Abstract

We have experimentally observed continuous-wavelength tuning in a passively mode-locked fiber ring laser. Depending on the polarization setting, two separated tuning ranges are observed. We show that the wavelength tuning is a result of the existence of birefringence in the laser cavity. We have also shown that the same mechanism is responsible for the power asymmetry of sidebands appearing in the soliton spectrum.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
    [CrossRef]
  2. V. J. Matsas, T. P. Newton, and M. N. Zervas, “Self-starting passive mode-locked fibre ring laser exploiting nonlinear polarization switching,” Opt. Commun. 61–66 (1992).
    [CrossRef]
  3. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
    [CrossRef]
  4. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
    [CrossRef]
  5. D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Philips, “Pulse repetition rates in passive selfstarting femtosecond soliton fibre laser,” Electron. Lett. 27, 1451–1453 (1991).
    [CrossRef]
  6. M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22, 799–801 (1997).
    [CrossRef] [PubMed]
  7. M. Horowitz and Y. Silberberg, “Nonlinear filtering by use of intensity-dependent polarization rotation in birefringent fibers,” Opt. Lett. 22, 1760–1762 (1997).
    [CrossRef]
  8. U. Ghera, N. Friedman, and M. Tur, “A fiber laser with a Comb-like spectrum,” IEEE Photon. Technol. Lett. 5, 1159–1161 (1993).
    [CrossRef]
  9. N. Friedman, A. Eyal, and M. Tur, “The use of the principal states of polarization to describe tunability in a fiber laser,” IEEE J. Quantum Electron. 33, 642–648 (1997).
    [CrossRef]
  10. N. Pandit, D. U. Noske, S. M. Kelly, and J. R. Taylor, “Characteristic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–456 (1992).
    [CrossRef]
  11. M. L. Dennis and I. N. Duling, III, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
    [CrossRef]
  12. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmit, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16, 502–504 (1991).
    [CrossRef] [PubMed]
  13. R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett. 7, 512–514 (1982).
    [CrossRef] [PubMed]
  14. H. G. Winful, “Self-induced polarization changes in birefringent optical fibers,” Appl. Phys. Lett. 47, 213–215 (1985).
    [CrossRef]
  15. D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17, 1515–1517 (1992).
    [CrossRef] [PubMed]
  16. M. L. Dennis and I. N. Duling, “Role of dispersion in limiting pulse width in fiber lasers,” Appl. Phys. Lett. 62, 2911–2913 (1993).
    [CrossRef]
  17. C. J. Chen, P. K. A. Wai, and C. R. Menyuk, “Soliton fiber ring laser,” Opt. Lett. 17, 417–419 (1992).
    [CrossRef] [PubMed]
  18. S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
    [CrossRef]

1997 (3)

1994 (1)

M. L. Dennis and I. N. Duling, III, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[CrossRef]

1993 (3)

M. L. Dennis and I. N. Duling, “Role of dispersion in limiting pulse width in fiber lasers,” Appl. Phys. Lett. 62, 2911–2913 (1993).
[CrossRef]

U. Ghera, N. Friedman, and M. Tur, “A fiber laser with a Comb-like spectrum,” IEEE Photon. Technol. Lett. 5, 1159–1161 (1993).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
[CrossRef]

1992 (6)

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
[CrossRef]

N. Pandit, D. U. Noske, S. M. Kelly, and J. R. Taylor, “Characteristic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–456 (1992).
[CrossRef]

C. J. Chen, P. K. A. Wai, and C. R. Menyuk, “Soliton fiber ring laser,” Opt. Lett. 17, 417–419 (1992).
[CrossRef] [PubMed]

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
[CrossRef]

D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17, 1515–1517 (1992).
[CrossRef] [PubMed]

1991 (2)

M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmit, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16, 502–504 (1991).
[CrossRef] [PubMed]

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Philips, “Pulse repetition rates in passive selfstarting femtosecond soliton fibre laser,” Electron. Lett. 27, 1451–1453 (1991).
[CrossRef]

1985 (1)

H. G. Winful, “Self-induced polarization changes in birefringent optical fibers,” Appl. Phys. Lett. 47, 213–215 (1985).
[CrossRef]

1982 (1)

Ashkin, A.

Barad, Y.

Bergano, N. S.

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
[CrossRef]

Botineau, J.

Chen, C. J.

Dennis, M. L.

M. L. Dennis and I. N. Duling, III, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[CrossRef]

M. L. Dennis and I. N. Duling, “Role of dispersion in limiting pulse width in fiber lasers,” Appl. Phys. Lett. 62, 2911–2913 (1993).
[CrossRef]

Duling, I. N.

M. L. Dennis and I. N. Duling, “Role of dispersion in limiting pulse width in fiber lasers,” Appl. Phys. Lett. 62, 2911–2913 (1993).
[CrossRef]

Duling, III, I. N.

M. L. Dennis and I. N. Duling, III, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[CrossRef]

Evangelides Jr., S. G.

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
[CrossRef]

Eyal, A.

N. Friedman, A. Eyal, and M. Tur, “The use of the principal states of polarization to describe tunability in a fiber laser,” IEEE J. Quantum Electron. 33, 642–648 (1997).
[CrossRef]

Fermann, M. E.

Friedman, N.

N. Friedman, A. Eyal, and M. Tur, “The use of the principal states of polarization to describe tunability in a fiber laser,” IEEE J. Quantum Electron. 33, 642–648 (1997).
[CrossRef]

U. Ghera, N. Friedman, and M. Tur, “A fiber laser with a Comb-like spectrum,” IEEE Photon. Technol. Lett. 5, 1159–1161 (1993).
[CrossRef]

Ghera, U.

U. Ghera, N. Friedman, and M. Tur, “A fiber laser with a Comb-like spectrum,” IEEE Photon. Technol. Lett. 5, 1159–1161 (1993).
[CrossRef]

Gordon, J. P.

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
[CrossRef]

Grudinin, A. B.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
[CrossRef]

Haberl, F.

Haus, H. A.

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[CrossRef]

Hofer, M.

Horowitz, M.

Ippen, E. P.

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[CrossRef]

Kelly, S. M.

N. Pandit, D. U. Noske, S. M. Kelly, and J. R. Taylor, “Characteristic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–456 (1992).
[CrossRef]

Laming, R. I.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Philips, “Pulse repetition rates in passive selfstarting femtosecond soliton fibre laser,” Electron. Lett. 27, 1451–1453 (1991).
[CrossRef]

Matsas, V. J.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Philips, “Pulse repetition rates in passive selfstarting femtosecond soliton fibre laser,” Electron. Lett. 27, 1451–1453 (1991).
[CrossRef]

Menyuk, C. R.

Mollenauer, L. F.

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
[CrossRef]

Noske, D. U.

N. Pandit, D. U. Noske, S. M. Kelly, and J. R. Taylor, “Characteristic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–456 (1992).
[CrossRef]

D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17, 1515–1517 (1992).
[CrossRef] [PubMed]

Ober, M. H.

Pandit, N.

N. Pandit, D. U. Noske, S. M. Kelly, and J. R. Taylor, “Characteristic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–456 (1992).
[CrossRef]

D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17, 1515–1517 (1992).
[CrossRef] [PubMed]

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Philips, “Pulse repetition rates in passive selfstarting femtosecond soliton fibre laser,” Electron. Lett. 27, 1451–1453 (1991).
[CrossRef]

Philips, M. W.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Philips, “Pulse repetition rates in passive selfstarting femtosecond soliton fibre laser,” Electron. Lett. 27, 1451–1453 (1991).
[CrossRef]

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Philips, “Pulse repetition rates in passive selfstarting femtosecond soliton fibre laser,” Electron. Lett. 27, 1451–1453 (1991).
[CrossRef]

Schmit, A. J.

Silberberg, Y.

Stolen, R. H.

Tamura, K.

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[CrossRef]

Taylor, J. R.

N. Pandit, D. U. Noske, S. M. Kelly, and J. R. Taylor, “Characteristic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–456 (1992).
[CrossRef]

D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17, 1515–1517 (1992).
[CrossRef] [PubMed]

Tur, M.

N. Friedman, A. Eyal, and M. Tur, “The use of the principal states of polarization to describe tunability in a fiber laser,” IEEE J. Quantum Electron. 33, 642–648 (1997).
[CrossRef]

U. Ghera, N. Friedman, and M. Tur, “A fiber laser with a Comb-like spectrum,” IEEE Photon. Technol. Lett. 5, 1159–1161 (1993).
[CrossRef]

Wai, P. K. A.

Winful, H. G.

H. G. Winful, “Self-induced polarization changes in birefringent optical fibers,” Appl. Phys. Lett. 47, 213–215 (1985).
[CrossRef]

Appl. Phys. Lett. (2)

H. G. Winful, “Self-induced polarization changes in birefringent optical fibers,” Appl. Phys. Lett. 47, 213–215 (1985).
[CrossRef]

M. L. Dennis and I. N. Duling, “Role of dispersion in limiting pulse width in fiber lasers,” Appl. Phys. Lett. 62, 2911–2913 (1993).
[CrossRef]

Electron. Lett. (5)

N. Pandit, D. U. Noske, S. M. Kelly, and J. R. Taylor, “Characteristic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–456 (1992).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
[CrossRef]

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Philips, “Pulse repetition rates in passive selfstarting femtosecond soliton fibre laser,” Electron. Lett. 27, 1451–1453 (1991).
[CrossRef]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[CrossRef]

IEEE J. Quantum Electron. (2)

N. Friedman, A. Eyal, and M. Tur, “The use of the principal states of polarization to describe tunability in a fiber laser,” IEEE J. Quantum Electron. 33, 642–648 (1997).
[CrossRef]

M. L. Dennis and I. N. Duling, III, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

U. Ghera, N. Friedman, and M. Tur, “A fiber laser with a Comb-like spectrum,” IEEE Photon. Technol. Lett. 5, 1159–1161 (1993).
[CrossRef]

J. Lightwave Technol. (1)

S. G. Evangelides, Jr., L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
[CrossRef]

Opt. Lett. (6)

Other (1)

V. J. Matsas, T. P. Newton, and M. N. Zervas, “Self-starting passive mode-locked fibre ring laser exploiting nonlinear polarization switching,” Opt. Commun. 61–66 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of the compact soliton laser: λ/4, quarter-wave plate; λ/4, half-wave plate; PS, polarization-dependent isolator.

Fig. 2
Fig. 2

Spectrum of the mode-locked output obtained from the soliton laser: (a) and (b) show the two separate ranges of wavelength tuning.

Fig. 3
Fig. 3

Illustration of the polarization state of the light in the mode-locked system.

Fig. 4
Fig. 4

System transmission of the soliton ring laser versus the phase shift between two orthogonal-polarization components when θ2-θ1 varies from π/2 to (π/2+π/5) and θ1=45°.

Fig. 5
Fig. 5

System transmission versus frequency shift for a central wavelength 1550 nm, and when the system length is equal to 1, 5, and 10 beat lengths.

Fig. 6
Fig. 6

Mode-locked pulse spectra measured from the WDM and a 1% output coupler when the mode-locked wavelength is (a) 1554 nm and (b) 1564 nm.

Fig. 7
Fig. 7

Calculated spectra of the soliton pulses for the linear phase shifts Δϕ equals 0, π/50, and π/30, when the projection angle θ1 is chosen to be π/8 or 3π/8.

Tables (1)

Tables Icon

Table 1 Parameters Used in the Computer Simulation of a Soliton Laser

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

10.
R1=cos θ1 exp(iΔϕ/2)sin θ1 exp(iΔϕ/2)-sin θ1 exp(-iΔϕ/2)cos θ1 exp(-iΔϕ/2),
P=exp(iΔϕ/2)00exp(-iΔϕ/2).
R2=cos θ2sin θ2-sin θ2cos θ2.
T=cos θ1 cos θ2 exp[i(Δϕ/2+Δϕ/2)]-sin θ1 sin θ2 exp[-i(Δϕ/2+Δϕ/2)]-sin θ1 cos θ2 exp[-i(Δϕ/2+Δϕ/2)]-sin θ2 cos θ1 exp[-i(Δϕ/2+Δϕ/2)].
|T1|2=cos2 θ1 cos2 θ2+sin2 θ1 sin2 θ2+12sin 2θ1 sin 2θ2 cos(Δϕ+Δϕ).
Δϕnonlinear=2γL3P cos(2θ1),
-i uz=βu+iδ ut+β 122ut2+γ|u|2u+23|v|2u+13v2u*+gp2u,
-i vz=-βv-iδ vt+β 122vt2+γ|v|2v+23|u|2v+13u2v*+gp2v.
gp=g01+(|u|2+|v|2)dt/Es,
g0(ω)=g0/[1+(ω/Δω)n].
qv=q cos(θ1),
qh=q sin(θ1)exp(-iΔϕ).
q=qv cos(θ2)+qh sin(θ2),

Metrics