Abstract

We propose what is, to our knowledge, a novel method of generating tunable narrow-bandwidth picosecond pulses in which the chirp of equally stretched pump and signal is canceled by difference-frequency mixing. The effect of the group-velocity mismatch on the output pulse bandwidth is analyzed. The method is proved experimentally by generation of pulses of 3.3-cm-1 bandwidth and 10-ps duration in a type I β barium borate crystal, starting from 1-ps pulses.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pessot, P. Maine, and G. Mourou, “1000 times expansion/compression of optical pulses for chirped pulse amplification,” Opt. Commun. 62, 419–421 (1987).
    [CrossRef]
  2. F. Raoult, A. C. L. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, and A. Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. Lett. 23, 1117–1119 (1998).
    [CrossRef]
  3. K. Osvay and I. N. Ross, “A proof of principle experiment of sum frequency generation using chirped pulses,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. A. Wiersma, and W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 69–71.
    [CrossRef]
  4. A. Varanavicius, R. Grigonis, A. Piskarskas, A. Stabinis, and A. Jankauskas, “Generation of picosecond light pulses of high spectral quality by means of phase conjugation,” Pis'ma Zh. Tekh. Fiz. 6, 1447–1450 (1980) (in Russian).
  5. R. Danielius, A. Dubietis, and A. Piskarskas, “Linear transformation of pulse chirp through a cascaded optical second-order process,” Opt. Lett. 20, 1521–1523 (1995).
    [CrossRef] [PubMed]
  6. R. Danielius, A. Dubietis, and A. Piskarskas, “Transformation of pulse characteristics via cascaded second-order effects in an optical parametric amplifier,” Opt. Commun. 133, 277–281 (1997).
    [CrossRef]
  7. J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758–1764 (1993).
    [CrossRef]
  8. K. L. Vodopyanov and V. G. Voevodin, “Type I and II ZnGeP2 traveling-wave optical parametric generator tunable between 3.9 and 10 μm,” Opt. Commun. 117, 277–282 (1995).
    [CrossRef]
  9. K. L. Vodopyanov and V. Chazapis, “Extra-wide tuning range optical parametric generator,” Opt. Commun. 135, 98–102 (1997).
    [CrossRef]
  10. D. E. Gragson, B. M. McCarty, G. L. Richmond, and D. S. Alavi, “High-power broadly tunable picosecond IR laser system for use in nonlinear spectroscopic applications,” J. Opt. Soc. Am. B 13, 2075–2083 (1996).
    [CrossRef]
  11. A. G. Yodh, H. W. K. Tom, G. D. Aumiller, and R. S. Miranda, “Generation of tunable mid-infrared picosecond pulses at 76 MHz,” J. Opt. Soc. Am. B 8, 1663–1667 (1991).
    [CrossRef]
  12. T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
    [CrossRef]
  13. A. Dhirani and P. Guyot-Sionnest, “Efficient generation of infrared picosecond pulses from 10 to 20 μm,” Opt. Lett. 20, 1104–1106 (1995).
    [CrossRef] [PubMed]
  14. K. Osvay and I. N. Ross, “Broadband sum-frequency generation by chirp-assisted group-velocity matching,” J. Opt. Soc. Am. B 13, 1431–1438 (1996).
    [CrossRef]
  15. A. C. L. Boscheron, C. J. Sauteret, and A. Migus, “Efficient broadband sum frequency based on controlled phase-modulated input fields: theory for 351-nm ultrabroadband or ultrashort-pulse generation,” J. Opt. Soc. Am. B 13, 818–826 (1996).
    [CrossRef]
  16. P. Hamm, C. Lauterwasser, and W. Zinth, “Generation of subpicosecond light pulses in the midinfrared between 4.5 and 11.5 μm,” Opt. Lett. 18, 1943–1945 (1993).
    [CrossRef] [PubMed]

1998

1997

R. Danielius, A. Dubietis, and A. Piskarskas, “Transformation of pulse characteristics via cascaded second-order effects in an optical parametric amplifier,” Opt. Commun. 133, 277–281 (1997).
[CrossRef]

K. L. Vodopyanov and V. Chazapis, “Extra-wide tuning range optical parametric generator,” Opt. Commun. 135, 98–102 (1997).
[CrossRef]

1996

1995

1993

1991

1987

M. Pessot, P. Maine, and G. Mourou, “1000 times expansion/compression of optical pulses for chirped pulse amplification,” Opt. Commun. 62, 419–421 (1987).
[CrossRef]

1980

A. Varanavicius, R. Grigonis, A. Piskarskas, A. Stabinis, and A. Jankauskas, “Generation of picosecond light pulses of high spectral quality by means of phase conjugation,” Pis'ma Zh. Tekh. Fiz. 6, 1447–1450 (1980) (in Russian).

Alavi, D. S.

Allakhverdiev, K. R.

T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
[CrossRef]

Aumiller, G. D.

Boscheron, A. C. L.

Chazapis, V.

K. L. Vodopyanov and V. Chazapis, “Extra-wide tuning range optical parametric generator,” Opt. Commun. 135, 98–102 (1997).
[CrossRef]

Chen, C.

Dahinten, T.

T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
[CrossRef]

Danielius, R.

R. Danielius, A. Dubietis, and A. Piskarskas, “Transformation of pulse characteristics via cascaded second-order effects in an optical parametric amplifier,” Opt. Commun. 133, 277–281 (1997).
[CrossRef]

R. Danielius, A. Dubietis, and A. Piskarskas, “Linear transformation of pulse chirp through a cascaded optical second-order process,” Opt. Lett. 20, 1521–1523 (1995).
[CrossRef] [PubMed]

Dhirani, A.

Dorchies, F.

Dubietis, A.

R. Danielius, A. Dubietis, and A. Piskarskas, “Transformation of pulse characteristics via cascaded second-order effects in an optical parametric amplifier,” Opt. Commun. 133, 277–281 (1997).
[CrossRef]

R. Danielius, A. Dubietis, and A. Piskarskas, “Linear transformation of pulse chirp through a cascaded optical second-order process,” Opt. Lett. 20, 1521–1523 (1995).
[CrossRef] [PubMed]

Gragson, D. E.

Grigonis, R.

A. Varanavicius, R. Grigonis, A. Piskarskas, A. Stabinis, and A. Jankauskas, “Generation of picosecond light pulses of high spectral quality by means of phase conjugation,” Pis'ma Zh. Tekh. Fiz. 6, 1447–1450 (1980) (in Russian).

Guyot-Sionnest, P.

Hamm, P.

Huang, J. Y.

Husson, D.

Ibragimov, Z. A.

T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
[CrossRef]

Jankauskas, A.

A. Varanavicius, R. Grigonis, A. Piskarskas, A. Stabinis, and A. Jankauskas, “Generation of picosecond light pulses of high spectral quality by means of phase conjugation,” Pis'ma Zh. Tekh. Fiz. 6, 1447–1450 (1980) (in Russian).

Lauterwasser, C.

Maine, P.

M. Pessot, P. Maine, and G. Mourou, “1000 times expansion/compression of optical pulses for chirped pulse amplification,” Opt. Commun. 62, 419–421 (1987).
[CrossRef]

Malka, V.

McCarty, B. M.

Migus, A.

Miranda, R. S.

Modena, A.

Mourou, G.

M. Pessot, P. Maine, and G. Mourou, “1000 times expansion/compression of optical pulses for chirped pulse amplification,” Opt. Commun. 62, 419–421 (1987).
[CrossRef]

Osvay, K.

Pessot, M.

M. Pessot, P. Maine, and G. Mourou, “1000 times expansion/compression of optical pulses for chirped pulse amplification,” Opt. Commun. 62, 419–421 (1987).
[CrossRef]

Piskarskas, A.

R. Danielius, A. Dubietis, and A. Piskarskas, “Transformation of pulse characteristics via cascaded second-order effects in an optical parametric amplifier,” Opt. Commun. 133, 277–281 (1997).
[CrossRef]

R. Danielius, A. Dubietis, and A. Piskarskas, “Linear transformation of pulse chirp through a cascaded optical second-order process,” Opt. Lett. 20, 1521–1523 (1995).
[CrossRef] [PubMed]

A. Varanavicius, R. Grigonis, A. Piskarskas, A. Stabinis, and A. Jankauskas, “Generation of picosecond light pulses of high spectral quality by means of phase conjugation,” Pis'ma Zh. Tekh. Fiz. 6, 1447–1450 (1980) (in Russian).

Plodereder, U.

T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
[CrossRef]

Raoult, F.

Richmond, G. L.

Ross, I. N.

Sauteret, C.

Sauteret, C. J.

Seilmeier, A.

T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
[CrossRef]

Shen, Y. R.

Stabinis, A.

A. Varanavicius, R. Grigonis, A. Piskarskas, A. Stabinis, and A. Jankauskas, “Generation of picosecond light pulses of high spectral quality by means of phase conjugation,” Pis'ma Zh. Tekh. Fiz. 6, 1447–1450 (1980) (in Russian).

Tom, H. W. K.

Varanavicius, A.

A. Varanavicius, R. Grigonis, A. Piskarskas, A. Stabinis, and A. Jankauskas, “Generation of picosecond light pulses of high spectral quality by means of phase conjugation,” Pis'ma Zh. Tekh. Fiz. 6, 1447–1450 (1980) (in Russian).

Vodopyanov, K. L.

K. L. Vodopyanov and V. Chazapis, “Extra-wide tuning range optical parametric generator,” Opt. Commun. 135, 98–102 (1997).
[CrossRef]

K. L. Vodopyanov and V. G. Voevodin, “Type I and II ZnGeP2 traveling-wave optical parametric generator tunable between 3.9 and 10 μm,” Opt. Commun. 117, 277–282 (1995).
[CrossRef]

T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
[CrossRef]

Voevodin, V. G.

K. L. Vodopyanov and V. G. Voevodin, “Type I and II ZnGeP2 traveling-wave optical parametric generator tunable between 3.9 and 10 μm,” Opt. Commun. 117, 277–282 (1995).
[CrossRef]

Yodh, A. G.

Zhang, J. Y.

Zinth, W.

IEEE J. Quantum Electron.

T. Dahinten, U. Plodereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

K. L. Vodopyanov and V. G. Voevodin, “Type I and II ZnGeP2 traveling-wave optical parametric generator tunable between 3.9 and 10 μm,” Opt. Commun. 117, 277–282 (1995).
[CrossRef]

K. L. Vodopyanov and V. Chazapis, “Extra-wide tuning range optical parametric generator,” Opt. Commun. 135, 98–102 (1997).
[CrossRef]

M. Pessot, P. Maine, and G. Mourou, “1000 times expansion/compression of optical pulses for chirped pulse amplification,” Opt. Commun. 62, 419–421 (1987).
[CrossRef]

R. Danielius, A. Dubietis, and A. Piskarskas, “Transformation of pulse characteristics via cascaded second-order effects in an optical parametric amplifier,” Opt. Commun. 133, 277–281 (1997).
[CrossRef]

Opt. Lett.

Pis'ma Zh. Tekh. Fiz.

A. Varanavicius, R. Grigonis, A. Piskarskas, A. Stabinis, and A. Jankauskas, “Generation of picosecond light pulses of high spectral quality by means of phase conjugation,” Pis'ma Zh. Tekh. Fiz. 6, 1447–1450 (1980) (in Russian).

Other

K. Osvay and I. N. Ross, “A proof of principle experiment of sum frequency generation using chirped pulses,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. A. Wiersma, and W. Zinth, eds., Vol. 63 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1998), pp. 69–71.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Walk-off length between pump and signal pulses in type I and type II BBO and AgGaS2 crystals and in an xz-cut type II KTP crystal for the pump wavelengths (λp) of Nd:glass and Ti:sapphire lasers as a function of the DF wavelength.

Fig. 2
Fig. 2

DF increment (see text for definition) in type I and type II BBO and AgGaS2 crystals and in an xz-cut type II KTP crystal for the pump wavelengths (λp) of Nd:glass and Ti:sapphire lasers as a function of the DF wavelength.

Fig. 3
Fig. 3

Experimental layout of the narrow-bandwidth pulse generation. Second-harmonic pulses of a Nd:glass laser stretched in the pump stretcher and idler pulses of an optical parametric generator–amplifier (OPG-A) stretched in the adjustable seed stretcher are mixed noncollinearly in a type I BBO parametric amplifier to produce narrow-bandwidth DF pulses.

Fig. 4
Fig. 4

DF and signal pulse bandwidths at the output of the parametric amplifier as a function of the GDD of the seed stretcher.

Fig. 5
Fig. 5

(a) Spectrum profiles of the signal (seed) pulse at the input of the parametric amplifier and generated DF pulse. (b) Autocorrelation of the signal (seed) pulse prior to stretching, and cross-correlation function of the generated DF pulse.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ωj(t)=ωj0+βjt+,
ωdf(t)=ωdf0+βpt-βs(t+dt),
L<ΔωDFβνps.
L<τ0νps=Lwalk-off,
Δωa0=4ln 2|νsDF|LLn,
Δωa=Δωa0|k-1|=4ln 2|νsp|LLn.
L<4ln 2ΔωaνpsLn2=τ0νpsLn ln 22Lwalk-off2Ln.
Inc=lnIDFIs0,
Inc=2 LLn+ln14Q,

Metrics