Abstract

A spectral and dynamic study of spontaneous and stimulated emission of Nd3+ in yttrofluorite CaF2YF3(5%) crystals proves the existence of two main sites for the rare-earth ion in these crystals. Flash-lamp-pumped laser experiments show the existence of two laser output lines, centered at 1054 and 1063 nm, which correspond to stimulated emissions from the two resolved Nd3+ sites. The dependence of the time-resolved laser output energy and relative intensities of both lines on the pump energy suggests the existence of some kind of coupling between the two emissions produced by the stimulated-emission field itself. The ratio between the output energies at the two wavelengths was modeled as a simple rate-equation laser model that takes the stimulated-emission coupling into account.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, Fla., 1996).
  2. Kh. S. Bagdasarov, Yu. K. Voronko, A. A. Kaminskii, L. V. Krotova, and V. V. Osiko, “Modification of the optical properties of CaF2–TR3+ crystals by yttrium impurities,” Phys. Status Solidi 12, 905–912 (1965).
    [CrossRef]
  3. A. A. Kaminskii, “Procedure for the investigation of autoresonant energy transfer in laser active media,” Sov. Phys. JETP 27, 889–896 (1968).
  4. T. T. Basiev, A. Ya. Karasik, and R. L. Shubochkin, “Selective laser excitation and inhomogeneous band broadening of Nd3+ ions in disordered CaF2–YF3 crystals,” J. Lumin. 64, 259–265 (1995).
    [CrossRef]
  5. A. A. Kaminskii, V. V. Osico, A. M. Prokhorov, and Yu. K. Voronko, “Spectral investigation of the stimulated radiation of Nd3+ in CaF2–YF3,” Phys. Lett. 22, 419–420 (1966).
    [CrossRef]
  6. A. A. Kaminskii, “High-temperature spectroscopic investigation of stimulated emission from lasers based on crystals and glasses activated with Nd3+ ions,” Sov. Phys. JETP 27, 388–399 (1968).
  7. R. Balda, J. Azkargorta, I. Iparraguirre, J. Fernández, and M. A. Arriandiaga, “Study of the Cr3+ sensitization and structural disorder effects on the Nd3+ laser action in Ca-gallogermanate-type codoped crystals,” Opt. Mater. 8, 99–108 (1997).
    [CrossRef]
  8. J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández, “Cr3+–Nd3+ energy transfer and Nd3+ laser action studies of La3Ga3SiO14:Cr3+:Nd3+ codoped crystal,” IEEE J. Quantum Electron. 33, 474–482 (1997).
    [CrossRef]
  9. J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, and A. A. Kaminskii, “Time resolved spectroscopy of laser output of Nd3+ doped calcium, niobium, gallium garnet,” Opt. Commun. 118, 562–564 (1995).
    [CrossRef]

1997 (2)

R. Balda, J. Azkargorta, I. Iparraguirre, J. Fernández, and M. A. Arriandiaga, “Study of the Cr3+ sensitization and structural disorder effects on the Nd3+ laser action in Ca-gallogermanate-type codoped crystals,” Opt. Mater. 8, 99–108 (1997).
[CrossRef]

J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández, “Cr3+–Nd3+ energy transfer and Nd3+ laser action studies of La3Ga3SiO14:Cr3+:Nd3+ codoped crystal,” IEEE J. Quantum Electron. 33, 474–482 (1997).
[CrossRef]

1995 (2)

J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, and A. A. Kaminskii, “Time resolved spectroscopy of laser output of Nd3+ doped calcium, niobium, gallium garnet,” Opt. Commun. 118, 562–564 (1995).
[CrossRef]

T. T. Basiev, A. Ya. Karasik, and R. L. Shubochkin, “Selective laser excitation and inhomogeneous band broadening of Nd3+ ions in disordered CaF2–YF3 crystals,” J. Lumin. 64, 259–265 (1995).
[CrossRef]

1968 (2)

A. A. Kaminskii, “Procedure for the investigation of autoresonant energy transfer in laser active media,” Sov. Phys. JETP 27, 889–896 (1968).

A. A. Kaminskii, “High-temperature spectroscopic investigation of stimulated emission from lasers based on crystals and glasses activated with Nd3+ ions,” Sov. Phys. JETP 27, 388–399 (1968).

1966 (1)

A. A. Kaminskii, V. V. Osico, A. M. Prokhorov, and Yu. K. Voronko, “Spectral investigation of the stimulated radiation of Nd3+ in CaF2–YF3,” Phys. Lett. 22, 419–420 (1966).
[CrossRef]

1965 (1)

Kh. S. Bagdasarov, Yu. K. Voronko, A. A. Kaminskii, L. V. Krotova, and V. V. Osiko, “Modification of the optical properties of CaF2–TR3+ crystals by yttrium impurities,” Phys. Status Solidi 12, 905–912 (1965).
[CrossRef]

Arriandiaga, M. A.

R. Balda, J. Azkargorta, I. Iparraguirre, J. Fernández, and M. A. Arriandiaga, “Study of the Cr3+ sensitization and structural disorder effects on the Nd3+ laser action in Ca-gallogermanate-type codoped crystals,” Opt. Mater. 8, 99–108 (1997).
[CrossRef]

Azkargorta, J.

J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández, “Cr3+–Nd3+ energy transfer and Nd3+ laser action studies of La3Ga3SiO14:Cr3+:Nd3+ codoped crystal,” IEEE J. Quantum Electron. 33, 474–482 (1997).
[CrossRef]

R. Balda, J. Azkargorta, I. Iparraguirre, J. Fernández, and M. A. Arriandiaga, “Study of the Cr3+ sensitization and structural disorder effects on the Nd3+ laser action in Ca-gallogermanate-type codoped crystals,” Opt. Mater. 8, 99–108 (1997).
[CrossRef]

J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, and A. A. Kaminskii, “Time resolved spectroscopy of laser output of Nd3+ doped calcium, niobium, gallium garnet,” Opt. Commun. 118, 562–564 (1995).
[CrossRef]

Bagdasarov, Kh. S.

Kh. S. Bagdasarov, Yu. K. Voronko, A. A. Kaminskii, L. V. Krotova, and V. V. Osiko, “Modification of the optical properties of CaF2–TR3+ crystals by yttrium impurities,” Phys. Status Solidi 12, 905–912 (1965).
[CrossRef]

Balda, R.

R. Balda, J. Azkargorta, I. Iparraguirre, J. Fernández, and M. A. Arriandiaga, “Study of the Cr3+ sensitization and structural disorder effects on the Nd3+ laser action in Ca-gallogermanate-type codoped crystals,” Opt. Mater. 8, 99–108 (1997).
[CrossRef]

J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández, “Cr3+–Nd3+ energy transfer and Nd3+ laser action studies of La3Ga3SiO14:Cr3+:Nd3+ codoped crystal,” IEEE J. Quantum Electron. 33, 474–482 (1997).
[CrossRef]

J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, and A. A. Kaminskii, “Time resolved spectroscopy of laser output of Nd3+ doped calcium, niobium, gallium garnet,” Opt. Commun. 118, 562–564 (1995).
[CrossRef]

Basiev, T. T.

T. T. Basiev, A. Ya. Karasik, and R. L. Shubochkin, “Selective laser excitation and inhomogeneous band broadening of Nd3+ ions in disordered CaF2–YF3 crystals,” J. Lumin. 64, 259–265 (1995).
[CrossRef]

Fernández, J.

R. Balda, J. Azkargorta, I. Iparraguirre, J. Fernández, and M. A. Arriandiaga, “Study of the Cr3+ sensitization and structural disorder effects on the Nd3+ laser action in Ca-gallogermanate-type codoped crystals,” Opt. Mater. 8, 99–108 (1997).
[CrossRef]

J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández, “Cr3+–Nd3+ energy transfer and Nd3+ laser action studies of La3Ga3SiO14:Cr3+:Nd3+ codoped crystal,” IEEE J. Quantum Electron. 33, 474–482 (1997).
[CrossRef]

J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, and A. A. Kaminskii, “Time resolved spectroscopy of laser output of Nd3+ doped calcium, niobium, gallium garnet,” Opt. Commun. 118, 562–564 (1995).
[CrossRef]

Iparraguirre, I.

J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández, “Cr3+–Nd3+ energy transfer and Nd3+ laser action studies of La3Ga3SiO14:Cr3+:Nd3+ codoped crystal,” IEEE J. Quantum Electron. 33, 474–482 (1997).
[CrossRef]

R. Balda, J. Azkargorta, I. Iparraguirre, J. Fernández, and M. A. Arriandiaga, “Study of the Cr3+ sensitization and structural disorder effects on the Nd3+ laser action in Ca-gallogermanate-type codoped crystals,” Opt. Mater. 8, 99–108 (1997).
[CrossRef]

J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, and A. A. Kaminskii, “Time resolved spectroscopy of laser output of Nd3+ doped calcium, niobium, gallium garnet,” Opt. Commun. 118, 562–564 (1995).
[CrossRef]

Kaminskii, A. A.

J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, and A. A. Kaminskii, “Time resolved spectroscopy of laser output of Nd3+ doped calcium, niobium, gallium garnet,” Opt. Commun. 118, 562–564 (1995).
[CrossRef]

A. A. Kaminskii, “Procedure for the investigation of autoresonant energy transfer in laser active media,” Sov. Phys. JETP 27, 889–896 (1968).

A. A. Kaminskii, “High-temperature spectroscopic investigation of stimulated emission from lasers based on crystals and glasses activated with Nd3+ ions,” Sov. Phys. JETP 27, 388–399 (1968).

A. A. Kaminskii, V. V. Osico, A. M. Prokhorov, and Yu. K. Voronko, “Spectral investigation of the stimulated radiation of Nd3+ in CaF2–YF3,” Phys. Lett. 22, 419–420 (1966).
[CrossRef]

Kh. S. Bagdasarov, Yu. K. Voronko, A. A. Kaminskii, L. V. Krotova, and V. V. Osiko, “Modification of the optical properties of CaF2–TR3+ crystals by yttrium impurities,” Phys. Status Solidi 12, 905–912 (1965).
[CrossRef]

Karasik, A. Ya.

T. T. Basiev, A. Ya. Karasik, and R. L. Shubochkin, “Selective laser excitation and inhomogeneous band broadening of Nd3+ ions in disordered CaF2–YF3 crystals,” J. Lumin. 64, 259–265 (1995).
[CrossRef]

Krotova, L. V.

Kh. S. Bagdasarov, Yu. K. Voronko, A. A. Kaminskii, L. V. Krotova, and V. V. Osiko, “Modification of the optical properties of CaF2–TR3+ crystals by yttrium impurities,” Phys. Status Solidi 12, 905–912 (1965).
[CrossRef]

Osico, V. V.

A. A. Kaminskii, V. V. Osico, A. M. Prokhorov, and Yu. K. Voronko, “Spectral investigation of the stimulated radiation of Nd3+ in CaF2–YF3,” Phys. Lett. 22, 419–420 (1966).
[CrossRef]

Osiko, V. V.

Kh. S. Bagdasarov, Yu. K. Voronko, A. A. Kaminskii, L. V. Krotova, and V. V. Osiko, “Modification of the optical properties of CaF2–TR3+ crystals by yttrium impurities,” Phys. Status Solidi 12, 905–912 (1965).
[CrossRef]

Prokhorov, A. M.

A. A. Kaminskii, V. V. Osico, A. M. Prokhorov, and Yu. K. Voronko, “Spectral investigation of the stimulated radiation of Nd3+ in CaF2–YF3,” Phys. Lett. 22, 419–420 (1966).
[CrossRef]

Shubochkin, R. L.

T. T. Basiev, A. Ya. Karasik, and R. L. Shubochkin, “Selective laser excitation and inhomogeneous band broadening of Nd3+ ions in disordered CaF2–YF3 crystals,” J. Lumin. 64, 259–265 (1995).
[CrossRef]

Voronko, Yu. K.

A. A. Kaminskii, V. V. Osico, A. M. Prokhorov, and Yu. K. Voronko, “Spectral investigation of the stimulated radiation of Nd3+ in CaF2–YF3,” Phys. Lett. 22, 419–420 (1966).
[CrossRef]

Kh. S. Bagdasarov, Yu. K. Voronko, A. A. Kaminskii, L. V. Krotova, and V. V. Osiko, “Modification of the optical properties of CaF2–TR3+ crystals by yttrium impurities,” Phys. Status Solidi 12, 905–912 (1965).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández, “Cr3+–Nd3+ energy transfer and Nd3+ laser action studies of La3Ga3SiO14:Cr3+:Nd3+ codoped crystal,” IEEE J. Quantum Electron. 33, 474–482 (1997).
[CrossRef]

J. Lumin. (1)

T. T. Basiev, A. Ya. Karasik, and R. L. Shubochkin, “Selective laser excitation and inhomogeneous band broadening of Nd3+ ions in disordered CaF2–YF3 crystals,” J. Lumin. 64, 259–265 (1995).
[CrossRef]

Opt. Commun. (1)

J. Azkargorta, I. Iparraguirre, R. Balda, J. Fernández, and A. A. Kaminskii, “Time resolved spectroscopy of laser output of Nd3+ doped calcium, niobium, gallium garnet,” Opt. Commun. 118, 562–564 (1995).
[CrossRef]

Opt. Mater. (1)

R. Balda, J. Azkargorta, I. Iparraguirre, J. Fernández, and M. A. Arriandiaga, “Study of the Cr3+ sensitization and structural disorder effects on the Nd3+ laser action in Ca-gallogermanate-type codoped crystals,” Opt. Mater. 8, 99–108 (1997).
[CrossRef]

Phys. Lett. (1)

A. A. Kaminskii, V. V. Osico, A. M. Prokhorov, and Yu. K. Voronko, “Spectral investigation of the stimulated radiation of Nd3+ in CaF2–YF3,” Phys. Lett. 22, 419–420 (1966).
[CrossRef]

Phys. Status Solidi (1)

Kh. S. Bagdasarov, Yu. K. Voronko, A. A. Kaminskii, L. V. Krotova, and V. V. Osiko, “Modification of the optical properties of CaF2–TR3+ crystals by yttrium impurities,” Phys. Status Solidi 12, 905–912 (1965).
[CrossRef]

Sov. Phys. JETP (2)

A. A. Kaminskii, “Procedure for the investigation of autoresonant energy transfer in laser active media,” Sov. Phys. JETP 27, 889–896 (1968).

A. A. Kaminskii, “High-temperature spectroscopic investigation of stimulated emission from lasers based on crystals and glasses activated with Nd3+ ions,” Sov. Phys. JETP 27, 388–399 (1968).

Other (1)

A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, Fla., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Time-resolved excitation spectra of a CaF2YF3(5%)Nd3+(2%) crystal at 4.2 K for luminescence monitored at two emission wavelengths in the  4F3/24I11/2 transition and at 1 µs after the laser pulse.

Fig. 2
Fig. 2

Steady-state emission spectra of the  4F3/24I11/2 transition in a CaF2YF3(5%)Nd3+(2%) crystal obtained at 4.2 K by excitation of six wavelengths in the  4I9/24F3/2 absorption band.

Fig. 3
Fig. 3

Laser output energy as a function of discharge energy for two laser lines.

Fig. 4
Fig. 4

Time-integrated laser output spectra of a CaF2YF3(5%)Nd3+(2%) crystal for pumping energies of the three values shown times the threshold energy of 24 J.

Fig. 5
Fig. 5

Time-resolved laser pulses monitored at 1054 and 1063 nm for pumping energies of the three values shown times the threshold energy of 24 J.

Fig. 6
Fig. 6

Temporal evolution of single laser pulses for lines B and C.

Fig. 7
Fig. 7

Energy-level diagram for the two Nd3+ sites in the CaF2YF3(5%)Nd3+(2%) crystal.

Fig. 8
Fig. 8

Ratio of the output energies of the two laser lines as a function of pump rate relative to threshold.

Fig. 9
Fig. 9

Calculated temporal evolution of single laser pulses for lines B and C.

Fig. 10
Fig. 10

Temporal evolution of yttrofluorite single laser pulses for lines λB and λC A, without and B, with external Nd:YAG pulse excitation.

Tables (2)

Tables Icon

Table 1 Lifetimes of the  4F3/2 Level Obtained at Two Excitation Wavelengths and at Three Temperatures for the Crystal Doped with 2% NdF3

Tables Icon

Table 2 Stationary Laser Emission Modes As a Function of Threshold and Slope Parameters

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

dN1dt=αW-A1N1-B1N1Ø1-B12N1Ø2,
dN2dt=W-A2N2-B2N2Ø2,
dØ1dt=B1N1Ø1-KØ1,
dØ2dt=B2N2Ø2+B12N1Ø2-KØ2,
Mode1:Ø1=αWK-A1B1,Ø2=0;
Mode2:Ø1=0,
WB2A2+B2Ø2+αWB12A1+B12Ø2=K;
Mode1+2:Ø1=WKα-(1+α)b121-b12-A1B11-A2b12A1b2,
Ø2=WK11-b12-A2B2,
s1/s2=α-(1+α)b12.

Metrics