΩt)+δNΩ* exp(iΩt)+δNx exp[-i(Δ-Ω)t]+δNx* exp[i(Δ-Ω)t],
P¯¯δNΩδNx*=Q1Q2,
P11=iΩτ-1-(1-|Es|2)P0,
P12=-1Ps(1-2|Es|2)EAEB*,
P21=-1Ps(1-2|Es|2)EA*EB,
P22=-i(Δ-Ω)τ-1-(1-|Es|2)P0,
Q1=1Ps(Ns-N0)(1-2|Es|2)EA*E1,
Q2=1Ps[δNΔ*(1-2|Es|2)-2(Ns-N0)EA*EB]EA*E1.
δNΩδNx*=1P11P22-P12P21P22-P12-P21P11Q1Q2.
Ex=χx(5)EB|EA|2EA*E1,
EB1=χB1(5)EB*EA3E1*,
E2=χ2(5)EB2EA*2E1,
EBx=χBx(5)|EB|2EA2E1*.
Pmeas=K1hνvgAS,
SACSA2SB,
SBCSASB2.

Metrics