Abstract

The operating characteristics and experimental performance of continuous-wave (cw) singly resonant optical parametric oscillators (ICSRO’s) pumped internally to the cavity of the pump laser are described. We outline the operating principles, design criteria, and optimization procedure for maximum downconversion and power extraction and highlight the merits of the intracavity approach, including low input power requirement, potential for 100% downconversion efficiency, high-power operational stability, and power scalability. The predicted behavior and many of the attractive practical features of these devices are demonstrated in cw ICSRO’s based on the birefringent nonlinear materials KTiOPO4 and KTiOAsO4 and on the quasi-phase-matched nonlinear materials periodically poled LiNbO3, RbTiOAsO4, and KTiOPO4, pumped internally to cw Ti:sapphire- and diode-pumped solid-state lasers. Maximum extracted infrared powers of 1.46 W, downconversion efficiencies of as much as 90%, minimum input power thresholds of 310 mW, and wavelength tuning to 4 µm in the mid-infrared are demonstrated.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, S. Schiller and J. Mlynek, eds., special issue on continuous-wave optical parametric oscillators: materials, devices, and applications, Appl. Phys. B 66, 663–759 (1998).
  2. R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. Van Uitret, Appl. Phys. Lett. 12, 308–310 (1968).
    [CrossRef]
  3. C. D. Nabors, R. C. Eckardt, W. J. Kozlovsky, and R. L. Byer, Opt. Lett. 14, 1134–1136 (1989).
    [CrossRef] [PubMed]
  4. D. Lee and N. C. Wong, J. Opt. Soc. Am. B 10, 1659–1667 (1993).
    [CrossRef]
  5. F. G. Colville, A. J. Henderson, M. J. Padgett, J. Zhang, and M. H. Dunn, Opt. Lett. 18, 205–207 (1993).
    [CrossRef]
  6. G. Robertson, M. J. Padgett, and M. H. Dunn, Opt. Lett. 19, 1735–1737 (1994).
    [CrossRef] [PubMed]
  7. M. Scheidt, B. Beier, R. Knappe, K.-J. Boller, and R. Wallenstein, J. Opt. Soc. Am. B 12, 2087–2094 (1995).
    [CrossRef]
  8. K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, Opt. Lett. 22, 1293–1295 (1997).
    [CrossRef]
  9. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, Opt. Lett. 21, 1336–1338 (1996).
    [CrossRef] [PubMed]
  10. R. G. Smith, IEEE J. Quantum Electron. QE-6, 215–223 (1970).
    [CrossRef]
  11. M. K. Oshman and S. E. Harris, IEEE J. Quantum Electron. QE-4, 491–502 (1968).
    [CrossRef]
  12. T. B. Chu and M. Broyer, J. Phys. (France) 45, 1599–1606 (1984).
    [CrossRef]
  13. F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, Opt. Lett. 22, 75–77 (1997).
    [CrossRef] [PubMed]
  14. T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, Appl. Phys. Lett. 72, 1527–1529 (1998).
    [CrossRef]
  15. G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, Electron. Lett. 33, 1817–1818 (1997).
    [CrossRef]
  16. T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, Opt. Lett. 23, 837–839 (1998).
    [CrossRef]
  17. D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, Opt. Lett. 23, 1895–1897 (1998).
    [CrossRef]
  18. G. A. Turnbull, M. H. Dunn, and M. Ebrahimzadeh, Appl. Phys. B 66, 701–710 (1998).
    [CrossRef]
  19. A. E. Siegman, Appl. Opt. 1, 739–744 (1962).
    [CrossRef]
  20. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  21. L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, J. Cryst. Growth 137, 107–115 (1994).
    [CrossRef]
  22. H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, Electron. Lett. 32, 556–557 (1996).
    [CrossRef]
  23. D. L. Fenimore, K. L. Schepler, D. Zelmon, S. Kuck, U. B. Ramabadran, P. Von Richter, and D. Small, J. Opt. Soc. Am. B 13, 1935–1940 (1996).
    [CrossRef]
  24. H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474–3476 (1997).
    [CrossRef]
  25. H. Vanherzeele, J. D. Bierlein, and F. C. Zumsteg, Appl. Opt. 27, 3314–3316 (1998).
    [CrossRef]
  26. W. Weichmann, S. Kubota, T. Fukui, and H. Masuda, Opt. Lett. 18, 1208–1210 (1993).
    [CrossRef]
  27. The PPLN crystal was supplied by Crystal Technology, Inc., Palo Alto, California 94303.
  28. D. H. Jundt, Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]

1998 (5)

1997 (5)

1996 (3)

1995 (2)

1994 (2)

G. Robertson, M. J. Padgett, and M. H. Dunn, Opt. Lett. 19, 1735–1737 (1994).
[CrossRef] [PubMed]

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, J. Cryst. Growth 137, 107–115 (1994).
[CrossRef]

1993 (3)

1989 (1)

1984 (1)

T. B. Chu and M. Broyer, J. Phys. (France) 45, 1599–1606 (1984).
[CrossRef]

1970 (1)

R. G. Smith, IEEE J. Quantum Electron. QE-6, 215–223 (1970).
[CrossRef]

1968 (2)

M. K. Oshman and S. E. Harris, IEEE J. Quantum Electron. QE-4, 491–502 (1968).
[CrossRef]

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. Van Uitret, Appl. Phys. Lett. 12, 308–310 (1968).
[CrossRef]

1962 (1)

Alexander, J. I.

Arvidsson, G.

Beier, B.

Bierlein, J. D.

H. Vanherzeele, J. D. Bierlein, and F. C. Zumsteg, Appl. Opt. 27, 3314–3316 (1998).
[CrossRef]

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, J. Cryst. Growth 137, 107–115 (1994).
[CrossRef]

Boller, K.-J.

Bosenberg, W. R.

Broyer, M.

T. B. Chu and M. Broyer, J. Phys. (France) 45, 1599–1606 (1984).
[CrossRef]

Byer, R. L.

Cheng, L. K.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, J. Cryst. Growth 137, 107–115 (1994).
[CrossRef]

Cheng, L. T.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, J. Cryst. Growth 137, 107–115 (1994).
[CrossRef]

Chu, T. B.

T. B. Chu and M. Broyer, J. Phys. (France) 45, 1599–1606 (1984).
[CrossRef]

Colville, F. G.

Drobshoff, A.

Dunn, M. H.

Ebrahimzadeh, M.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, Appl. Phys. Lett. 72, 1527–1529 (1998).
[CrossRef]

D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, Opt. Lett. 23, 1895–1897 (1998).
[CrossRef]

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, Opt. Lett. 23, 837–839 (1998).
[CrossRef]

G. A. Turnbull, M. H. Dunn, and M. Ebrahimzadeh, Appl. Phys. B 66, 701–710 (1998).
[CrossRef]

G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, Electron. Lett. 33, 1817–1818 (1997).
[CrossRef]

F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, Opt. Lett. 22, 75–77 (1997).
[CrossRef] [PubMed]

Eckardt, R. C.

Edwards, T. J.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, Appl. Phys. Lett. 72, 1527–1529 (1998).
[CrossRef]

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, Opt. Lett. 23, 837–839 (1998).
[CrossRef]

G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, Electron. Lett. 33, 1817–1818 (1997).
[CrossRef]

Fejer, M. M.

Fenimore, D. L.

Fukui, T.

Galperin, J.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, J. Cryst. Growth 137, 107–115 (1994).
[CrossRef]

Geusic, J. E.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. Van Uitret, Appl. Phys. Lett. 12, 308–310 (1968).
[CrossRef]

Harris, S. E.

M. K. Oshman and S. E. Harris, IEEE J. Quantum Electron. QE-4, 491–502 (1968).
[CrossRef]

Henderson, A. J.

Henriksson, P.

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, Electron. Lett. 32, 556–557 (1996).
[CrossRef]

Hotsenpiller, P. A. M.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, J. Cryst. Growth 137, 107–115 (1994).
[CrossRef]

Jundt, D. H.

Karlsson, H.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, Opt. Lett. 23, 837–839 (1998).
[CrossRef]

H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474–3476 (1997).
[CrossRef]

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, Electron. Lett. 32, 556–557 (1996).
[CrossRef]

Knappe, R.

Kozlovsky, W. J.

Kramper, P.

Kubota, S.

Kuck, S.

Laurell, F.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, Opt. Lett. 23, 837–839 (1998).
[CrossRef]

H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474–3476 (1997).
[CrossRef]

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, Electron. Lett. 32, 556–557 (1996).
[CrossRef]

Lee, D.

Levinstein, H. J.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. Van Uitret, Appl. Phys. Lett. 12, 308–310 (1968).
[CrossRef]

Masuda, H.

Mlynek, J.

Myers, L. E.

Nabors, C. D.

Oshman, M. K.

M. K. Oshman and S. E. Harris, IEEE J. Quantum Electron. QE-4, 491–502 (1968).
[CrossRef]

Padgett, M. J.

Pierce, J. W.

Ramabadran, U. B.

Robertson, G.

Rubin, J. J.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. Van Uitret, Appl. Phys. Lett. 12, 308–310 (1968).
[CrossRef]

Scheidt, M.

Schepler, K. L.

Schiller, S.

Schneider, K.

Siegman, A. E.

Singh, S.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. Van Uitret, Appl. Phys. Lett. 12, 308–310 (1968).
[CrossRef]

Small, D.

Smith, R. G.

R. G. Smith, IEEE J. Quantum Electron. QE-6, 215–223 (1970).
[CrossRef]

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. Van Uitret, Appl. Phys. Lett. 12, 308–310 (1968).
[CrossRef]

Stothard, D. J. M.

Turnbull, G. A.

G. A. Turnbull, M. H. Dunn, and M. Ebrahimzadeh, Appl. Phys. B 66, 701–710 (1998).
[CrossRef]

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, Appl. Phys. Lett. 72, 1527–1529 (1998).
[CrossRef]

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, Opt. Lett. 23, 837–839 (1998).
[CrossRef]

G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, Electron. Lett. 33, 1817–1818 (1997).
[CrossRef]

Van Uitret, L.

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. Van Uitret, Appl. Phys. Lett. 12, 308–310 (1968).
[CrossRef]

Vanherzeele, H.

Von Richter, P.

Wallenstein, R.

Weichmann, W.

Wong, N. C.

Zelmon, D.

Zhang, J.

Zumsteg, F. C.

Appl. Opt. (2)

Appl. Phys. B (1)

G. A. Turnbull, M. H. Dunn, and M. Ebrahimzadeh, Appl. Phys. B 66, 701–710 (1998).
[CrossRef]

Appl. Phys. Lett. (3)

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, Appl. Phys. Lett. 72, 1527–1529 (1998).
[CrossRef]

R. G. Smith, J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. Van Uitret, Appl. Phys. Lett. 12, 308–310 (1968).
[CrossRef]

H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474–3476 (1997).
[CrossRef]

Electron. Lett. (2)

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, Electron. Lett. 32, 556–557 (1996).
[CrossRef]

G. A. Turnbull, T. J. Edwards, M. H. Dunn, and M. Ebrahimzadeh, Electron. Lett. 33, 1817–1818 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. G. Smith, IEEE J. Quantum Electron. QE-6, 215–223 (1970).
[CrossRef]

M. K. Oshman and S. E. Harris, IEEE J. Quantum Electron. QE-4, 491–502 (1968).
[CrossRef]

J. Cryst. Growth (1)

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, J. Cryst. Growth 137, 107–115 (1994).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. (France) (1)

T. B. Chu and M. Broyer, J. Phys. (France) 45, 1599–1606 (1984).
[CrossRef]

Opt. Lett. (10)

Other (2)

The PPLN crystal was supplied by Crystal Technology, Inc., Palo Alto, California 94303.

See, for example, S. Schiller and J. Mlynek, eds., special issue on continuous-wave optical parametric oscillators: materials, devices, and applications, Appl. Phys. B 66, 663–759 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Schematic arrangement for the generic cw ICSRO. Pin is the external input power to the pump laser.

Fig. 2
Fig. 2

Operating regimes of the cw ICSRO, showing the three regions of operation (I–III). In (a) the intracavity circulating pump field and in (b) the downconverted power PDC are plotted as functions of the input power to the pump laser. (PDC)s and (PDC)i are the downconverted power into the signal and the idler, respectively. ηs=ωs/ωp; ηi=ωi/ωp. All other variables are as defined in the text.

Fig. 3
Fig. 3

Maximum output power from the pump laser under optimized output coupling (PoutL)max and downconverted parametric power PDC plotted versus input power to the pump laser. The point of 100% downconversion efficiency corresponds to an input power Pin=(PthSRO)2/PthL.

Fig. 4
Fig. 4

Experimental setup for the Ti:S-laser-pumped cw ICSRO: M1M7, mirrors; NLX, nonlinear crystal; λ/2 plate, half-wave plate.

Fig. 5
Fig. 5

(a) Intracavity pump-clamping behavior of the Ti:S-pumped KTP cw ICSRO. (b) Measured output power from the Ti:S laser with optimum output coupling (PoutL)max, theoretical and experimental downconverted power PDC, and total extracted idler power Pouti plotted versus input power.

Fig. 6
Fig. 6

Spectral analysis of (a) the multimode Ti:S pump, (b) the single-frequency signal, and (c) the multimode idler from the KTP cw ICSRO under free-running conditions.

Fig. 7
Fig. 7

(a) Intracavity power characteristics and (b) optimum pump laser output and downconverted power from the KTA cw ICSRO with increasing input power.

Fig. 8
Fig. 8

Power downconversion efficiency of KTA cw ICSRO as a function of input power.

Fig. 9
Fig. 9

Signal and idler power spectra across the tuning range of the KTA cw ICSRO at 14 W of input Ar+-ion power to the Ti:S pump laser.

Fig. 10
Fig. 10

Optimum output power from the Ti:S pump laser and the downconverted parametric power from the PPRTA cw ICSRO with increasing input power.

Fig. 11
Fig. 11

Power downconversion efficiency of the PPRTA cw ICSRO versus input power. Solid curve, the predicted efficiency.

Fig. 12
Fig. 12

Wavelength tuning behavior of the PPRTA cw ICSRO with pump tuning at room temperature. Solid curves, the calculated tuning range for grating periods Λ. Shaded regions, signal and idler tuning ranges corresponding to the grating period of 30 µm used in these experiments.

Fig. 13
Fig. 13

Optimum pump laser output power (PoutL)max, predicted and measured downconverted power PDC, and extracted idler power Pouti plotted versus input power for the PPKTP cw ICSRO.

Fig. 14
Fig. 14

Pump-wavelength tuning in the PPKTP cw ICSRO at a room temperature for a grating period of Λ=28.5 µm. The solid curves represent the calculated tuning range.

Fig. 15
Fig. 15

Temperature-tuning range of PPKTP cw ICSRO for a grating period of Λ=28.5 µm at pump wavelength λp. The solid curves represent the calculated tuning range.

Fig. 16
Fig. 16

Schematic of the all-solid-state PPLN cw ICSRO with a 1-W laser diode as the input pump source: L’s, lenses; M1M3, mirrors; BS, beam splitter.

Fig. 17
Fig. 17

Extracted idler power and corresponding downconverted power of the PPLN cw ICSRO as a function of the input diode power. Solid curve, best fit through the experimental data.

Fig. 18
Fig. 18

Tuning characteristics of the cw PPLN SRO with temperature and grating tuning. The grating periods corresponding to the curves are from Λ=28.5 µm at lower end of the signal tuning range to Λ=29.9 µm at the higher end of the signal tuning range (and vice versa over the idler tuning range).

Fig. 19
Fig. 19

Idler output stability and (inset) self-starting behavior of the PPLN cw ICSRO. The peak-to-peak amplitude stability is ±8% over 3 h, corresponding to a rms fluctuation of 5.6%.

Fig. 20
Fig. 20

Summary of the characteristics of the cw ICSRO’s demonstrated in the authors’ laboratories to date. Shaded regions, the signal and idler tuning ranges so far achieved; solid bars, the potential tuning range determined by the transparency range of the nonlinear material. Millennia is a brand name.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

PDC=σmax(Pin-PthSRO)1-PthLPthSRO,
PDCPthSRO=0,
PthSRO=PthLPin,
(PDC)max=σmax(Pin-PthL)2(PoutL)max,
PthSRO=(PthSRO)minPin,
(Pouts)max=ηsσmax[Pin-(PthSRO)min]2,
Pouti=1ηs-1PthSRO-PthLPthSRO-(PthSRO)min(Pouts)max.
(Pouti)max=[(1/ηs)-1](Pouts)max.

Metrics