Abstract

A high-power traveling-wave optical parametric amplifier based on MgO:LiNbO3 that is capable of producing extremely short pulses in the 3-µm spectral range when pumped by a femtosecond Ti:sapphire amplifier near 800 nm has been developed. With seeding by 1-ns pulses from a low-power Q-switched microlaser, we demonstrate idler tunability between 3.1 and 3.9 µm at >10-µJ pulse energy and <200-fs pulse duration. The maximum internal conversion efficiency is 40% for a single pass. The extremely high gain factors achieved permit a more compact solution for the seed source, and we also report on successful seeding with a pulsed laser diode in the femtosecond regime, achieving 5-µJ pulse energy and 130-fs pulse duration near 3.5 µm. We have produced nearly transform-limited 50-fs, 2-µJ pulses near 3 µm with a 1-mm-thick MgO:LiNbO3 sample by adding a second pass and employing sub-30-fs pumping.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Petrov, F. Seifert, O. Kittelmann, J. Ringling, and F. Noack, “Extension of the tuning range of a femtosecond Ti:sapphire laser amplifier through cascaded second-order nonlinear frequency conversion processes,” J. Appl. Phys. 76, 7704–7712 (1994).
    [Crossref]
  2. G. Cerullo, M. Nisoli, and S. De Silvestri, “Generation of 11 fs pulses tunable across the visible by optical parametric amplification,” Appl. Phys. Lett. 71, 3616–3618 (1997); “Sub-8-fs pulses from a visible optical parametric amplifier,” in Conference on Lasers and Electro-Optics CLEO/Europe (Optical Society of America, Washington, D.C., 1998), paper CWH2.
    [Crossref]
  3. A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm-1 bandwidth,” Appl. Phys. Lett. 72, 147–149 (1998); A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for pulse generation tunable in the visible and near-infrared reaching to 6.5 fs,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), postdeadline paper CPD11.
    [Crossref]
  4. F. Seifert, V. Petrov, and M. Woerner, “Solid-state laser system for the generation of midinfrared femtosecond pulses tunable from 3.3 to 10 µm,” Opt. Lett. 19, 2009–2011 (1994).
    [Crossref] [PubMed]
  5. M. K. Reed and M. K. Steiner Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996); B. Golubovic and M. K. Reed, “All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in type I and type II AgGaS2,” Opt. Lett. 23, 1760–1762 (1998).
    [Crossref]
  6. D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High average power, high-repetition rate femtosecond pulse generation in the 1-5 µm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
    [Crossref]
  7. D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, “Broadly tunable infrared femtosecond optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 22, 1397–1399 (1997).
    [Crossref]
  8. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate,” Opt. Lett. 22, 1458–1460 (1997).
    [Crossref]
  9. G. R. Holtom, R. A. Crowell, and X. S. Xie, “High-repetition-rate femtosecond optical parametric oscillator–amplifier system near 3 µm,” J. Opt. Soc. Am. B 12, 1723–1731 (1995).
    [Crossref]
  10. V. Petrov and F. Noack, “Tunable femtosecond optical parametric amplifier in the mid-infrared with narrow-band seeding,” J. Opt. Soc. Am. B 12, 2214–2221 (1995).
    [Crossref]
  11. U. Emmerichs, S. Woutersen, and H. J. Bakker, “Generation of intense femtosecond optical pulses near 3 µm with a kilohertz repetition rate,” J. Opt. Soc. Am. B 14, 1480–1483 (1997).
    [Crossref]
  12. G. M. Gale, G. Gallot, F. Hache, and R. Sander, “Generation of intense highly coherent femtosecond pulses in the mid infrared,” Opt. Lett. 22, 1253–1255 (1997).
    [Crossref] [PubMed]
  13. V. Petrov, F. Noack, and R. Stolzenberger, “Seeded femtosecond optical parametric amplification in the mid-infrared spectral region above 3 µm,” Appl. Opt. 36, 1164–1172 (1997).
    [Crossref] [PubMed]
  14. V. Petrov and F. Noack, “Mid-infrared femtosecond optical parametric amplification in potassium niobate,” Opt. Lett. 21, 1576–1578 (1996).
    [Crossref] [PubMed]
  15. J. D. Kafka and M. L. Watts, “A potassium niobate OPA pumped by an amplified Ti:sapphire laser,” in Ultrafast Phenomena X, Vol. 62 of Springer Series in Chemical Physics, P. F. Barbara, J. G. Fujimoto, W. H. Knox, and W. Zinth, eds. (Springer-Verlag, Berlin, 1996), pp. 38–39.
  16. V. Petrov and F. Noack, “Frequency upconversion of tunable femtosecond pulses by parametric amplification and sum-frequency generation in a single nonlinear crystal,” Opt. Lett. 20, 2171–2173 (1995).
    [Crossref] [PubMed]
  17. D. A. Bryan, R. R. Rice, R. Gerson, H. E. Tomaschke, K. L. Sweeney, and L. E. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 138–143 (1985).
  18. S. Lin, Y. Tanaka, S. Takeuchi, and T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124–126 (1996).
    [Crossref]
  19. S. Lin and T. Suzuki, “Tunable picosecond mid-infrared pulses generated by optical parametric generation/amplification in MgO:LiNbO3 crystals,” Opt. Lett. 21, 579–581 (1996).
    [Crossref] [PubMed]
  20. S. Lin, Y. Tanaka, M. Aono, and T. Suzuki, “Optical parametric amplification using the phase-matching retracing behavior in MgO:LiNbO3 for the generation of intense widely tunable mid-infrared pulses,” Jpn. J. Appl. Phys. 36, 3510–3514 (1997).
    [Crossref]
  21. V. Petrov, Y. Tanaka, and T. Suzuki, “Parametric generation of 1-ps pulses between 5 and 11 µm with a ZnGeP2 crystal,” IEEE J. Quantum Electron. 33, 1749–1755 (1997).
    [Crossref]
  22. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P,BaB2O4,LiIO3,MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
    [Crossref]
  23. R. L. Byer, “Optical parametric oscillators,” in Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 587–702.
  24. V. L. Boichenko, I. I. Zasavitskii, Y. V. Kosichkin, A. P. Tarasevich, V. G. Tunkin, and A. P. Shotov, “Picosecond parametric oscillator amplifying radiation from a tunable semiconductor laser,” Sov. J. Quantum Electron. 14, 141–142 (1984) [Kvantovaya Elektron. (Moscow) 11, 203–205 (1984)].
    [Crossref]
  25. E. T. J. Nibbering, O. Dühr, and G. Korn, “Generation of intense tunable 20-fs pulses near 400 nm by use of a gas-filled hollow waveguide,” Opt. Lett. 22, 1335–1237 (1997).
    [Crossref]

1998 (1)

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm-1 bandwidth,” Appl. Phys. Lett. 72, 147–149 (1998); A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for pulse generation tunable in the visible and near-infrared reaching to 6.5 fs,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), postdeadline paper CPD11.
[Crossref]

1997 (9)

G. Cerullo, M. Nisoli, and S. De Silvestri, “Generation of 11 fs pulses tunable across the visible by optical parametric amplification,” Appl. Phys. Lett. 71, 3616–3618 (1997); “Sub-8-fs pulses from a visible optical parametric amplifier,” in Conference on Lasers and Electro-Optics CLEO/Europe (Optical Society of America, Washington, D.C., 1998), paper CWH2.
[Crossref]

S. Lin, Y. Tanaka, M. Aono, and T. Suzuki, “Optical parametric amplification using the phase-matching retracing behavior in MgO:LiNbO3 for the generation of intense widely tunable mid-infrared pulses,” Jpn. J. Appl. Phys. 36, 3510–3514 (1997).
[Crossref]

V. Petrov, Y. Tanaka, and T. Suzuki, “Parametric generation of 1-ps pulses between 5 and 11 µm with a ZnGeP2 crystal,” IEEE J. Quantum Electron. 33, 1749–1755 (1997).
[Crossref]

U. Emmerichs, S. Woutersen, and H. J. Bakker, “Generation of intense femtosecond optical pulses near 3 µm with a kilohertz repetition rate,” J. Opt. Soc. Am. B 14, 1480–1483 (1997).
[Crossref]

G. M. Gale, G. Gallot, F. Hache, and R. Sander, “Generation of intense highly coherent femtosecond pulses in the mid infrared,” Opt. Lett. 22, 1253–1255 (1997).
[Crossref] [PubMed]

E. T. J. Nibbering, O. Dühr, and G. Korn, “Generation of intense tunable 20-fs pulses near 400 nm by use of a gas-filled hollow waveguide,” Opt. Lett. 22, 1335–1237 (1997).
[Crossref]

D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, “Broadly tunable infrared femtosecond optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 22, 1397–1399 (1997).
[Crossref]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate,” Opt. Lett. 22, 1458–1460 (1997).
[Crossref]

V. Petrov, F. Noack, and R. Stolzenberger, “Seeded femtosecond optical parametric amplification in the mid-infrared spectral region above 3 µm,” Appl. Opt. 36, 1164–1172 (1997).
[Crossref] [PubMed]

1996 (5)

S. Lin and T. Suzuki, “Tunable picosecond mid-infrared pulses generated by optical parametric generation/amplification in MgO:LiNbO3 crystals,” Opt. Lett. 21, 579–581 (1996).
[Crossref] [PubMed]

V. Petrov and F. Noack, “Mid-infrared femtosecond optical parametric amplification in potassium niobate,” Opt. Lett. 21, 1576–1578 (1996).
[Crossref] [PubMed]

M. K. Reed and M. K. Steiner Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996); B. Golubovic and M. K. Reed, “All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in type I and type II AgGaS2,” Opt. Lett. 23, 1760–1762 (1998).
[Crossref]

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High average power, high-repetition rate femtosecond pulse generation in the 1-5 µm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[Crossref]

S. Lin, Y. Tanaka, S. Takeuchi, and T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124–126 (1996).
[Crossref]

1995 (3)

1994 (2)

F. Seifert, V. Petrov, and M. Woerner, “Solid-state laser system for the generation of midinfrared femtosecond pulses tunable from 3.3 to 10 µm,” Opt. Lett. 19, 2009–2011 (1994).
[Crossref] [PubMed]

V. Petrov, F. Seifert, O. Kittelmann, J. Ringling, and F. Noack, “Extension of the tuning range of a femtosecond Ti:sapphire laser amplifier through cascaded second-order nonlinear frequency conversion processes,” J. Appl. Phys. 76, 7704–7712 (1994).
[Crossref]

1990 (1)

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P,BaB2O4,LiIO3,MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

1985 (1)

D. A. Bryan, R. R. Rice, R. Gerson, H. E. Tomaschke, K. L. Sweeney, and L. E. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 138–143 (1985).

1984 (1)

V. L. Boichenko, I. I. Zasavitskii, Y. V. Kosichkin, A. P. Tarasevich, V. G. Tunkin, and A. P. Shotov, “Picosecond parametric oscillator amplifying radiation from a tunable semiconductor laser,” Sov. J. Quantum Electron. 14, 141–142 (1984) [Kvantovaya Elektron. (Moscow) 11, 203–205 (1984)].
[Crossref]

Aono, M.

S. Lin, Y. Tanaka, M. Aono, and T. Suzuki, “Optical parametric amplification using the phase-matching retracing behavior in MgO:LiNbO3 for the generation of intense widely tunable mid-infrared pulses,” Jpn. J. Appl. Phys. 36, 3510–3514 (1997).
[Crossref]

Arbore, M. A.

Bakker, H. J.

Boichenko, V. L.

V. L. Boichenko, I. I. Zasavitskii, Y. V. Kosichkin, A. P. Tarasevich, V. G. Tunkin, and A. P. Shotov, “Picosecond parametric oscillator amplifying radiation from a tunable semiconductor laser,” Sov. J. Quantum Electron. 14, 141–142 (1984) [Kvantovaya Elektron. (Moscow) 11, 203–205 (1984)].
[Crossref]

Bosshard, C.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High average power, high-repetition rate femtosecond pulse generation in the 1-5 µm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[Crossref]

Bryan, D. A.

D. A. Bryan, R. R. Rice, R. Gerson, H. E. Tomaschke, K. L. Sweeney, and L. E. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 138–143 (1985).

Burr, K. C.

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P,BaB2O4,LiIO3,MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

R. L. Byer, “Optical parametric oscillators,” in Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 587–702.

Cerullo, G.

G. Cerullo, M. Nisoli, and S. De Silvestri, “Generation of 11 fs pulses tunable across the visible by optical parametric amplification,” Appl. Phys. Lett. 71, 3616–3618 (1997); “Sub-8-fs pulses from a visible optical parametric amplifier,” in Conference on Lasers and Electro-Optics CLEO/Europe (Optical Society of America, Washington, D.C., 1998), paper CWH2.
[Crossref]

Crowell, R. A.

De Silvestri, S.

G. Cerullo, M. Nisoli, and S. De Silvestri, “Generation of 11 fs pulses tunable across the visible by optical parametric amplification,” Appl. Phys. Lett. 71, 3616–3618 (1997); “Sub-8-fs pulses from a visible optical parametric amplifier,” in Conference on Lasers and Electro-Optics CLEO/Europe (Optical Society of America, Washington, D.C., 1998), paper CWH2.
[Crossref]

Dühr, O.

Ebrahimzadeh, M.

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P,BaB2O4,LiIO3,MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

Emmerichs, U.

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P,BaB2O4,LiIO3,MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

Fejer, M. M.

Gale, G. M.

Gallot, G.

Gerson, R.

D. A. Bryan, R. R. Rice, R. Gerson, H. E. Tomaschke, K. L. Sweeney, and L. E. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 138–143 (1985).

Günter, P.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High average power, high-repetition rate femtosecond pulse generation in the 1-5 µm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[Crossref]

Hache, F.

Halliburton, L. E.

D. A. Bryan, R. R. Rice, R. Gerson, H. E. Tomaschke, K. L. Sweeney, and L. E. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 138–143 (1985).

Holtom, G. R.

Kafka, J. D.

J. D. Kafka and M. L. Watts, “A potassium niobate OPA pumped by an amplified Ti:sapphire laser,” in Ultrafast Phenomena X, Vol. 62 of Springer Series in Chemical Physics, P. F. Barbara, J. G. Fujimoto, W. H. Knox, and W. Zinth, eds. (Springer-Verlag, Berlin, 1996), pp. 38–39.

Karlsson, H.

Kittelmann, O.

V. Petrov, F. Seifert, O. Kittelmann, J. Ringling, and F. Noack, “Extension of the tuning range of a femtosecond Ti:sapphire laser amplifier through cascaded second-order nonlinear frequency conversion processes,” J. Appl. Phys. 76, 7704–7712 (1994).
[Crossref]

Kobayashi, T.

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm-1 bandwidth,” Appl. Phys. Lett. 72, 147–149 (1998); A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for pulse generation tunable in the visible and near-infrared reaching to 6.5 fs,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), postdeadline paper CPD11.
[Crossref]

Korn, G.

Kosichkin, Y. V.

V. L. Boichenko, I. I. Zasavitskii, Y. V. Kosichkin, A. P. Tarasevich, V. G. Tunkin, and A. P. Shotov, “Picosecond parametric oscillator amplifying radiation from a tunable semiconductor laser,” Sov. J. Quantum Electron. 14, 141–142 (1984) [Kvantovaya Elektron. (Moscow) 11, 203–205 (1984)].
[Crossref]

Laurell, F.

Lin, S.

S. Lin, Y. Tanaka, M. Aono, and T. Suzuki, “Optical parametric amplification using the phase-matching retracing behavior in MgO:LiNbO3 for the generation of intense widely tunable mid-infrared pulses,” Jpn. J. Appl. Phys. 36, 3510–3514 (1997).
[Crossref]

S. Lin, Y. Tanaka, S. Takeuchi, and T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124–126 (1996).
[Crossref]

S. Lin and T. Suzuki, “Tunable picosecond mid-infrared pulses generated by optical parametric generation/amplification in MgO:LiNbO3 crystals,” Opt. Lett. 21, 579–581 (1996).
[Crossref] [PubMed]

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P,BaB2O4,LiIO3,MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

Nibbering, E. T. J.

Nisoli, M.

G. Cerullo, M. Nisoli, and S. De Silvestri, “Generation of 11 fs pulses tunable across the visible by optical parametric amplification,” Appl. Phys. Lett. 71, 3616–3618 (1997); “Sub-8-fs pulses from a visible optical parametric amplifier,” in Conference on Lasers and Electro-Optics CLEO/Europe (Optical Society of America, Washington, D.C., 1998), paper CWH2.
[Crossref]

Noack, F.

Penman, Z.

Petrov, V.

Reed, M. K.

M. K. Reed and M. K. Steiner Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996); B. Golubovic and M. K. Reed, “All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in type I and type II AgGaS2,” Opt. Lett. 23, 1760–1762 (1998).
[Crossref]

Reid, D. T.

Rice, R. R.

D. A. Bryan, R. R. Rice, R. Gerson, H. E. Tomaschke, K. L. Sweeney, and L. E. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 138–143 (1985).

Ringling, J.

V. Petrov, F. Seifert, O. Kittelmann, J. Ringling, and F. Noack, “Extension of the tuning range of a femtosecond Ti:sapphire laser amplifier through cascaded second-order nonlinear frequency conversion processes,” J. Appl. Phys. 76, 7704–7712 (1994).
[Crossref]

Sander, R.

Seifert, F.

F. Seifert, V. Petrov, and M. Woerner, “Solid-state laser system for the generation of midinfrared femtosecond pulses tunable from 3.3 to 10 µm,” Opt. Lett. 19, 2009–2011 (1994).
[Crossref] [PubMed]

V. Petrov, F. Seifert, O. Kittelmann, J. Ringling, and F. Noack, “Extension of the tuning range of a femtosecond Ti:sapphire laser amplifier through cascaded second-order nonlinear frequency conversion processes,” J. Appl. Phys. 76, 7704–7712 (1994).
[Crossref]

Shirakawa, A.

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm-1 bandwidth,” Appl. Phys. Lett. 72, 147–149 (1998); A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for pulse generation tunable in the visible and near-infrared reaching to 6.5 fs,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), postdeadline paper CPD11.
[Crossref]

Shotov, A. P.

V. L. Boichenko, I. I. Zasavitskii, Y. V. Kosichkin, A. P. Tarasevich, V. G. Tunkin, and A. P. Shotov, “Picosecond parametric oscillator amplifying radiation from a tunable semiconductor laser,” Sov. J. Quantum Electron. 14, 141–142 (1984) [Kvantovaya Elektron. (Moscow) 11, 203–205 (1984)].
[Crossref]

Sibbett, W.

Spence, D. E.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High average power, high-repetition rate femtosecond pulse generation in the 1-5 µm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[Crossref]

Steiner Shepard, M. K.

M. K. Reed and M. K. Steiner Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996); B. Golubovic and M. K. Reed, “All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in type I and type II AgGaS2,” Opt. Lett. 23, 1760–1762 (1998).
[Crossref]

Stolzenberger, R.

Suzuki, T.

S. Lin, Y. Tanaka, M. Aono, and T. Suzuki, “Optical parametric amplification using the phase-matching retracing behavior in MgO:LiNbO3 for the generation of intense widely tunable mid-infrared pulses,” Jpn. J. Appl. Phys. 36, 3510–3514 (1997).
[Crossref]

V. Petrov, Y. Tanaka, and T. Suzuki, “Parametric generation of 1-ps pulses between 5 and 11 µm with a ZnGeP2 crystal,” IEEE J. Quantum Electron. 33, 1749–1755 (1997).
[Crossref]

S. Lin, Y. Tanaka, S. Takeuchi, and T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124–126 (1996).
[Crossref]

S. Lin and T. Suzuki, “Tunable picosecond mid-infrared pulses generated by optical parametric generation/amplification in MgO:LiNbO3 crystals,” Opt. Lett. 21, 579–581 (1996).
[Crossref] [PubMed]

Sweeney, K. L.

D. A. Bryan, R. R. Rice, R. Gerson, H. E. Tomaschke, K. L. Sweeney, and L. E. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 138–143 (1985).

Takeuchi, S.

S. Lin, Y. Tanaka, S. Takeuchi, and T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124–126 (1996).
[Crossref]

Tanaka, Y.

S. Lin, Y. Tanaka, M. Aono, and T. Suzuki, “Optical parametric amplification using the phase-matching retracing behavior in MgO:LiNbO3 for the generation of intense widely tunable mid-infrared pulses,” Jpn. J. Appl. Phys. 36, 3510–3514 (1997).
[Crossref]

V. Petrov, Y. Tanaka, and T. Suzuki, “Parametric generation of 1-ps pulses between 5 and 11 µm with a ZnGeP2 crystal,” IEEE J. Quantum Electron. 33, 1749–1755 (1997).
[Crossref]

S. Lin, Y. Tanaka, S. Takeuchi, and T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124–126 (1996).
[Crossref]

Tang, C. L.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate,” Opt. Lett. 22, 1458–1460 (1997).
[Crossref]

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High average power, high-repetition rate femtosecond pulse generation in the 1-5 µm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[Crossref]

Tarasevich, A. P.

V. L. Boichenko, I. I. Zasavitskii, Y. V. Kosichkin, A. P. Tarasevich, V. G. Tunkin, and A. P. Shotov, “Picosecond parametric oscillator amplifying radiation from a tunable semiconductor laser,” Sov. J. Quantum Electron. 14, 141–142 (1984) [Kvantovaya Elektron. (Moscow) 11, 203–205 (1984)].
[Crossref]

Tomaschke, H. E.

D. A. Bryan, R. R. Rice, R. Gerson, H. E. Tomaschke, K. L. Sweeney, and L. E. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 138–143 (1985).

Tunkin, V. G.

V. L. Boichenko, I. I. Zasavitskii, Y. V. Kosichkin, A. P. Tarasevich, V. G. Tunkin, and A. P. Shotov, “Picosecond parametric oscillator amplifying radiation from a tunable semiconductor laser,” Sov. J. Quantum Electron. 14, 141–142 (1984) [Kvantovaya Elektron. (Moscow) 11, 203–205 (1984)].
[Crossref]

Watts, M. L.

J. D. Kafka and M. L. Watts, “A potassium niobate OPA pumped by an amplified Ti:sapphire laser,” in Ultrafast Phenomena X, Vol. 62 of Springer Series in Chemical Physics, P. F. Barbara, J. G. Fujimoto, W. H. Knox, and W. Zinth, eds. (Springer-Verlag, Berlin, 1996), pp. 38–39.

Wielandy, S.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High average power, high-repetition rate femtosecond pulse generation in the 1-5 µm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[Crossref]

Woerner, M.

Woutersen, S.

Xie, X. S.

Zasavitskii, I. I.

V. L. Boichenko, I. I. Zasavitskii, Y. V. Kosichkin, A. P. Tarasevich, V. G. Tunkin, and A. P. Shotov, “Picosecond parametric oscillator amplifying radiation from a tunable semiconductor laser,” Sov. J. Quantum Electron. 14, 141–142 (1984) [Kvantovaya Elektron. (Moscow) 11, 203–205 (1984)].
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High average power, high-repetition rate femtosecond pulse generation in the 1-5 µm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996).
[Crossref]

G. Cerullo, M. Nisoli, and S. De Silvestri, “Generation of 11 fs pulses tunable across the visible by optical parametric amplification,” Appl. Phys. Lett. 71, 3616–3618 (1997); “Sub-8-fs pulses from a visible optical parametric amplifier,” in Conference on Lasers and Electro-Optics CLEO/Europe (Optical Society of America, Washington, D.C., 1998), paper CWH2.
[Crossref]

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm-1 bandwidth,” Appl. Phys. Lett. 72, 147–149 (1998); A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for pulse generation tunable in the visible and near-infrared reaching to 6.5 fs,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), postdeadline paper CPD11.
[Crossref]

IEEE J. Quantum Electron. (4)

M. K. Reed and M. K. Steiner Shepard, “Tunable infrared generation using a femtosecond 250 kHz Ti:sapphire regenerative amplifier,” IEEE J. Quantum Electron. 32, 1273–1277 (1996); B. Golubovic and M. K. Reed, “All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in type I and type II AgGaS2,” Opt. Lett. 23, 1760–1762 (1998).
[Crossref]

S. Lin, Y. Tanaka, S. Takeuchi, and T. Suzuki, “Improved dispersion equation for MgO:LiNbO3 crystal in the infrared spectral range derived from sum and difference frequency mixing,” IEEE J. Quantum Electron. 32, 124–126 (1996).
[Crossref]

V. Petrov, Y. Tanaka, and T. Suzuki, “Parametric generation of 1-ps pulses between 5 and 11 µm with a ZnGeP2 crystal,” IEEE J. Quantum Electron. 33, 1749–1755 (1997).
[Crossref]

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P,BaB2O4,LiIO3,MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[Crossref]

J. Appl. Phys. (1)

V. Petrov, F. Seifert, O. Kittelmann, J. Ringling, and F. Noack, “Extension of the tuning range of a femtosecond Ti:sapphire laser amplifier through cascaded second-order nonlinear frequency conversion processes,” J. Appl. Phys. 76, 7704–7712 (1994).
[Crossref]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

S. Lin, Y. Tanaka, M. Aono, and T. Suzuki, “Optical parametric amplification using the phase-matching retracing behavior in MgO:LiNbO3 for the generation of intense widely tunable mid-infrared pulses,” Jpn. J. Appl. Phys. 36, 3510–3514 (1997).
[Crossref]

Opt. Eng. (1)

D. A. Bryan, R. R. Rice, R. Gerson, H. E. Tomaschke, K. L. Sweeney, and L. E. Halliburton, “Magnesium-doped lithium niobate for higher optical power applications,” Opt. Eng. 24, 138–143 (1985).

Opt. Lett. (8)

V. Petrov and F. Noack, “Frequency upconversion of tunable femtosecond pulses by parametric amplification and sum-frequency generation in a single nonlinear crystal,” Opt. Lett. 20, 2171–2173 (1995).
[Crossref] [PubMed]

S. Lin and T. Suzuki, “Tunable picosecond mid-infrared pulses generated by optical parametric generation/amplification in MgO:LiNbO3 crystals,” Opt. Lett. 21, 579–581 (1996).
[Crossref] [PubMed]

D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, “Broadly tunable infrared femtosecond optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 22, 1397–1399 (1997).
[Crossref]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate,” Opt. Lett. 22, 1458–1460 (1997).
[Crossref]

V. Petrov and F. Noack, “Mid-infrared femtosecond optical parametric amplification in potassium niobate,” Opt. Lett. 21, 1576–1578 (1996).
[Crossref] [PubMed]

G. M. Gale, G. Gallot, F. Hache, and R. Sander, “Generation of intense highly coherent femtosecond pulses in the mid infrared,” Opt. Lett. 22, 1253–1255 (1997).
[Crossref] [PubMed]

F. Seifert, V. Petrov, and M. Woerner, “Solid-state laser system for the generation of midinfrared femtosecond pulses tunable from 3.3 to 10 µm,” Opt. Lett. 19, 2009–2011 (1994).
[Crossref] [PubMed]

E. T. J. Nibbering, O. Dühr, and G. Korn, “Generation of intense tunable 20-fs pulses near 400 nm by use of a gas-filled hollow waveguide,” Opt. Lett. 22, 1335–1237 (1997).
[Crossref]

Sov. J. Quantum Electron. (1)

V. L. Boichenko, I. I. Zasavitskii, Y. V. Kosichkin, A. P. Tarasevich, V. G. Tunkin, and A. P. Shotov, “Picosecond parametric oscillator amplifying radiation from a tunable semiconductor laser,” Sov. J. Quantum Electron. 14, 141–142 (1984) [Kvantovaya Elektron. (Moscow) 11, 203–205 (1984)].
[Crossref]

Other (2)

R. L. Byer, “Optical parametric oscillators,” in Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 587–702.

J. D. Kafka and M. L. Watts, “A potassium niobate OPA pumped by an amplified Ti:sapphire laser,” in Ultrafast Phenomena X, Vol. 62 of Springer Series in Chemical Physics, P. F. Barbara, J. G. Fujimoto, W. H. Knox, and W. Zinth, eds. (Springer-Verlag, Berlin, 1996), pp. 38–39.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Inverse GVM in KTP, MLN, and KNB versus idler wavelength (λI): 1/vI-1/vP (dashed curves), 1/vS-1/vP (solid curves). v’s denote the corresponding idler (I), pump (P), and signal (S) group velocities. The signal wavelength λS is fixed at 1.064 µm. The pump wavelength λP is varied between 760 and 840 nm (upper abscissa). (b) Inverse GVM in KTP, MLN, and KNB versus idler wavelength (λI): 1/vI-1/vP (dashed curves), 1/vS-1/vP (solid curves). The pump wavelength is fixed at λP=818 nm. The signal wavelength λS is varied between 1.06 and 1.1 µm (upper abscissa).

Fig. 2
Fig. 2

Schematic of the experimental setup: T, telescope; DM1, 800-nm, 45° dichroic mirror on a BK7 substrate; DM2–DM3, 800-nm, 45° dichroic mirrors on CaF2 substrates; L, collimating optics; D, delay line. The dashed lines show the beam path for the second pass used in Section 5, with an offset in the uncritical plane of the OPA crystal.

Fig. 3
Fig. 3

Idler pulse energy EI (solid curve and points) and idler pulse duration TI (dashed curve and squares) versus idler wavelength λI for the 10-mm-long MLN sample in the high-power OPA.

Fig. 4
Fig. 4

Saturation behavior of the 10-mm MLN OPA at λP=818 nm (λI=3.54 µm). The seed power was reduced for this measurement by use of calibrated neutral-density filters.

Fig. 5
Fig. 5

CCF and the corresponding spectrum (inset) of the pulses produced by the 10-mm MLN OPA with laser diode seeding and pump energy of EP=265 µJ: (a) idler, (b) signal. The deconvolved Gaussian pulse durations are (a) TI=130 fs and (b) TS=140 fs.

Fig. 6
Fig. 6

CCF and the corresponding spectrum of the idler pulse (inset) produced by the 1-mm MLN OPA at TP=28 fs and EP=800 µJ with the double pass. The deconvolved idler pulse duration is TI=50 fs.

Metrics