Abstract

Parametric fluorescence at 2.1 µm is observed in oxidized, form-birefringent AlGaAs waveguides. The signal level measured is approximately 15 pW, over the range of 1.9–2.5 µm. The possibility of realizing an optical parametric oscillator is discussed, and reduction of the internal losses is shown to require optimization of the oxidation process.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a review on continuous-wave OPO’s, see C. Fabre, P. F. Cohadon, and C. Schwob, “CW optical parametric oscillators: single mode operation and frequency tuning properties,” Quantum Semiclassic. Opt. 9, 165–172 (1997).
    [CrossRef]
  2. K. Schneider, P. Kramper, P. de Natale, M. Inguscio, S. Schiller, and J. Mlynek, “Widely tunable parametric oscillator for high-resolution spectroscopy,” Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 44.
  3. G. M. Gibson, M. H. Dunn, and M. J. Padgett, “Application of a continuously tunable, cw optical parametric oscillator for high-resolution spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 45.
  4. W. Tittel, J. Brendel, H. Zbinden, and G. Gisin, “Violation of Bell inequalities more than 10 km apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
    [CrossRef]
  5. C. L. Tang, “Spontaneous and stimulated parametric processes,” in Quantum Electronics: A Treatise, Vol. 1, Pt. A, of Nonlinear Optics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 419–446.
  6. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).
  7. P. Baldi, P. Aschieri, S. Nouth, M. De Micheli, D. B. Ostrowski, D. Delacourt, and M. Papouchon, “Modeling and experimental observation of parametric fluorescence in periodically poled LiNbO3 waveguides,” IEEE J. Quantum Electron. 31, 997–1008 (1995).
    [CrossRef]
  8. M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995).
    [CrossRef] [PubMed]
  9. M. A. Arbore and M. M. Fejer, “Singly resonant optical parametric oscillation in periodically poled lithium niobate waveguides,” Opt. Lett. 22, 151–153 (1997).
    [CrossRef] [PubMed]
  10. S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
    [CrossRef]
  11. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
    [CrossRef]
  12. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
    [CrossRef]
  13. J. P. Van der Ziel, “Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers,” Appl. Phys. Lett. 26, 60–61 (1975).
    [CrossRef]
  14. A. Fiore, Y. A. Akulova, J. Ko, and E. R. Hegblom, “Multiple-wavelength, vertical-cavity laser arrays based on postgrowth lateral–vertical oxidation of AlGaAs,” Appl. Phys. Lett. 73, 282–284 (1998).
    [CrossRef]
  15. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
    [CrossRef]
  16. A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
    [CrossRef]
  17. M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15, 39–63 (1974).
    [CrossRef]
  18. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [CrossRef]
  19. P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
    [CrossRef]
  20. A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
    [CrossRef]
  21. P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
    [CrossRef]
  22. G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modelling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron. QE-23, 42–51 (1987).
    [CrossRef]

1998 (5)

W. Tittel, J. Brendel, H. Zbinden, and G. Gisin, “Violation of Bell inequalities more than 10 km apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
[CrossRef]

A. Fiore, Y. A. Akulova, J. Ko, and E. R. Hegblom, “Multiple-wavelength, vertical-cavity laser arrays based on postgrowth lateral–vertical oxidation of AlGaAs,” Appl. Phys. Lett. 73, 282–284 (1998).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

1997 (4)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

For a review on continuous-wave OPO’s, see C. Fabre, P. F. Cohadon, and C. Schwob, “CW optical parametric oscillators: single mode operation and frequency tuning properties,” Quantum Semiclassic. Opt. 9, 165–172 (1997).
[CrossRef]

M. A. Arbore and M. M. Fejer, “Singly resonant optical parametric oscillation in periodically poled lithium niobate waveguides,” Opt. Lett. 22, 151–153 (1997).
[CrossRef] [PubMed]

I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
[CrossRef]

1996 (2)

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

1995 (4)

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

P. Baldi, P. Aschieri, S. Nouth, M. De Micheli, D. B. Ostrowski, D. Delacourt, and M. Papouchon, “Modeling and experimental observation of parametric fluorescence in periodically poled LiNbO3 waveguides,” IEEE J. Quantum Electron. 31, 997–1008 (1995).
[CrossRef]

M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995).
[CrossRef] [PubMed]

1987 (1)

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modelling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron. QE-23, 42–51 (1987).
[CrossRef]

1975 (1)

J. P. Van der Ziel, “Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers,” Appl. Phys. Lett. 26, 60–61 (1975).
[CrossRef]

1974 (1)

M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15, 39–63 (1974).
[CrossRef]

Afromowitz, M. A.

M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15, 39–63 (1974).
[CrossRef]

Akulova, Y. A.

A. Fiore, Y. A. Akulova, J. Ko, and E. R. Hegblom, “Multiple-wavelength, vertical-cavity laser arrays based on postgrowth lateral–vertical oxidation of AlGaAs,” Appl. Phys. Lett. 73, 282–284 (1998).
[CrossRef]

Alibert, C.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
[CrossRef]

Antoniades, N.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Arbore, M. A.

Aschieri, P.

P. Baldi, P. Aschieri, S. Nouth, M. De Micheli, D. B. Ostrowski, D. Delacourt, and M. Papouchon, “Modeling and experimental observation of parametric fluorescence in periodically poled LiNbO3 waveguides,” IEEE J. Quantum Electron. 31, 997–1008 (1995).
[CrossRef]

Baldi, P.

P. Baldi, P. Aschieri, S. Nouth, M. De Micheli, D. B. Ostrowski, D. Delacourt, and M. Papouchon, “Modeling and experimental observation of parametric fluorescence in periodically poled LiNbO3 waveguides,” IEEE J. Quantum Electron. 31, 997–1008 (1995).
[CrossRef]

Bava, G. P.

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modelling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron. QE-23, 42–51 (1987).
[CrossRef]

Berger, V.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

Bhat, R.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

Bissessur, H.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
[CrossRef]

Bortz, M. L.

Bravetti, P.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
[CrossRef]

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and G. Gisin, “Violation of Bell inequalities more than 10 km apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[CrossRef]

Caneau, C.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

Chusseau, L.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
[CrossRef]

Cohadon, P. F.

For a review on continuous-wave OPO’s, see C. Fabre, P. F. Cohadon, and C. Schwob, “CW optical parametric oscillators: single mode operation and frequency tuning properties,” Quantum Semiclassic. Opt. 9, 165–172 (1997).
[CrossRef]

De Micheli, M.

P. Baldi, P. Aschieri, S. Nouth, M. De Micheli, D. B. Ostrowski, D. Delacourt, and M. Papouchon, “Modeling and experimental observation of parametric fluorescence in periodically poled LiNbO3 waveguides,” IEEE J. Quantum Electron. 31, 997–1008 (1995).
[CrossRef]

Delacourt, D.

P. Baldi, P. Aschieri, S. Nouth, M. De Micheli, D. B. Ostrowski, D. Delacourt, and M. Papouchon, “Modeling and experimental observation of parametric fluorescence in periodically poled LiNbO3 waveguides,” IEEE J. Quantum Electron. 31, 997–1008 (1995).
[CrossRef]

Delobel, L.

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

Fabre, C.

For a review on continuous-wave OPO’s, see C. Fabre, P. F. Cohadon, and C. Schwob, “CW optical parametric oscillators: single mode operation and frequency tuning properties,” Quantum Semiclassic. Opt. 9, 165–172 (1997).
[CrossRef]

Fejer, M. M.

Fiore, A.

A. Fiore, Y. A. Akulova, J. Ko, and E. R. Hegblom, “Multiple-wavelength, vertical-cavity laser arrays based on postgrowth lateral–vertical oxidation of AlGaAs,” Appl. Phys. Lett. 73, 282–284 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

Gauthier-Lafaye, O.

Gisin, G.

W. Tittel, J. Brendel, H. Zbinden, and G. Gisin, “Violation of Bell inequalities more than 10 km apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[CrossRef]

Hegblom, E. R.

A. Fiore, Y. A. Akulova, J. Ko, and E. R. Hegblom, “Multiple-wavelength, vertical-cavity laser arrays based on postgrowth lateral–vertical oxidation of AlGaAs,” Appl. Phys. Lett. 73, 282–284 (1998).
[CrossRef]

Ito, R.

Janz, S.

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

Kitamoto, A.

Ko, J.

A. Fiore, Y. A. Akulova, J. Ko, and E. R. Hegblom, “Multiple-wavelength, vertical-cavity laser arrays based on postgrowth lateral–vertical oxidation of AlGaAs,” Appl. Phys. Lett. 73, 282–284 (1998).
[CrossRef]

Kondo, T.

Koza, M. A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

Laurent, N.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

Martin, P.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
[CrossRef]

Montrosset, I.

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modelling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron. QE-23, 42–51 (1987).
[CrossRef]

Nagle, J.

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

Nouth, S.

P. Baldi, P. Aschieri, S. Nouth, M. De Micheli, D. B. Ostrowski, D. Delacourt, and M. Papouchon, “Modeling and experimental observation of parametric fluorescence in periodically poled LiNbO3 waveguides,” IEEE J. Quantum Electron. 31, 997–1008 (1995).
[CrossRef]

Ostrowski, D. B.

P. Baldi, P. Aschieri, S. Nouth, M. De Micheli, D. B. Ostrowski, D. Delacourt, and M. Papouchon, “Modeling and experimental observation of parametric fluorescence in periodically poled LiNbO3 waveguides,” IEEE J. Quantum Electron. 31, 997–1008 (1995).
[CrossRef]

Papouchon, M.

P. Baldi, P. Aschieri, S. Nouth, M. De Micheli, D. B. Ostrowski, D. Delacourt, and M. Papouchon, “Modeling and experimental observation of parametric fluorescence in periodically poled LiNbO3 waveguides,” IEEE J. Quantum Electron. 31, 997–1008 (1995).
[CrossRef]

Rajhel, A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Rosencher, E.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier-Lafaye, “5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

Schwob, C.

For a review on continuous-wave OPO’s, see C. Fabre, P. F. Cohadon, and C. Schwob, “CW optical parametric oscillators: single mode operation and frequency tuning properties,” Quantum Semiclassic. Opt. 9, 165–172 (1997).
[CrossRef]

Shirane, M.

Shoji, I.

Skouri, E. M.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
[CrossRef]

Sohler, W.

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modelling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron. QE-23, 42–51 (1987).
[CrossRef]

Suche, H.

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modelling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron. QE-23, 42–51 (1987).
[CrossRef]

Theilmann, S.

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

Tittel, W.

W. Tittel, J. Brendel, H. Zbinden, and G. Gisin, “Violation of Bell inequalities more than 10 km apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[CrossRef]

van der Meer, P.

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

Van der Ziel, J. P.

J. P. Van der Ziel, “Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers,” Appl. Phys. Lett. 26, 60–61 (1975).
[CrossRef]

Vodjani, N.

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

Zbinden, H.

W. Tittel, J. Brendel, H. Zbinden, and G. Gisin, “Violation of Bell inequalities more than 10 km apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[CrossRef]

Appl. Phys. Lett. (8)

S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, “Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 66, 3410–3412 (1995).
[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

J. P. Van der Ziel, “Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers,” Appl. Phys. Lett. 26, 60–61 (1975).
[CrossRef]

A. Fiore, Y. A. Akulova, J. Ko, and E. R. Hegblom, “Multiple-wavelength, vertical-cavity laser arrays based on postgrowth lateral–vertical oxidation of AlGaAs,” Appl. Phys. Lett. 73, 282–284 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72, 2942–2944 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, N. Laurent, S. Theilmann, N. Vodjani, and J. Nagle, “Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides,” Appl. Phys. Lett. 68, 1320–1322 (1996).
[CrossRef]

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67, 881–883 (1995).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical modelling of Ti:LiNbO3 integrated optical parametric oscillators,” IEEE J. Quantum Electron. QE-23, 42–51 (1987).
[CrossRef]

P. Baldi, P. Aschieri, S. Nouth, M. De Micheli, D. B. Ostrowski, D. Delacourt, and M. Papouchon, “Modeling and experimental observation of parametric fluorescence in periodically poled LiNbO3 waveguides,” IEEE J. Quantum Electron. 31, 997–1008 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (London) (1)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase-matching using an isotropic nonlinear optical material,” Nature (London) 391, 463–466 (1998).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

W. Tittel, J. Brendel, H. Zbinden, and G. Gisin, “Violation of Bell inequalities more than 10 km apart,” Phys. Rev. Lett. 81, 3563–3566 (1998).
[CrossRef]

Quantum Semiclassic. Opt. (1)

For a review on continuous-wave OPO’s, see C. Fabre, P. F. Cohadon, and C. Schwob, “CW optical parametric oscillators: single mode operation and frequency tuning properties,” Quantum Semiclassic. Opt. 9, 165–172 (1997).
[CrossRef]

Solid State Commun. (1)

M. A. Afromowitz, “Refractive index of Ga1−xAlxAs,” Solid State Commun. 15, 39–63 (1974).
[CrossRef]

Other (4)

K. Schneider, P. Kramper, P. de Natale, M. Inguscio, S. Schiller, and J. Mlynek, “Widely tunable parametric oscillator for high-resolution spectroscopy,” Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 44.

G. M. Gibson, M. H. Dunn, and M. J. Padgett, “Application of a continuously tunable, cw optical parametric oscillator for high-resolution spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 45.

C. L. Tang, “Spontaneous and stimulated parametric processes,” in Quantum Electronics: A Treatise, Vol. 1, Pt. A, of Nonlinear Optics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 419–446.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Central portion of the planar waveguide for HHG at λs=λi=2.128 µm, from a pump of wavelength λp=1.064 µm. The whole structure is as follows: air/GaAs (30 nm)/Al0.7Ga0.3As (1500 nm)/{4×[ALOX (40 nm)/GaAs (273 nm)]}/ALOX(40 nm) / Al0.7Ga0.3As(1500 nm) / GaAs (30 nm) / AlAs. The gray regions correspond to Al0.7Ga0.3As; the hatched regions, to GaAs; and the white sections, to the ALOX. The electric-field profiles of the interacting modes are also shown: solid curve, TM0 pump; dotted curve, TE0 signal.

Fig. 2
Fig. 2

Experimental setup for the measurement of HHG: I, isolator; λ/2, half-wave plate; P, polarizer; A, attenuator; SF, spatial filter; M, mirror; O, microscope objective; W, waveguide; C, IR camera; Ge, germanium filter; D, InSb detector.

Fig. 3
Fig. 3

Observed TE spectrum near the half-harmonic frequency of the TM pump at 1.064 µm.

Fig. 4
Fig. 4

Observed TM spectrum near the half-harmonic frequency of the TM pump at 1.064 µm.

Fig. 5
Fig. 5

Calculated tunability curves, featuring signal and idler wavelengths versus pump wavelength, for h=40 nm and three values of ALOX refractive index, with ALOX dispersion neglected: solid curve, n=1.6; dashed curve, n=1.8; dashed curve, n=1.4.

Fig. 6
Fig. 6

Calculated pump wavelength at the degeneracy point of parametric fluorescence versus ALOX refractive index, with ALOX dispersion neglected and h=40 nm.

Fig. 7
Fig. 7

Same as in Fig. 5, with n=1.6 and three values of ALOX thickness.

Fig. 8
Fig. 8

Calculated pump wavelength at the degeneracy point of parametric fluorescence versus ALOX layers’ thickness, with n=1.6.

Fig. 9
Fig. 9

Threshold pump power for a degenerate doubly resonant OPO versus waveguide length. The curves are traced for r=0.8, and η=2000% W-1 cm-2. Solid curves, Ri=Rs=0.31; dotted curve, Ri=Rs=0.95. Within oval a, α=αp=1 cm-1; within oval b, α=αp=0.1 cm-1.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1λp=1λs+1λi,
neffpλp=neffsλs+neffiλi,
I=deff(x)Ep(x)Es(x)Ei(x)dx2Ep2(x)Es2(x)Ei2(x)dx,
Pt=1rηαp1-exp(-αpL)ln(Q+Q2-1)2.
Q=1+RsRi exp(-4αL)(Rs+Ri)exp(-2αL),

Metrics