Abstract

The use of a diffraction grating as a frequency-selective reflector, has allowed a synchronously pumped optical parametric oscillator based on periodically poled lithium niobate to tune over a wide range, 1900–2300 nm around degeneracy (2094 nm), on a single periodically poled lithium niobate grating at a fixed temperature. The grating ensures stable singly resonant operation over the whole of this range except for a very narrow range at degeneracy, where doubly resonant behavior is evident. The extent of this narrow range, ∼6 nm, is confirmed by analysis.

© 1999 Optical Society of America

Full Article  |  PDF Article

Corrections

K. Puech, L. Lefort, and D. C. Hanna, "Broad tuning around degeneracy in a singly resonant synchronously pumped parametric oscillator by means of a diffraction grating: errata," J. Opt. Soc. Am. B 17, 1102-1102 (2000)
https://www.osapublishing.org/josab/abstract.cfm?uri=josab-17-6-1102

References

  • View by:
  • |
  • |
  • |

  1. J. Falk, IEEE J. Quantum Electronics QE-7, 230 (1971).
    [CrossRef]
  2. S. D. Butterworth, V. Pruneri, and D. C. Hanna, Opt. Lett. 21, 1345 (1996).
    [CrossRef] [PubMed]
  3. L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
    [CrossRef]
  4. L. Lefort, K. Puech, S. D. Butterworth, Y. P. Svirko, and D. C. Hanna, Opt. Lett. 24, 28 (1999).
    [CrossRef]
  5. D. C. Hanna, P. A. Karkkainen, and R. Wyatt, Opt. Quantum Electron. 7, 115 (1975).
    [CrossRef]
  6. D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
    [CrossRef]
  7. R. L. Byer, in Nonlinear Optics, H. Rabin and C. L. Tang, eds., Vol. 1 of Quantum Electronics (Academic, New York, 1975), Part B, pp. 587–702.
  8. L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
    [CrossRef]

1999 (1)

1998 (2)

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
[CrossRef]

1996 (1)

1977 (1)

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
[CrossRef]

1975 (1)

D. C. Hanna, P. A. Karkkainen, and R. Wyatt, Opt. Quantum Electron. 7, 115 (1975).
[CrossRef]

1971 (1)

J. Falk, IEEE J. Quantum Electronics QE-7, 230 (1971).
[CrossRef]

Butterworth, S. D.

Falk, J.

J. Falk, IEEE J. Quantum Electronics QE-7, 230 (1971).
[CrossRef]

Hanna, D. C.

L. Lefort, K. Puech, S. D. Butterworth, Y. P. Svirko, and D. C. Hanna, Opt. Lett. 24, 28 (1999).
[CrossRef]

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
[CrossRef]

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

S. D. Butterworth, V. Pruneri, and D. C. Hanna, Opt. Lett. 21, 1345 (1996).
[CrossRef] [PubMed]

D. C. Hanna, P. A. Karkkainen, and R. Wyatt, Opt. Quantum Electron. 7, 115 (1975).
[CrossRef]

Jundt, D. H.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

Karkkainen, P. A.

D. C. Hanna, P. A. Karkkainen, and R. Wyatt, Opt. Quantum Electron. 7, 115 (1975).
[CrossRef]

Lefort, L.

L. Lefort, K. Puech, S. D. Butterworth, Y. P. Svirko, and D. C. Hanna, Opt. Lett. 24, 28 (1999).
[CrossRef]

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
[CrossRef]

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
[CrossRef]

Pruneri, V.

Puech, K.

L. Lefort, K. Puech, S. D. Butterworth, Y. P. Svirko, and D. C. Hanna, Opt. Lett. 24, 28 (1999).
[CrossRef]

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
[CrossRef]

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

Ross, G. W.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
[CrossRef]

Smith, P. G. R.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

Svirko, Y. P.

L. Lefort, K. Puech, S. D. Butterworth, Y. P. Svirko, and D. C. Hanna, Opt. Lett. 24, 28 (1999).
[CrossRef]

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
[CrossRef]

Wyatt, R.

D. C. Hanna, P. A. Karkkainen, and R. Wyatt, Opt. Quantum Electron. 7, 115 (1975).
[CrossRef]

Appl. Phys. Lett. (1)

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, Appl. Phys. Lett. 73, 1610 (1998).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
[CrossRef]

IEEE J. Quantum Electronics (1)

J. Falk, IEEE J. Quantum Electronics QE-7, 230 (1971).
[CrossRef]

Opt. Commun. (1)

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, Opt. Commun. 152, 55 (1998).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

D. C. Hanna, P. A. Karkkainen, and R. Wyatt, Opt. Quantum Electron. 7, 115 (1975).
[CrossRef]

Other (1)

R. L. Byer, in Nonlinear Optics, H. Rabin and C. L. Tang, eds., Vol. 1 of Quantum Electronics (Academic, New York, 1975), Part B, pp. 587–702.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic layout of a standing-wave OPO resonator: CM’s, curved mirrors; OC, output coupler; DG, diffraction grating.

Fig. 2
Fig. 2

Average output power (squares) and pump depletion (triangles) versus signal wavelength for a PPLN crystal of 30.4-µm period held at 190 °C (corresponding to an exact phase match at ∼2.0 µm).

Fig. 3
Fig. 3

Calculated signal gain versus signal wavelength for a PPLN crystal of 30.4-µm period held at 190 °C.

Fig. 4
Fig. 4

(a) Second-harmonic autocorrelation taken at λs=1.7 µm. A Gaussian curve is also plotted in the same figure, showing an extremely close fit. (b) Signal power spectrum corresponding to the autocorrelation of (a).

Fig. 5
Fig. 5

(a) Calculated increase in idler reflectivity at the grating as the degeneracy condition is approached. (b) Calculated threshold power when the fed-back signal and idler waves are in phase (dotted curve) and exactly out of phase (solid curve) with each other.

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

Δθ=dθdλΔλ=2 tan θλΔλ.
2Δλ=2 dλdθΔθ=0.83 λ2tan θπω0.
(threshold)ϕ=-π/2(threshold)ϕ=+π/2=Rs2(Rs-Ri)2(1-Ri2)(Rs+Ri)4,
RsRi=exp2 tan θΔλλ2/πw0,
(threshold)ϕ=+π/2(threshold)ϕ=-π/2[1+exp(-2πω0Δλ tan θ/λ2)]4.
Δλ=-λ2 ln(r1/4-1)2πω0 tan θ.
Ep(z, t)=½[Ep exp i(kpz-ωpt)+c.c.]
Ep=Ep exp(iϕp),
dEsdz=iκsEpEi* exp iΔkz,
dEidz=iκiEpEs* exp iΔkz,
Es(l)=Es(0)exp(iΔkl/2)[cosh gl-(iΔk/2g)sinh gl]+(iκs/g)EpEi*(0)exp(iΔkl/2)(sinh gl),
Ei(l)=Ei(0)exp(iΔkl/2)[cosh gl-(iΔk/2g)sinh gl]+(iκi/g)EpEs*(0)exp(iΔkl/2)(sinh gl),
Es(l)=Es(0)cosh Γl+Ei(0)sinh Γl,
Ei(l)=Ei(0)cosh Γl+Es(0)sinh Γl.
RsEs(l)=Es(0),
RiEi(l)=Ei(0)
Es(0)(Rs cosh Γl-1)+Ei(0)(Rs sinh Γl)=0,
Es(0)(Ri sinh Γl)+Ei(0)(Ri cosh Γl-1)=0;
sinh2 Γl=(1-Ri2)(1-Rs2)(Rs+Ri)2.
Γ2l21-Rs2Rs2round-tripsignalpowerloss
Γ2l2(1-Rs2)(1-Ri2)4single-passsignalloss×single-passidlerloss.
dEsdz=-κsEpEi,
dEidz=-κiEpEs.
Es(z)=Es(0)cosh Γz-Ei(0)sinh Γz,
Ei(z)=Ei(0)cosh Γz-Es(0)sinh Γz,
l=1Γtanh-1 Ei(0)Es(0),
l=Ei(0)ΓEs(0).
Es2(0)-Es2(l)=Ei2(0),
Es(l)=Es(l)cosh[Γ(l-l)],
Ei(l)=Es(l)sinh[Γ(l-l)].
RsEs(l)=Es(0),
RiEi(l)=Ei(0),
{Rs2 cosh2[Γ(l-l)]}(1-Γ2l2)=1,
tanh[Γ(l-l)]=ΓRsl/Ri.
l=lRi/(Rs+Ri),
Rs2[1+Γ2(l-l)2][1-Γ2l2]=1.
Γ2l2=(1-Rs2)(Rs+Ri)2Rs2(Rs-Ri)2,
(threshold)ϕ=-π/2(threshold)ϕ=+π/2=Rs2(Rs-Ri)2(1-Ri2)(Rs+Ri)4.

Metrics