Abstract

The physical origin of the nonlinear scattering of light induced by the focusing of intense laser pulses onto carbon-black suspensions (CBS’s) is discussed through the interpretation of pump–probe experiments and angular analyses. Pump–probe experiments are carried out with a time delay ranging from picoseconds to the milliseconds, and angular analyses are performed in both the picosecond and the nanosecond regimes. The comparison between pump–probe experimental results obtained from solutions of CBS in water, CBS in ethanol, and indoaniline in ethanol shows that the scattering phenomenon is associated with the carbon particles within the first nanoseconds, the influence of the solvent being significant only at much longer times through thermal relaxation processes. Thermodynamical considerations confirm these experiments and clearly show that a vaporized or (and) ionized carbon particle may be an efficient scattering center for visible wavelengths. The measurements of time-integrated angular scattering intensities for 10-ns-duration pulses demonstrate the influence of multiple scattering at high laser fluences. Time-resolved angular scattering experiments show the existence of a shock wave during the growth of scattering centers created by the percussive picosecond-duration pump pulse.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, Materials for Optical Limiting, R. Crane, K. Lewis, E. W. Van Stryland, and M. Khoshnevisan, eds., MRS Symp. Proc. 374 (Materials Research Society, Pittsburgh, Pa, 1995).
  2. B. L. Justus, A. L. Huston, and A. J. Camillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
    [CrossRef]
  3. K. Mansour, E. W. Van Stryland, and M. J. Soileau, “Optical limiting in media with absorbing microparticles,” in Materials for Optical Switches, Isolators, and Limitors, M. J. Soileau, ed., Proc. SPIE 1105, 91–102 (1989).
    [CrossRef]
  4. F. Fougeanet and J. C. Fabre, “Nonlinear mechanisms in carbon-black suspension in a limiting geometry,” in Materials for Optical Limiting II, R. Sutherland, R. Pachter, P. Hood, D. Hagan, K. Lewis, and J. Perry, eds., MRS Symp. Proc. 479, 293–298 (Materials Research Society, Pittsburgh, Pa, 1995).
  5. K. Mansour, E. W. Van Stryland, and M. S. Soileau, “Optical nonlinearities in carbon black particles,” in Electro-Optical Materials for Switches, Coatings, Sensor Optics, and Detectors, R. Hartmann, M. J. Soileau, and V. K. Varadan, eds., Proc. SPIE 1307, 350–362 (1990).
    [CrossRef]
  6. K. Mansour, “Nonlinear properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992).
    [CrossRef]
  7. T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, and E. W. Van Stryland, “Nonlinear optical properties of the inorganic metal cluster,” in Nonlinear Optical Liquids, C. M. Lawson, ed., Proc. SPIE 2853, 142–148 (1996).
    [CrossRef]
  8. K. M. Nashold, R. A. Brown, D. P. Walter, and R. C. Honey, “Temporal and spatial characterization of optical breakdown in a suspension of small absorbing particles,” in Materials for Optical Switches, Isolators, and Limitors, M. J. Soileau, ed., Proc. SPIE 1105, 78–90 (1989).
    [CrossRef]
  9. K. M. Nashold and D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995).
    [CrossRef]
  10. C. M. Lawson, G. W. Euliss, and R. R. Michael, “Nanosecond laser-induced cavitation in carbon microparticle suspensions: applications in nonlinear interface switching,” Appl. Phys. Lett. 58, 2195–2197 (1991).
    [CrossRef]
  11. R. R. Michael and C. M. Lawson, “Nonlinear transmission and reflection at a dielectric–carbon microparticle suspension interface,” Opt. Lett. 17, 1055–1057 (1992).
    [CrossRef] [PubMed]
  12. R. R. Michael, C. M. Lawson, and G. W. Euliss, “Nanosecond switching in carbon microparticle suspensions,” in Nonlinear Optics III, R. A. Fisher and J. F. Reintjes, eds., Proc. SPIE 1626, 205–216 (1992).
    [CrossRef]
  13. R. R. Michael and C. M. Lawson, “Nonlinear interface switching in carbon microparticle suspensions,” in Nonlinear and Electro-Optic Materials for Optical Switching, M. J. Soileau, ed., Proc. SPIE 1692, 44–54 (1992).
    [CrossRef]
  14. C. M. Lawson and R. R. Michael, “Nonlinear reflection at a dielectric-carbon suspension interface: macroscopic theory and experiment,” Appl. Phys. Lett. 64, 2081–2083 (1994).
    [CrossRef]
  15. K. J. McEwan and P. A. Madden, “Transient grating effects in absorbing colloidal suspensions,” J. Chem. Phys. 11, 8748–8759 (1992).
    [CrossRef]
  16. H. Löwen and P. A. Madden, “A microscopic mechanism for shock-wave generation in pulsed-laser-heated colloidal suspensions,” J. Chem. Phys. 11, 8760–8766 (1992).
    [CrossRef]
  17. A. Fein, Z. Kotler, J. Bar-Sagi, S. Jackel, P. Shaier, and B. Zinger, “Nonlinear transmission characteristics of carbon-black suspensions,” Nonlinear Opt. Princ. Mater. Phenom. Devices 11, 277–288 (1995).
  18. D. R. Lide, ed., Handbook of Chemistry and Physics, 72nd ed. (CRC Press, Boca Raton, Fla., 1992).
  19. R. E. Bolz and G. L. Tuve, eds., Handbook of Tables for Applied Engineering Science, 2nd ed. (CRC Press, Cleveland, Oh., 1973).
  20. J. Stone, “Measurement of the absorption of light in low-loss liquids,” J. Opt. Soc. Am. 62, 327–333 (1972).
    [CrossRef]
  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).
  22. P. Brochard, V. Grolier-Mazza, and R. Cabanel, “Thermal nonlinear refraction in dye solutions: a study of the transient regimes,” J. Opt. Soc. Am. B 14, 405–414 (1997).
    [CrossRef]
  23. O. Durand, V. Grolier-Mazza, and R. Frey, “Picosecond-resolution study of nonlinear scattering in carbon black suspensions in water and ethanol,” Opt. Lett. 23, 1471–1473 (1998).
    [CrossRef]
  24. G. Lamb, Hydrodynamics (Dover, New York, 1945).
  25. A. Penzkofer, “Parametrically generated spectra and optical breakdown in H2O and NaCl,” Opt. Commun. 11, 265–269 (1974).
    [CrossRef]
  26. C. L. Tien and B. L. Drolen, “Thermal radiation in particulate media with dependent and independent scattering,” Ann. Rev. Num. Fluid Mech. Heat Transfer 1, 1–32 (1987).
    [CrossRef]
  27. H. Schnablegger and O. Glatter, “Sizing of colloidal particles with light scattering: corrections for beginning multiple scattering,” Appl. Opt. 34, 3489–3501 (1995).
    [CrossRef] [PubMed]

1998 (1)

1997 (1)

1996 (1)

T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, and E. W. Van Stryland, “Nonlinear optical properties of the inorganic metal cluster,” in Nonlinear Optical Liquids, C. M. Lawson, ed., Proc. SPIE 2853, 142–148 (1996).
[CrossRef]

1995 (3)

1994 (1)

C. M. Lawson and R. R. Michael, “Nonlinear reflection at a dielectric-carbon suspension interface: macroscopic theory and experiment,” Appl. Phys. Lett. 64, 2081–2083 (1994).
[CrossRef]

1993 (1)

B. L. Justus, A. L. Huston, and A. J. Camillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
[CrossRef]

1992 (6)

K. Mansour, “Nonlinear properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992).
[CrossRef]

K. J. McEwan and P. A. Madden, “Transient grating effects in absorbing colloidal suspensions,” J. Chem. Phys. 11, 8748–8759 (1992).
[CrossRef]

H. Löwen and P. A. Madden, “A microscopic mechanism for shock-wave generation in pulsed-laser-heated colloidal suspensions,” J. Chem. Phys. 11, 8760–8766 (1992).
[CrossRef]

R. R. Michael and C. M. Lawson, “Nonlinear transmission and reflection at a dielectric–carbon microparticle suspension interface,” Opt. Lett. 17, 1055–1057 (1992).
[CrossRef] [PubMed]

R. R. Michael, C. M. Lawson, and G. W. Euliss, “Nanosecond switching in carbon microparticle suspensions,” in Nonlinear Optics III, R. A. Fisher and J. F. Reintjes, eds., Proc. SPIE 1626, 205–216 (1992).
[CrossRef]

R. R. Michael and C. M. Lawson, “Nonlinear interface switching in carbon microparticle suspensions,” in Nonlinear and Electro-Optic Materials for Optical Switching, M. J. Soileau, ed., Proc. SPIE 1692, 44–54 (1992).
[CrossRef]

1991 (1)

C. M. Lawson, G. W. Euliss, and R. R. Michael, “Nanosecond laser-induced cavitation in carbon microparticle suspensions: applications in nonlinear interface switching,” Appl. Phys. Lett. 58, 2195–2197 (1991).
[CrossRef]

1990 (1)

K. Mansour, E. W. Van Stryland, and M. S. Soileau, “Optical nonlinearities in carbon black particles,” in Electro-Optical Materials for Switches, Coatings, Sensor Optics, and Detectors, R. Hartmann, M. J. Soileau, and V. K. Varadan, eds., Proc. SPIE 1307, 350–362 (1990).
[CrossRef]

1989 (2)

K. Mansour, E. W. Van Stryland, and M. J. Soileau, “Optical limiting in media with absorbing microparticles,” in Materials for Optical Switches, Isolators, and Limitors, M. J. Soileau, ed., Proc. SPIE 1105, 91–102 (1989).
[CrossRef]

K. M. Nashold, R. A. Brown, D. P. Walter, and R. C. Honey, “Temporal and spatial characterization of optical breakdown in a suspension of small absorbing particles,” in Materials for Optical Switches, Isolators, and Limitors, M. J. Soileau, ed., Proc. SPIE 1105, 78–90 (1989).
[CrossRef]

1987 (1)

C. L. Tien and B. L. Drolen, “Thermal radiation in particulate media with dependent and independent scattering,” Ann. Rev. Num. Fluid Mech. Heat Transfer 1, 1–32 (1987).
[CrossRef]

1974 (1)

A. Penzkofer, “Parametrically generated spectra and optical breakdown in H2O and NaCl,” Opt. Commun. 11, 265–269 (1974).
[CrossRef]

1972 (1)

Bar-Sagi, J.

A. Fein, Z. Kotler, J. Bar-Sagi, S. Jackel, P. Shaier, and B. Zinger, “Nonlinear transmission characteristics of carbon-black suspensions,” Nonlinear Opt. Princ. Mater. Phenom. Devices 11, 277–288 (1995).

Brochard, P.

Brown, R. A.

K. M. Nashold, R. A. Brown, D. P. Walter, and R. C. Honey, “Temporal and spatial characterization of optical breakdown in a suspension of small absorbing particles,” in Materials for Optical Switches, Isolators, and Limitors, M. J. Soileau, ed., Proc. SPIE 1105, 78–90 (1989).
[CrossRef]

Cabanel, R.

Camillo, A. J.

B. L. Justus, A. L. Huston, and A. J. Camillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
[CrossRef]

Dogariu, A.

T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, and E. W. Van Stryland, “Nonlinear optical properties of the inorganic metal cluster,” in Nonlinear Optical Liquids, C. M. Lawson, ed., Proc. SPIE 2853, 142–148 (1996).
[CrossRef]

Drolen, B. L.

C. L. Tien and B. L. Drolen, “Thermal radiation in particulate media with dependent and independent scattering,” Ann. Rev. Num. Fluid Mech. Heat Transfer 1, 1–32 (1987).
[CrossRef]

Durand, O.

Euliss, G. W.

R. R. Michael, C. M. Lawson, and G. W. Euliss, “Nanosecond switching in carbon microparticle suspensions,” in Nonlinear Optics III, R. A. Fisher and J. F. Reintjes, eds., Proc. SPIE 1626, 205–216 (1992).
[CrossRef]

C. M. Lawson, G. W. Euliss, and R. R. Michael, “Nanosecond laser-induced cavitation in carbon microparticle suspensions: applications in nonlinear interface switching,” Appl. Phys. Lett. 58, 2195–2197 (1991).
[CrossRef]

Fabre, J. C.

F. Fougeanet and J. C. Fabre, “Nonlinear mechanisms in carbon-black suspension in a limiting geometry,” in Materials for Optical Limiting II, R. Sutherland, R. Pachter, P. Hood, D. Hagan, K. Lewis, and J. Perry, eds., MRS Symp. Proc. 479, 293–298 (Materials Research Society, Pittsburgh, Pa, 1995).

Fein, A.

A. Fein, Z. Kotler, J. Bar-Sagi, S. Jackel, P. Shaier, and B. Zinger, “Nonlinear transmission characteristics of carbon-black suspensions,” Nonlinear Opt. Princ. Mater. Phenom. Devices 11, 277–288 (1995).

Fougeanet, F.

F. Fougeanet and J. C. Fabre, “Nonlinear mechanisms in carbon-black suspension in a limiting geometry,” in Materials for Optical Limiting II, R. Sutherland, R. Pachter, P. Hood, D. Hagan, K. Lewis, and J. Perry, eds., MRS Symp. Proc. 479, 293–298 (Materials Research Society, Pittsburgh, Pa, 1995).

Frey, R.

Glatter, O.

Grolier-Mazza, V.

Hagan, D. J.

T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, and E. W. Van Stryland, “Nonlinear optical properties of the inorganic metal cluster,” in Nonlinear Optical Liquids, C. M. Lawson, ed., Proc. SPIE 2853, 142–148 (1996).
[CrossRef]

Honey, R. C.

K. M. Nashold, R. A. Brown, D. P. Walter, and R. C. Honey, “Temporal and spatial characterization of optical breakdown in a suspension of small absorbing particles,” in Materials for Optical Switches, Isolators, and Limitors, M. J. Soileau, ed., Proc. SPIE 1105, 78–90 (1989).
[CrossRef]

Huston, A. L.

B. L. Justus, A. L. Huston, and A. J. Camillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
[CrossRef]

Jackel, S.

A. Fein, Z. Kotler, J. Bar-Sagi, S. Jackel, P. Shaier, and B. Zinger, “Nonlinear transmission characteristics of carbon-black suspensions,” Nonlinear Opt. Princ. Mater. Phenom. Devices 11, 277–288 (1995).

Justus, B. L.

B. L. Justus, A. L. Huston, and A. J. Camillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
[CrossRef]

Kotler, Z.

A. Fein, Z. Kotler, J. Bar-Sagi, S. Jackel, P. Shaier, and B. Zinger, “Nonlinear transmission characteristics of carbon-black suspensions,” Nonlinear Opt. Princ. Mater. Phenom. Devices 11, 277–288 (1995).

Lawson, C. M.

C. M. Lawson and R. R. Michael, “Nonlinear reflection at a dielectric-carbon suspension interface: macroscopic theory and experiment,” Appl. Phys. Lett. 64, 2081–2083 (1994).
[CrossRef]

R. R. Michael, C. M. Lawson, and G. W. Euliss, “Nanosecond switching in carbon microparticle suspensions,” in Nonlinear Optics III, R. A. Fisher and J. F. Reintjes, eds., Proc. SPIE 1626, 205–216 (1992).
[CrossRef]

R. R. Michael and C. M. Lawson, “Nonlinear interface switching in carbon microparticle suspensions,” in Nonlinear and Electro-Optic Materials for Optical Switching, M. J. Soileau, ed., Proc. SPIE 1692, 44–54 (1992).
[CrossRef]

R. R. Michael and C. M. Lawson, “Nonlinear transmission and reflection at a dielectric–carbon microparticle suspension interface,” Opt. Lett. 17, 1055–1057 (1992).
[CrossRef] [PubMed]

C. M. Lawson, G. W. Euliss, and R. R. Michael, “Nanosecond laser-induced cavitation in carbon microparticle suspensions: applications in nonlinear interface switching,” Appl. Phys. Lett. 58, 2195–2197 (1991).
[CrossRef]

Löwen, H.

H. Löwen and P. A. Madden, “A microscopic mechanism for shock-wave generation in pulsed-laser-heated colloidal suspensions,” J. Chem. Phys. 11, 8760–8766 (1992).
[CrossRef]

Madden, P. A.

H. Löwen and P. A. Madden, “A microscopic mechanism for shock-wave generation in pulsed-laser-heated colloidal suspensions,” J. Chem. Phys. 11, 8760–8766 (1992).
[CrossRef]

K. J. McEwan and P. A. Madden, “Transient grating effects in absorbing colloidal suspensions,” J. Chem. Phys. 11, 8748–8759 (1992).
[CrossRef]

Mansour, K.

T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, and E. W. Van Stryland, “Nonlinear optical properties of the inorganic metal cluster,” in Nonlinear Optical Liquids, C. M. Lawson, ed., Proc. SPIE 2853, 142–148 (1996).
[CrossRef]

K. Mansour, “Nonlinear properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992).
[CrossRef]

K. Mansour, E. W. Van Stryland, and M. S. Soileau, “Optical nonlinearities in carbon black particles,” in Electro-Optical Materials for Switches, Coatings, Sensor Optics, and Detectors, R. Hartmann, M. J. Soileau, and V. K. Varadan, eds., Proc. SPIE 1307, 350–362 (1990).
[CrossRef]

K. Mansour, E. W. Van Stryland, and M. J. Soileau, “Optical limiting in media with absorbing microparticles,” in Materials for Optical Switches, Isolators, and Limitors, M. J. Soileau, ed., Proc. SPIE 1105, 91–102 (1989).
[CrossRef]

McEwan, K. J.

K. J. McEwan and P. A. Madden, “Transient grating effects in absorbing colloidal suspensions,” J. Chem. Phys. 11, 8748–8759 (1992).
[CrossRef]

Michael, R. R.

C. M. Lawson and R. R. Michael, “Nonlinear reflection at a dielectric-carbon suspension interface: macroscopic theory and experiment,” Appl. Phys. Lett. 64, 2081–2083 (1994).
[CrossRef]

R. R. Michael, C. M. Lawson, and G. W. Euliss, “Nanosecond switching in carbon microparticle suspensions,” in Nonlinear Optics III, R. A. Fisher and J. F. Reintjes, eds., Proc. SPIE 1626, 205–216 (1992).
[CrossRef]

R. R. Michael and C. M. Lawson, “Nonlinear interface switching in carbon microparticle suspensions,” in Nonlinear and Electro-Optic Materials for Optical Switching, M. J. Soileau, ed., Proc. SPIE 1692, 44–54 (1992).
[CrossRef]

R. R. Michael and C. M. Lawson, “Nonlinear transmission and reflection at a dielectric–carbon microparticle suspension interface,” Opt. Lett. 17, 1055–1057 (1992).
[CrossRef] [PubMed]

C. M. Lawson, G. W. Euliss, and R. R. Michael, “Nanosecond laser-induced cavitation in carbon microparticle suspensions: applications in nonlinear interface switching,” Appl. Phys. Lett. 58, 2195–2197 (1991).
[CrossRef]

Nashold, K. M.

K. M. Nashold and D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995).
[CrossRef]

K. M. Nashold, R. A. Brown, D. P. Walter, and R. C. Honey, “Temporal and spatial characterization of optical breakdown in a suspension of small absorbing particles,” in Materials for Optical Switches, Isolators, and Limitors, M. J. Soileau, ed., Proc. SPIE 1105, 78–90 (1989).
[CrossRef]

Penzkofer, A.

A. Penzkofer, “Parametrically generated spectra and optical breakdown in H2O and NaCl,” Opt. Commun. 11, 265–269 (1974).
[CrossRef]

Said, A. A.

T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, and E. W. Van Stryland, “Nonlinear optical properties of the inorganic metal cluster,” in Nonlinear Optical Liquids, C. M. Lawson, ed., Proc. SPIE 2853, 142–148 (1996).
[CrossRef]

Schnablegger, H.

Shaier, P.

A. Fein, Z. Kotler, J. Bar-Sagi, S. Jackel, P. Shaier, and B. Zinger, “Nonlinear transmission characteristics of carbon-black suspensions,” Nonlinear Opt. Princ. Mater. Phenom. Devices 11, 277–288 (1995).

Soileau, M. J.

K. Mansour, E. W. Van Stryland, and M. J. Soileau, “Optical limiting in media with absorbing microparticles,” in Materials for Optical Switches, Isolators, and Limitors, M. J. Soileau, ed., Proc. SPIE 1105, 91–102 (1989).
[CrossRef]

Soileau, M. S.

K. Mansour, E. W. Van Stryland, and M. S. Soileau, “Optical nonlinearities in carbon black particles,” in Electro-Optical Materials for Switches, Coatings, Sensor Optics, and Detectors, R. Hartmann, M. J. Soileau, and V. K. Varadan, eds., Proc. SPIE 1307, 350–362 (1990).
[CrossRef]

Stone, J.

Tien, C. L.

C. L. Tien and B. L. Drolen, “Thermal radiation in particulate media with dependent and independent scattering,” Ann. Rev. Num. Fluid Mech. Heat Transfer 1, 1–32 (1987).
[CrossRef]

Van Stryland, E. W.

T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, and E. W. Van Stryland, “Nonlinear optical properties of the inorganic metal cluster,” in Nonlinear Optical Liquids, C. M. Lawson, ed., Proc. SPIE 2853, 142–148 (1996).
[CrossRef]

K. Mansour, E. W. Van Stryland, and M. S. Soileau, “Optical nonlinearities in carbon black particles,” in Electro-Optical Materials for Switches, Coatings, Sensor Optics, and Detectors, R. Hartmann, M. J. Soileau, and V. K. Varadan, eds., Proc. SPIE 1307, 350–362 (1990).
[CrossRef]

K. Mansour, E. W. Van Stryland, and M. J. Soileau, “Optical limiting in media with absorbing microparticles,” in Materials for Optical Switches, Isolators, and Limitors, M. J. Soileau, ed., Proc. SPIE 1105, 91–102 (1989).
[CrossRef]

Walter, D. P.

K. M. Nashold and D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995).
[CrossRef]

K. M. Nashold, R. A. Brown, D. P. Walter, and R. C. Honey, “Temporal and spatial characterization of optical breakdown in a suspension of small absorbing particles,” in Materials for Optical Switches, Isolators, and Limitors, M. J. Soileau, ed., Proc. SPIE 1105, 78–90 (1989).
[CrossRef]

Xia, T.

T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, and E. W. Van Stryland, “Nonlinear optical properties of the inorganic metal cluster,” in Nonlinear Optical Liquids, C. M. Lawson, ed., Proc. SPIE 2853, 142–148 (1996).
[CrossRef]

Zinger, B.

A. Fein, Z. Kotler, J. Bar-Sagi, S. Jackel, P. Shaier, and B. Zinger, “Nonlinear transmission characteristics of carbon-black suspensions,” Nonlinear Opt. Princ. Mater. Phenom. Devices 11, 277–288 (1995).

Ann. Rev. Num. Fluid Mech. Heat Transfer (1)

C. L. Tien and B. L. Drolen, “Thermal radiation in particulate media with dependent and independent scattering,” Ann. Rev. Num. Fluid Mech. Heat Transfer 1, 1–32 (1987).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

B. L. Justus, A. L. Huston, and A. J. Camillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
[CrossRef]

C. M. Lawson, G. W. Euliss, and R. R. Michael, “Nanosecond laser-induced cavitation in carbon microparticle suspensions: applications in nonlinear interface switching,” Appl. Phys. Lett. 58, 2195–2197 (1991).
[CrossRef]

C. M. Lawson and R. R. Michael, “Nonlinear reflection at a dielectric-carbon suspension interface: macroscopic theory and experiment,” Appl. Phys. Lett. 64, 2081–2083 (1994).
[CrossRef]

J. Chem. Phys. (2)

K. J. McEwan and P. A. Madden, “Transient grating effects in absorbing colloidal suspensions,” J. Chem. Phys. 11, 8748–8759 (1992).
[CrossRef]

H. Löwen and P. A. Madden, “A microscopic mechanism for shock-wave generation in pulsed-laser-heated colloidal suspensions,” J. Chem. Phys. 11, 8760–8766 (1992).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

MRS Symp. Proc. (1)

F. Fougeanet and J. C. Fabre, “Nonlinear mechanisms in carbon-black suspension in a limiting geometry,” in Materials for Optical Limiting II, R. Sutherland, R. Pachter, P. Hood, D. Hagan, K. Lewis, and J. Perry, eds., MRS Symp. Proc. 479, 293–298 (Materials Research Society, Pittsburgh, Pa, 1995).

Nonlinear Opt. Princ. Mater. Phenom. Devices (1)

A. Fein, Z. Kotler, J. Bar-Sagi, S. Jackel, P. Shaier, and B. Zinger, “Nonlinear transmission characteristics of carbon-black suspensions,” Nonlinear Opt. Princ. Mater. Phenom. Devices 11, 277–288 (1995).

Opt. Commun. (1)

A. Penzkofer, “Parametrically generated spectra and optical breakdown in H2O and NaCl,” Opt. Commun. 11, 265–269 (1974).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (6)

R. R. Michael, C. M. Lawson, and G. W. Euliss, “Nanosecond switching in carbon microparticle suspensions,” in Nonlinear Optics III, R. A. Fisher and J. F. Reintjes, eds., Proc. SPIE 1626, 205–216 (1992).
[CrossRef]

R. R. Michael and C. M. Lawson, “Nonlinear interface switching in carbon microparticle suspensions,” in Nonlinear and Electro-Optic Materials for Optical Switching, M. J. Soileau, ed., Proc. SPIE 1692, 44–54 (1992).
[CrossRef]

K. Mansour, E. W. Van Stryland, and M. S. Soileau, “Optical nonlinearities in carbon black particles,” in Electro-Optical Materials for Switches, Coatings, Sensor Optics, and Detectors, R. Hartmann, M. J. Soileau, and V. K. Varadan, eds., Proc. SPIE 1307, 350–362 (1990).
[CrossRef]

K. Mansour, E. W. Van Stryland, and M. J. Soileau, “Optical limiting in media with absorbing microparticles,” in Materials for Optical Switches, Isolators, and Limitors, M. J. Soileau, ed., Proc. SPIE 1105, 91–102 (1989).
[CrossRef]

T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, and E. W. Van Stryland, “Nonlinear optical properties of the inorganic metal cluster,” in Nonlinear Optical Liquids, C. M. Lawson, ed., Proc. SPIE 2853, 142–148 (1996).
[CrossRef]

K. M. Nashold, R. A. Brown, D. P. Walter, and R. C. Honey, “Temporal and spatial characterization of optical breakdown in a suspension of small absorbing particles,” in Materials for Optical Switches, Isolators, and Limitors, M. J. Soileau, ed., Proc. SPIE 1105, 78–90 (1989).
[CrossRef]

Other (5)

See, for example, Materials for Optical Limiting, R. Crane, K. Lewis, E. W. Van Stryland, and M. Khoshnevisan, eds., MRS Symp. Proc. 374 (Materials Research Society, Pittsburgh, Pa, 1995).

D. R. Lide, ed., Handbook of Chemistry and Physics, 72nd ed. (CRC Press, Boca Raton, Fla., 1992).

R. E. Bolz and G. L. Tuve, eds., Handbook of Tables for Applied Engineering Science, 2nd ed. (CRC Press, Cleveland, Oh., 1973).

G. Lamb, Hydrodynamics (Dover, New York, 1945).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Temporal transmission of the probe beam in a solution of (1) CBS in water, (2) CBS in ethanol, (3) and indoaniline dye in ethanol on a time scale of (a) 10 ns/div, (b) 250 ns/div, (c) 50 µs/div, and (d) 1 ms/div. The upper curve (0) in (a) represents the pump-pulse profile.

Fig. 2
Fig. 2

Normalized probe transmission for the solutions of CBS’s in water and in ethanol as a function of probe delay for maximum delays of (a) 1100 ps and (b) 56 ns.

Fig. 3
Fig. 3

Final radius of the scattering centers as a function of the incident fluence in the case of the vaporization and the ionization of a carbon particle (electronic densities of 1.3×1024 m-3 and 1.3×1028 m-3) in solid, dashed, and dotted curves, respectively. The initial radius of the carbon particle is 10 nm.

Fig. 4
Fig. 4

(a) Experimental scattering diagrams of a beam at 532 nm focused onto CBS in ethanol for different incident fluences. (b) Experimental (squares) and theoretical (circles) scattering diagrams of a cw He–Ne beam scattered by size-calibrated latex spheres in a suspension in water. (c) Experimental scattering diagrams obtained by Schnabbleger et al.27 in the case of a cw He–Ne beam scattered by 0.317-µm latex particles of a volumic fraction of (a) 2×10-4, (b) 5×10-3, and (c) 2×10-2.

Fig. 5
Fig. 5

Comparison of the normalized scattering diagrams of the solutions of CBS’s in water (squares) and in ethanol (circles) for an incident fluence of 1 J/cm2 and delays of (a) 300 ps, (b) 600 ps, (c) 1 ns, and (d) 3 ns.

Fig. 6
Fig. 6

(a) Refractive-index profile in the case of a carbon vapor bubble or a microplasma surrounded by a spherical overpressure crust at the interface between the scattering centers and the surrounding liquid. (b) Trapping of the incident light inside the spherical overpressure crust at the interface between the scattering centers and the surrounding liquid.

Tables (1)

Tables Icon

Table 1 Thermodynamical Parameters of Water and Ethanol a,b

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L=d1fv1/3-1.
(4π/3)(2σR2+P0R3)=Nk(Ts+ΔT),
4π3(2σR2+P0R3)=23(Eabs-Eion).

Metrics