Abstract

We report the efficient generation of high-contrast subpicosecond fifth-harmonic pulses with a Nd:glass laser. Highly reproducible 340-µJ, 850-fs pulses at 211 nm were generated in 0.5-mm-thick β barium borate (BBO) crystal with a 33% energy conversion efficiency in the fifth-harmonic generation stage. By use of fifth-harmonic pulses, a two-photon absorption coefficient of β=2.45±0.15 cm/GW at 211 nm for the BBO crystal was measured.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Nebel and R. Beigang, “External frequency conversion of cw mode-locked Ti:Al2O3 laser radiation,” Opt. Lett. 16, 1729–1731 (1991).
    [CrossRef] [PubMed]
  2. S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
    [CrossRef]
  3. F. Rotermund and V. Petrov, “Generation of the fourth harmonic of a femtosecond Ti:sapphire laser,” Opt. Lett. 23, 1040–1042 (1998).
    [CrossRef]
  4. J. Ringling, O. Kittelman, F. Noack, G. Korn, and J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
    [CrossRef] [PubMed]
  5. O. Kittelmann, J. Ringling, G. Korn, A. Nazarkin, and I. V. Hertel, “Generation of broadly tunable femtosecond vacuum-ultraviolet pulses,” Opt. Lett. 21, 1159–1161 (1996).
    [CrossRef] [PubMed]
  6. F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelman, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,” Opt. Lett. 19, 1538–1540 (1994).
    [CrossRef] [PubMed]
  7. V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8⋅4H2O,” Electron. Lett. 34, 1748–1750 (1998).
    [CrossRef]
  8. G. Veitas, A. Dubietis, G. Valiulis, D. Podėnas, and G. Tamošauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
    [CrossRef]
  9. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials (Wiley, New York, 1997).
  10. K. Deki, A. Finch, M. Horiguchi, Y. Kagebayashi, S. Nanzai, Y. Ohsako, J. Sakuma, T. Yokota, and M. Yoshino, “Properties and applications of CLBO,” in Conference on Lasers and Electro-optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CTuB7.
  11. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
    [CrossRef]
  12. P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
    [CrossRef]

1998

V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8⋅4H2O,” Electron. Lett. 34, 1748–1750 (1998).
[CrossRef]

F. Rotermund and V. Petrov, “Generation of the fourth harmonic of a femtosecond Ti:sapphire laser,” Opt. Lett. 23, 1040–1042 (1998).
[CrossRef]

1997

G. Veitas, A. Dubietis, G. Valiulis, D. Podėnas, and G. Tamošauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[CrossRef]

1996

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

O. Kittelmann, J. Ringling, G. Korn, A. Nazarkin, and I. V. Hertel, “Generation of broadly tunable femtosecond vacuum-ultraviolet pulses,” Opt. Lett. 21, 1159–1161 (1996).
[CrossRef] [PubMed]

1994

1993

1991

1978

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
[CrossRef]

Bechtel, J. H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
[CrossRef]

Beigang, R.

Biraben, F.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[CrossRef]

Bloembergen, N.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
[CrossRef]

Bourzeix, S.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[CrossRef]

de Beauvoir, B.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[CrossRef]

de Tomasi, F.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[CrossRef]

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Dubietis, A.

G. Veitas, A. Dubietis, G. Valiulis, D. Podėnas, and G. Tamošauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Hertel, I. V.

Julien, L.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[CrossRef]

Kittelman, O.

Kittelmann, O.

Korn, G.

Liu, P.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
[CrossRef]

Lotem, H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
[CrossRef]

Nazarkin, A.

Nebel, A.

Nez, F.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[CrossRef]

Noack, F.

Petrov, V.

Podenas, D.

G. Veitas, A. Dubietis, G. Valiulis, D. Podėnas, and G. Tamošauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

Ringling, J.

Rotermund, F.

F. Rotermund and V. Petrov, “Generation of the fourth harmonic of a femtosecond Ti:sapphire laser,” Opt. Lett. 23, 1040–1042 (1998).
[CrossRef]

V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8⋅4H2O,” Electron. Lett. 34, 1748–1750 (1998).
[CrossRef]

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Seifert, F.

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Smith, W. L.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
[CrossRef]

Squier, J.

Tamošauskas, G.

G. Veitas, A. Dubietis, G. Valiulis, D. Podėnas, and G. Tamošauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

Valiulis, G.

G. Veitas, A. Dubietis, G. Valiulis, D. Podėnas, and G. Tamošauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Veitas, G.

G. Veitas, A. Dubietis, G. Valiulis, D. Podėnas, and G. Tamošauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

Electron. Lett.

V. Petrov, F. Rotermund, and F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8⋅4H2O,” Electron. Lett. 34, 1748–1750 (1998).
[CrossRef]

IEEE J. Quantum Electron.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Opt. Commun.

S. Bourzeix, B. de Beauvoir, F. Nez, F. de Tomasi, L. Julien, and F. Biraben, “Ultra-violet light at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser,” Opt. Commun. 133, 239–244 (1997).
[CrossRef]

G. Veitas, A. Dubietis, G. Valiulis, D. Podėnas, and G. Tamošauskas, “Efficient femtosecond pulse generation at 264 nm,” Opt. Commun. 138, 333–336 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. B

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
[CrossRef]

Other

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials (Wiley, New York, 1997).

K. Deki, A. Finch, M. Horiguchi, Y. Kagebayashi, S. Nanzai, Y. Ohsako, J. Sakuma, T. Yokota, and M. Yoshino, “Properties and applications of CLBO,” in Conference on Lasers and Electro-optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CTuB7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for 211-nm pulse generation: BS, beam splitter; HP, half-wave plate; P, polarizer; M1 and M2, high-reflection mirrors for the 1055-nm radiation; M3, dichroic mirror with high reflectivity for 264 nm; M4 and M5, dichroic mirrors, highly reflective for 527 nm; SHG, FHG, SFG, second-harmonic, fourth-harmonic, and fifth-harmonic generators, respectively.

Fig. 2
Fig. 2

(a) 211-nm pulse energy versus the fundamental pulse energy and intensity. Filled circles, fifth-harmonic energy; open circles, fourth-harmonic energy after the interaction. The incident 264-nm pulse intensity was fixed at 4.8 GW/cm2 (E264=380 µJ). (b) Energy conversion efficiency in the fifth-harmonic generating stage as a function of the fundamental pulse intensity.

Fig. 3
Fig. 3

Typical autocorrelation trace of the 211-nm pulse, recorded by the degenerate four-wave mixing technique. The solid curve represents the Gaussian fit, yielding a pulse width of 850 fs.

Fig. 4
Fig. 4

Beam profile of the 211-nm radiation: (a) Near-field intensity distribution map; (b) cross section of the beam profile.

Fig. 5
Fig. 5

Setup for the absolute TPA coefficient measurement: BS1, 0.2-mm-thick KDP plate; BS2, fused silica plate; A, aperture; S, sample; D1 and D2, UV detectors.

Fig. 6
Fig. 6

Energy transmission versus probe pulse intensity in the 7.94-mm-long BBO sample (filled circles). Each point is an average of 20 shots. Curves are obtained by integration of Eq. (5).

Tables (1)

Tables Icon

Table 1 Nonlinear Optical Properties of BBO, CLBO, and KB5 Crystals a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T=Eout/Ein.
Ein=0r0 2πrdr-Iin(r, t)dt,
Eout=0r0 2πrdr-Iout(r, t)dt,
Iin=I0 exp{-4 ln 2[-(t/τ)2-(r/d)2]}.
Iout=αIin(1-R)2 exp(-αL)α+βIin[1-exp(-αL)],
T=16(ln 2)3(1-R)2 exp(-αL)πτd2{1-exp[-4 ln 2(r02/d2)]}×0r0 rdr-×1-exp{-4 ln 2[(t2/τ2)-(r02/d2)]}1+(β/α)[1-exp(-αL)]Iindt.

Metrics