Abstract

A neodymium laser passively Q switched with a saturable absorber and a stimulated-Brillouin-scattering mirror is numerically studied. An explanation is given for the laser beam spot-size widening. It is shown that this phenomenon is, most probably, due to nonperfect phase conjugation that occurs during the stimulated-Brillouin-scattering process through switching by intracavity radiation. The results of numerical simulation of the laser that account for this phenomenon are compared with experiment. It is demonstrated that the calculated output energy and pulse duration are in good agreement with those measured experimentally.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Rockwell, “Review of phase conjugate solid-state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
    [CrossRef]
  2. N. N. Il’ichev, A. A. Malyutin, and P. P. Pashinin, “Laser with diffraction-limited divergence and Q switching by stimulated Brillouin scattering,” Sov. J. Quantum Electron. 12, 1161–1164 (1982).
    [CrossRef]
  3. P. P. Pashinin and E. I. Shklovskii, “Laser with a stimulated Brillouin scattering mirror switched on by its own priming radiation,” Sov. J. Quantum Electron. 18, 1190–1192 (1988).
    [CrossRef]
  4. P. P. Pashinin and E. I. Shklovskii, “Solid-state lasers with stimulated-Brillouin-scattering mirrors operating in the repetitive-pulse mode,” J. Opt. Soc. Am. B 5, 1957–1961 (1988).
    [CrossRef]
  5. G. G. Kochemasov and V. D. Nikolaev, “Reproduction of the spatial amplitude and phase distributions of a pump beam in stimulated Brillouin scattering,” Sov. J. Quantum Electron. 7, 60–63 (1977).
    [CrossRef]
  6. V. M. Rysakov, Yu. V. Aristov, and V. I. Korotkov, “Three-dimensional stimulated Mandelshtam–Brillouin scattering,” Opt. Spectrosc. 47, 412–415 (1979).
  7. G. Giuliani, M.-M. Denariez-Roberge, and P.-A. Belanger, “Transverse modes of a stimulated scattering phase-conjugate resonator,” Appl. Opt. 21, 3719–3724 (1982).
    [CrossRef] [PubMed]
  8. P. A. Belanger, “Phase conjugation and optical resonators,” Opt. Eng. 21, 266–270 (1982).
    [CrossRef]
  9. M. Ostermeyer, A. Heuer, and R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
    [CrossRef]
  10. A. Agnesi and G. C. Reali, “Passive and self-Q-switching of phase-conjugation Nd:YAG laser oscillators,” Opt. Commun. 89, 41–46 (1992).
    [CrossRef]
  11. O. O. Silichev, “Gaussian optics of resonators containing non-Gaussian components,” Sov. J. Quantum Electron. 20, 715–719 (1990).
    [CrossRef]
  12. B. Ya. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, Berlin, 1985), p. 222.
  13. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 669, 1024.
  14. B. Liby and D. Statman, “Phase delay in phase-conjugate external cavity lasers,” Opt. Commun. 101, 113–123 (1993).
    [CrossRef]
  15. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1976), p. 401.

1998 (1)

M. Ostermeyer, A. Heuer, and R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
[CrossRef]

1993 (1)

B. Liby and D. Statman, “Phase delay in phase-conjugate external cavity lasers,” Opt. Commun. 101, 113–123 (1993).
[CrossRef]

1992 (1)

A. Agnesi and G. C. Reali, “Passive and self-Q-switching of phase-conjugation Nd:YAG laser oscillators,” Opt. Commun. 89, 41–46 (1992).
[CrossRef]

1990 (1)

O. O. Silichev, “Gaussian optics of resonators containing non-Gaussian components,” Sov. J. Quantum Electron. 20, 715–719 (1990).
[CrossRef]

1988 (3)

D. A. Rockwell, “Review of phase conjugate solid-state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

P. P. Pashinin and E. I. Shklovskii, “Laser with a stimulated Brillouin scattering mirror switched on by its own priming radiation,” Sov. J. Quantum Electron. 18, 1190–1192 (1988).
[CrossRef]

P. P. Pashinin and E. I. Shklovskii, “Solid-state lasers with stimulated-Brillouin-scattering mirrors operating in the repetitive-pulse mode,” J. Opt. Soc. Am. B 5, 1957–1961 (1988).
[CrossRef]

1982 (3)

G. Giuliani, M.-M. Denariez-Roberge, and P.-A. Belanger, “Transverse modes of a stimulated scattering phase-conjugate resonator,” Appl. Opt. 21, 3719–3724 (1982).
[CrossRef] [PubMed]

P. A. Belanger, “Phase conjugation and optical resonators,” Opt. Eng. 21, 266–270 (1982).
[CrossRef]

N. N. Il’ichev, A. A. Malyutin, and P. P. Pashinin, “Laser with diffraction-limited divergence and Q switching by stimulated Brillouin scattering,” Sov. J. Quantum Electron. 12, 1161–1164 (1982).
[CrossRef]

1979 (1)

V. M. Rysakov, Yu. V. Aristov, and V. I. Korotkov, “Three-dimensional stimulated Mandelshtam–Brillouin scattering,” Opt. Spectrosc. 47, 412–415 (1979).

1977 (1)

G. G. Kochemasov and V. D. Nikolaev, “Reproduction of the spatial amplitude and phase distributions of a pump beam in stimulated Brillouin scattering,” Sov. J. Quantum Electron. 7, 60–63 (1977).
[CrossRef]

Agnesi, A.

A. Agnesi and G. C. Reali, “Passive and self-Q-switching of phase-conjugation Nd:YAG laser oscillators,” Opt. Commun. 89, 41–46 (1992).
[CrossRef]

Aristov, Yu. V.

V. M. Rysakov, Yu. V. Aristov, and V. I. Korotkov, “Three-dimensional stimulated Mandelshtam–Brillouin scattering,” Opt. Spectrosc. 47, 412–415 (1979).

Belanger, P. A.

P. A. Belanger, “Phase conjugation and optical resonators,” Opt. Eng. 21, 266–270 (1982).
[CrossRef]

Belanger, P.-A.

Denariez-Roberge, M.-M.

Giuliani, G.

Heuer, A.

M. Ostermeyer, A. Heuer, and R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
[CrossRef]

Il’ichev, N. N.

N. N. Il’ichev, A. A. Malyutin, and P. P. Pashinin, “Laser with diffraction-limited divergence and Q switching by stimulated Brillouin scattering,” Sov. J. Quantum Electron. 12, 1161–1164 (1982).
[CrossRef]

Kochemasov, G. G.

G. G. Kochemasov and V. D. Nikolaev, “Reproduction of the spatial amplitude and phase distributions of a pump beam in stimulated Brillouin scattering,” Sov. J. Quantum Electron. 7, 60–63 (1977).
[CrossRef]

Korotkov, V. I.

V. M. Rysakov, Yu. V. Aristov, and V. I. Korotkov, “Three-dimensional stimulated Mandelshtam–Brillouin scattering,” Opt. Spectrosc. 47, 412–415 (1979).

Liby, B.

B. Liby and D. Statman, “Phase delay in phase-conjugate external cavity lasers,” Opt. Commun. 101, 113–123 (1993).
[CrossRef]

Malyutin, A. A.

N. N. Il’ichev, A. A. Malyutin, and P. P. Pashinin, “Laser with diffraction-limited divergence and Q switching by stimulated Brillouin scattering,” Sov. J. Quantum Electron. 12, 1161–1164 (1982).
[CrossRef]

Menzel, R.

M. Ostermeyer, A. Heuer, and R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
[CrossRef]

Nikolaev, V. D.

G. G. Kochemasov and V. D. Nikolaev, “Reproduction of the spatial amplitude and phase distributions of a pump beam in stimulated Brillouin scattering,” Sov. J. Quantum Electron. 7, 60–63 (1977).
[CrossRef]

Ostermeyer, M.

M. Ostermeyer, A. Heuer, and R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
[CrossRef]

Pashinin, P. P.

P. P. Pashinin and E. I. Shklovskii, “Laser with a stimulated Brillouin scattering mirror switched on by its own priming radiation,” Sov. J. Quantum Electron. 18, 1190–1192 (1988).
[CrossRef]

P. P. Pashinin and E. I. Shklovskii, “Solid-state lasers with stimulated-Brillouin-scattering mirrors operating in the repetitive-pulse mode,” J. Opt. Soc. Am. B 5, 1957–1961 (1988).
[CrossRef]

N. N. Il’ichev, A. A. Malyutin, and P. P. Pashinin, “Laser with diffraction-limited divergence and Q switching by stimulated Brillouin scattering,” Sov. J. Quantum Electron. 12, 1161–1164 (1982).
[CrossRef]

Reali, G. C.

A. Agnesi and G. C. Reali, “Passive and self-Q-switching of phase-conjugation Nd:YAG laser oscillators,” Opt. Commun. 89, 41–46 (1992).
[CrossRef]

Rockwell, D. A.

D. A. Rockwell, “Review of phase conjugate solid-state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

Rysakov, V. M.

V. M. Rysakov, Yu. V. Aristov, and V. I. Korotkov, “Three-dimensional stimulated Mandelshtam–Brillouin scattering,” Opt. Spectrosc. 47, 412–415 (1979).

Shklovskii, E. I.

P. P. Pashinin and E. I. Shklovskii, “Solid-state lasers with stimulated-Brillouin-scattering mirrors operating in the repetitive-pulse mode,” J. Opt. Soc. Am. B 5, 1957–1961 (1988).
[CrossRef]

P. P. Pashinin and E. I. Shklovskii, “Laser with a stimulated Brillouin scattering mirror switched on by its own priming radiation,” Sov. J. Quantum Electron. 18, 1190–1192 (1988).
[CrossRef]

Silichev, O. O.

O. O. Silichev, “Gaussian optics of resonators containing non-Gaussian components,” Sov. J. Quantum Electron. 20, 715–719 (1990).
[CrossRef]

Statman, D.

B. Liby and D. Statman, “Phase delay in phase-conjugate external cavity lasers,” Opt. Commun. 101, 113–123 (1993).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

M. Ostermeyer, A. Heuer, and R. Menzel, “27-W average output power with 1.2*DL beam quality from a single-rod Nd:YAG laser with phase-conjugating SBS mirror,” IEEE J. Quantum Electron. 34, 372–377 (1998).
[CrossRef]

D. A. Rockwell, “Review of phase conjugate solid-state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

B. Liby and D. Statman, “Phase delay in phase-conjugate external cavity lasers,” Opt. Commun. 101, 113–123 (1993).
[CrossRef]

A. Agnesi and G. C. Reali, “Passive and self-Q-switching of phase-conjugation Nd:YAG laser oscillators,” Opt. Commun. 89, 41–46 (1992).
[CrossRef]

Opt. Eng. (1)

P. A. Belanger, “Phase conjugation and optical resonators,” Opt. Eng. 21, 266–270 (1982).
[CrossRef]

Opt. Spectrosc. (1)

V. M. Rysakov, Yu. V. Aristov, and V. I. Korotkov, “Three-dimensional stimulated Mandelshtam–Brillouin scattering,” Opt. Spectrosc. 47, 412–415 (1979).

Sov. J. Quantum Electron. (4)

O. O. Silichev, “Gaussian optics of resonators containing non-Gaussian components,” Sov. J. Quantum Electron. 20, 715–719 (1990).
[CrossRef]

N. N. Il’ichev, A. A. Malyutin, and P. P. Pashinin, “Laser with diffraction-limited divergence and Q switching by stimulated Brillouin scattering,” Sov. J. Quantum Electron. 12, 1161–1164 (1982).
[CrossRef]

P. P. Pashinin and E. I. Shklovskii, “Laser with a stimulated Brillouin scattering mirror switched on by its own priming radiation,” Sov. J. Quantum Electron. 18, 1190–1192 (1988).
[CrossRef]

G. G. Kochemasov and V. D. Nikolaev, “Reproduction of the spatial amplitude and phase distributions of a pump beam in stimulated Brillouin scattering,” Sov. J. Quantum Electron. 7, 60–63 (1977).
[CrossRef]

Other (3)

B. Ya. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, Berlin, 1985), p. 222.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 669, 1024.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1976), p. 401.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic showing widening of a GB after reflection from a SBS mirror. Wi and Wr are the beam spot sizes in the caustics, W0 and W1 are those at the focusing lens, and b is the GB confocal parameter. (b) Equivalent scheme for a nonideal phase-conjugating mirror.

Fig. 2
Fig. 2

(a) Transversal distributions of the SBS reflection coefficient. Relative intensity of incidence: GIL=1 (curve 1), 25 (curve 2), 50 (curve 3), 300 (curve 4). (b) Transversal distributions of the reflected beam amplitude: Curves 1–4 are the real shapes of the reflected beam, whereas curves 14 are their approximations by the Gaussian function; GIL=1 (curves 1, 1); 25 (curves 2, 2); 50 (curves 3, 3); 300 (curves 4, 4).

Fig. 3
Fig. 3

(a) Results of numerical calculations performed with relations (1) and (2): SBS reflection coefficient in maximum of distribution rsbsmax(x) (curve 1), and relative beam-waist parameter β in the lens caustic (curve 2) versus parameter GIL. (b) Relative beam waist at the focusing lens 1/β versus parameter GIL [results of numerical calculations performed with relations (1) and (2) and by application of Eq. (8)].

Fig. 4
Fig. 4

Schematic of laser with self-switched SBS mirror. 1, 2: output (M1) and rear (M2) mirrors, respectively; 3: AM; 4: SA; 5: focusing lens; 6: SBS cell. tR and tR* correspond to the round-trip times in the initial and switched resonators, respectively.

Fig. 5
Fig. 5

Results of numerical calculations performed with relations (9) for a Nd:YAG laser passively Q switched with a LiF:F2- crystal, without consideration of SBS-mirror self-switching (curve 1) and with it (curve 2): (a) intracavity intensity, (b) beam cross section, (c) population inversion in AM, (d) relative beam-waist factor β, (e) doped centers’ number in SA, (f) reflection coefficient R* of the rear complex mirror. All dependences are versus cavity round-trip number.

Fig. 6
Fig. 6

Experimental normalized transversal distributions of the output beam of a Nd:YAG laser Q switched with a LiF:F2- crystal in the cases of a blocked (curve 1) and an unblocked (curve 2) SBS mirror.

Fig. 7
Fig. 7

Numerical data (curves) and experimental data (squares and circles) for a Nd:YAG laser’s output parameters [(a) giant pulse energy, (b) duration] versus initial transmission of a SA. 1: SBS cell is blocked; 2: SBS cell is unblocked, and laser beam spot-size widening owing to SBS is not accounted for; 3: SBS cell is unblocked, and laser beam spot-size widening owing to SBS is accounted for.

Tables (2)

Tables Icon

Table 1 Parameters of the Laser Used in This Study

Tables Icon

Table 2 Comparison of the Basic Characteristics of Three Lasers, Each with a Different AM

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

GIL=D+ln{rsbs[1-rsbs+exp(-D)]}1-rsbsD+ln[rsbs(1-rsbs)]1-rsbs
I=I0 exp-2 x2Wi2,
ABCD=1iλ f2/πd20-1K,
q1(W1, R1)=Aq0*+BCq0*+D,
W12=W02+λ2f2πd2,
d2=Wi2β21-β2,
Wi2=λ2f2πW0211+λfπW022λ2f2πW02,
W1=W0β.
dNdt=NtR2σaMaS-2σsMsS-ln1r1R*-L0,
dMad t=-2ζσaMatRS+maladSd t,
dMsd t=-2σsMstRS+M0-Msτs+mslsdSd t,
dSd tΔSΔt=S1β2-1tR,SSAM0,S>SAM,
ΔS=SSt-SFund=S1β2-1,
R*=rSBS*+r21+rSBS*r2,
I=hνc2NSl
L=b=2πW02λ,
GIL=χN,
χ=4GhνλtR.
rSBS*(χN)=rSBSmax(χN)T(χN),
T(χN)=exp-1β2(χN),S>SAM1,SSAM.
out=hνSfin2ζσa ln1Rav*lnMamaxMamin

Metrics