Abstract

We have demonstrated temperature rises that result from nonlinear absorption in single-pass frequency-doubling experiments using femtosecond pulses and a 3-mm-thick KNbO3 crystal. These temperature changes shift the phase-matching curve and must be accounted for to optimize the conversion efficiency. We obtained a maximum second-harmonic generation (SHG) efficiency of 66% at an input power of 107 mW and a slope efficiency of ∼1.5%/mW at low input powers. We have investigated, for the first time to our knowledge, the focusing dependence of the phase-matching temperature. We have also found that the temperature-dependent SHG efficiency in femtosecond SHG experiments is significantly different from that obtained for frequency doubling of continuous-wave light.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Zysset, I. Biaggio, and P. Günter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380–386 (1992).
    [CrossRef]
  2. I. Biaggio, P. Kerkoc, L.-S. Wu, P. Günter, and B. Zysset, “Refractive indices of orthorhombic KNbO3. II. Phase-matching configurations for nonlinear-optical interactions,” J. Opt. Soc. Am. B 9, 507–517 (1992).
    [CrossRef]
  3. J.-C. Baumert, P. Günter, and H. Melchior, “High efficiency second harmonic generation in KNbO3 crystals,” Opt. Commun. 48, 215–220 (1983).
    [CrossRef]
  4. E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett. 16, 1400–1402 (1991).
    [CrossRef] [PubMed]
  5. S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, “Efficient frequency doubling of a continuous wave titanium:sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
    [CrossRef]
  6. F. Seifert and V. Petrov, “Synchronous pumping of a visible dye laser by a frequency doubled mode-locked Ti:sapphire laser and its application for difference frequency generation in the near infrared,” Opt. Commun. 99, 413–420 (1993).
    [CrossRef]
  7. Z. Y. Ou and H. J. Kimble, “Enhanced conversion efficiency for harmonic generation with double resonance,” Opt. Lett. 18, 1053–1055 (1993).
    [CrossRef] [PubMed]
  8. H. Tsuchida, “Frequency doubling of tunable Ti:sapphire laser with KNbO3 in external cavity,” Jpn. J. Appl. Phys. 33, 6190–6194 (1994).
    [CrossRef]
  9. D. Kühlke and U. Herpers, “Limitations of the second harmonic conversion of intense femtosecond pulses,” Opt. Commun. 69, 75–78 (1988).
    [CrossRef]
  10. V. Krylov, A. Rebane, A. G. Kalintsev, H. Schwoerer, and U. P. Wild, “Second-harmonic generation of amplified femtosecond Ti:sapphire laser pulses,” Opt. Lett. 20, 198–200 (1995).
    [CrossRef] [PubMed]
  11. R. M. Rassoul, A. Ivanov, E. Freysz, A. Ducasse, and F. Hache, “Second-harmonic generation under phase-velocity and group-velocity mismatch: influence of cascading self-phase and cross-phase modulation,” Opt. Lett. 22, 268–270 (1997).
    [CrossRef] [PubMed]
  12. A. V. Smith, D. J. Armstrong, and W. J. Alford, “Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals,” J. Opt. Soc. Am. B 15, 122–141 (1998).
    [CrossRef]
  13. J. Comly and E. Garmire, “Second harmonic generation from short pulses,” Appl. Phys. Lett. 12, 7–9 (1968).
    [CrossRef]
  14. W. H. Glenn, “Second harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. 5, 281–290 (1969).
    [CrossRef]
  15. S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space–time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).
  16. A. M. Weiner, A. M. Kan’an, and D. E. Leaird, “High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal,” Opt. Lett. 23, 1441–1443 (1998).
    [CrossRef]
  17. L. Goldberg, L. E. Busse, and D. Mehuys, “High power continuous wave blue light generation in KNbO3 using semiconductor amplifier seeded by a laser diode,” Appl. Phys. Lett. 63, 2327–2329 (1993).
    [CrossRef]
  18. H. Mabuchi, E. S. Polzik, and H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3,” J. Opt. Soc. Am. B 11, 2023–2029 (1994).
    [CrossRef]
  19. L. E. Busse, L. Goldberg, M. R. Surette, and G. Mizell, “Absorption losses in MgO-doped and undoped potassium niobate,” J. Appl. Phys. 75, 1102–1110 (1994).
    [CrossRef]
  20. T. Pliska, D. Fluck, P. Günter, E. Gini, H. Melchior, L. Beckers, and C. Buchal, “Birefringence phase-matched blue light second harmonic generation in a KNbO3 ridge waveguide,” Appl. Phys. Lett. 72, 2364–2366 (1998).
    [CrossRef]

1998 (3)

1997 (1)

1995 (1)

1994 (3)

H. Tsuchida, “Frequency doubling of tunable Ti:sapphire laser with KNbO3 in external cavity,” Jpn. J. Appl. Phys. 33, 6190–6194 (1994).
[CrossRef]

H. Mabuchi, E. S. Polzik, and H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3,” J. Opt. Soc. Am. B 11, 2023–2029 (1994).
[CrossRef]

L. E. Busse, L. Goldberg, M. R. Surette, and G. Mizell, “Absorption losses in MgO-doped and undoped potassium niobate,” J. Appl. Phys. 75, 1102–1110 (1994).
[CrossRef]

1993 (4)

L. Goldberg, L. E. Busse, and D. Mehuys, “High power continuous wave blue light generation in KNbO3 using semiconductor amplifier seeded by a laser diode,” Appl. Phys. Lett. 63, 2327–2329 (1993).
[CrossRef]

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, “Efficient frequency doubling of a continuous wave titanium:sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
[CrossRef]

F. Seifert and V. Petrov, “Synchronous pumping of a visible dye laser by a frequency doubled mode-locked Ti:sapphire laser and its application for difference frequency generation in the near infrared,” Opt. Commun. 99, 413–420 (1993).
[CrossRef]

Z. Y. Ou and H. J. Kimble, “Enhanced conversion efficiency for harmonic generation with double resonance,” Opt. Lett. 18, 1053–1055 (1993).
[CrossRef] [PubMed]

1992 (2)

1991 (1)

1988 (1)

D. Kühlke and U. Herpers, “Limitations of the second harmonic conversion of intense femtosecond pulses,” Opt. Commun. 69, 75–78 (1988).
[CrossRef]

1983 (1)

J.-C. Baumert, P. Günter, and H. Melchior, “High efficiency second harmonic generation in KNbO3 crystals,” Opt. Commun. 48, 215–220 (1983).
[CrossRef]

1969 (2)

W. H. Glenn, “Second harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. 5, 281–290 (1969).
[CrossRef]

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space–time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).

1968 (1)

J. Comly and E. Garmire, “Second harmonic generation from short pulses,” Appl. Phys. Lett. 12, 7–9 (1968).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space–time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).

Alford, W. J.

Armstrong, D. J.

Baumert, J.-C.

J.-C. Baumert, P. Günter, and H. Melchior, “High efficiency second harmonic generation in KNbO3 crystals,” Opt. Commun. 48, 215–220 (1983).
[CrossRef]

Beckers, L.

T. Pliska, D. Fluck, P. Günter, E. Gini, H. Melchior, L. Beckers, and C. Buchal, “Birefringence phase-matched blue light second harmonic generation in a KNbO3 ridge waveguide,” Appl. Phys. Lett. 72, 2364–2366 (1998).
[CrossRef]

Biaggio, I.

Biraben, F.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, “Efficient frequency doubling of a continuous wave titanium:sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
[CrossRef]

Bourzeix, S.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, “Efficient frequency doubling of a continuous wave titanium:sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
[CrossRef]

Buchal, C.

T. Pliska, D. Fluck, P. Günter, E. Gini, H. Melchior, L. Beckers, and C. Buchal, “Birefringence phase-matched blue light second harmonic generation in a KNbO3 ridge waveguide,” Appl. Phys. Lett. 72, 2364–2366 (1998).
[CrossRef]

Busse, L. E.

L. E. Busse, L. Goldberg, M. R. Surette, and G. Mizell, “Absorption losses in MgO-doped and undoped potassium niobate,” J. Appl. Phys. 75, 1102–1110 (1994).
[CrossRef]

L. Goldberg, L. E. Busse, and D. Mehuys, “High power continuous wave blue light generation in KNbO3 using semiconductor amplifier seeded by a laser diode,” Appl. Phys. Lett. 63, 2327–2329 (1993).
[CrossRef]

Chirkin, A. S.

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space–time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).

Comly, J.

J. Comly and E. Garmire, “Second harmonic generation from short pulses,” Appl. Phys. Lett. 12, 7–9 (1968).
[CrossRef]

Ducasse, A.

Fluck, D.

T. Pliska, D. Fluck, P. Günter, E. Gini, H. Melchior, L. Beckers, and C. Buchal, “Birefringence phase-matched blue light second harmonic generation in a KNbO3 ridge waveguide,” Appl. Phys. Lett. 72, 2364–2366 (1998).
[CrossRef]

Freysz, E.

Garmire, E.

J. Comly and E. Garmire, “Second harmonic generation from short pulses,” Appl. Phys. Lett. 12, 7–9 (1968).
[CrossRef]

Gini, E.

T. Pliska, D. Fluck, P. Günter, E. Gini, H. Melchior, L. Beckers, and C. Buchal, “Birefringence phase-matched blue light second harmonic generation in a KNbO3 ridge waveguide,” Appl. Phys. Lett. 72, 2364–2366 (1998).
[CrossRef]

Glenn, W. H.

W. H. Glenn, “Second harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. 5, 281–290 (1969).
[CrossRef]

Goldberg, L.

L. E. Busse, L. Goldberg, M. R. Surette, and G. Mizell, “Absorption losses in MgO-doped and undoped potassium niobate,” J. Appl. Phys. 75, 1102–1110 (1994).
[CrossRef]

L. Goldberg, L. E. Busse, and D. Mehuys, “High power continuous wave blue light generation in KNbO3 using semiconductor amplifier seeded by a laser diode,” Appl. Phys. Lett. 63, 2327–2329 (1993).
[CrossRef]

Günter, P.

T. Pliska, D. Fluck, P. Günter, E. Gini, H. Melchior, L. Beckers, and C. Buchal, “Birefringence phase-matched blue light second harmonic generation in a KNbO3 ridge waveguide,” Appl. Phys. Lett. 72, 2364–2366 (1998).
[CrossRef]

I. Biaggio, P. Kerkoc, L.-S. Wu, P. Günter, and B. Zysset, “Refractive indices of orthorhombic KNbO3. II. Phase-matching configurations for nonlinear-optical interactions,” J. Opt. Soc. Am. B 9, 507–517 (1992).
[CrossRef]

B. Zysset, I. Biaggio, and P. Günter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380–386 (1992).
[CrossRef]

J.-C. Baumert, P. Günter, and H. Melchior, “High efficiency second harmonic generation in KNbO3 crystals,” Opt. Commun. 48, 215–220 (1983).
[CrossRef]

Hache, F.

Herpers, U.

D. Kühlke and U. Herpers, “Limitations of the second harmonic conversion of intense femtosecond pulses,” Opt. Commun. 69, 75–78 (1988).
[CrossRef]

Ivanov, A.

Julien, L.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, “Efficient frequency doubling of a continuous wave titanium:sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
[CrossRef]

Kalintsev, A. G.

Kan’an, A. M.

Kerkoc, P.

Kimble, H. J.

Krylov, V.

Kühlke, D.

D. Kühlke and U. Herpers, “Limitations of the second harmonic conversion of intense femtosecond pulses,” Opt. Commun. 69, 75–78 (1988).
[CrossRef]

Leaird, D. E.

Mabuchi, H.

Mehuys, D.

L. Goldberg, L. E. Busse, and D. Mehuys, “High power continuous wave blue light generation in KNbO3 using semiconductor amplifier seeded by a laser diode,” Appl. Phys. Lett. 63, 2327–2329 (1993).
[CrossRef]

Melchior, H.

T. Pliska, D. Fluck, P. Günter, E. Gini, H. Melchior, L. Beckers, and C. Buchal, “Birefringence phase-matched blue light second harmonic generation in a KNbO3 ridge waveguide,” Appl. Phys. Lett. 72, 2364–2366 (1998).
[CrossRef]

J.-C. Baumert, P. Günter, and H. Melchior, “High efficiency second harmonic generation in KNbO3 crystals,” Opt. Commun. 48, 215–220 (1983).
[CrossRef]

Mizell, G.

L. E. Busse, L. Goldberg, M. R. Surette, and G. Mizell, “Absorption losses in MgO-doped and undoped potassium niobate,” J. Appl. Phys. 75, 1102–1110 (1994).
[CrossRef]

Nez, F.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, “Efficient frequency doubling of a continuous wave titanium:sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
[CrossRef]

Ou, Z. Y.

Petrov, V.

F. Seifert and V. Petrov, “Synchronous pumping of a visible dye laser by a frequency doubled mode-locked Ti:sapphire laser and its application for difference frequency generation in the near infrared,” Opt. Commun. 99, 413–420 (1993).
[CrossRef]

Plimmer, M. D.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, “Efficient frequency doubling of a continuous wave titanium:sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
[CrossRef]

Pliska, T.

T. Pliska, D. Fluck, P. Günter, E. Gini, H. Melchior, L. Beckers, and C. Buchal, “Birefringence phase-matched blue light second harmonic generation in a KNbO3 ridge waveguide,” Appl. Phys. Lett. 72, 2364–2366 (1998).
[CrossRef]

Polzik, E. S.

Rassoul, R. M.

Rebane, A.

Schwoerer, H.

Seifert, F.

F. Seifert and V. Petrov, “Synchronous pumping of a visible dye laser by a frequency doubled mode-locked Ti:sapphire laser and its application for difference frequency generation in the near infrared,” Opt. Commun. 99, 413–420 (1993).
[CrossRef]

Smith, A. V.

Sukhorukov, A. P.

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space–time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).

Surette, M. R.

L. E. Busse, L. Goldberg, M. R. Surette, and G. Mizell, “Absorption losses in MgO-doped and undoped potassium niobate,” J. Appl. Phys. 75, 1102–1110 (1994).
[CrossRef]

Tsuchida, H.

H. Tsuchida, “Frequency doubling of tunable Ti:sapphire laser with KNbO3 in external cavity,” Jpn. J. Appl. Phys. 33, 6190–6194 (1994).
[CrossRef]

Weiner, A. M.

Wild, U. P.

Wu, L.-S.

Zysset, B.

Appl. Phys. Lett. (3)

J. Comly and E. Garmire, “Second harmonic generation from short pulses,” Appl. Phys. Lett. 12, 7–9 (1968).
[CrossRef]

L. Goldberg, L. E. Busse, and D. Mehuys, “High power continuous wave blue light generation in KNbO3 using semiconductor amplifier seeded by a laser diode,” Appl. Phys. Lett. 63, 2327–2329 (1993).
[CrossRef]

T. Pliska, D. Fluck, P. Günter, E. Gini, H. Melchior, L. Beckers, and C. Buchal, “Birefringence phase-matched blue light second harmonic generation in a KNbO3 ridge waveguide,” Appl. Phys. Lett. 72, 2364–2366 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. H. Glenn, “Second harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. 5, 281–290 (1969).
[CrossRef]

J. Appl. Phys. (1)

L. E. Busse, L. Goldberg, M. R. Surette, and G. Mizell, “Absorption losses in MgO-doped and undoped potassium niobate,” J. Appl. Phys. 75, 1102–1110 (1994).
[CrossRef]

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (1)

H. Tsuchida, “Frequency doubling of tunable Ti:sapphire laser with KNbO3 in external cavity,” Jpn. J. Appl. Phys. 33, 6190–6194 (1994).
[CrossRef]

Opt. Commun. (4)

D. Kühlke and U. Herpers, “Limitations of the second harmonic conversion of intense femtosecond pulses,” Opt. Commun. 69, 75–78 (1988).
[CrossRef]

J.-C. Baumert, P. Günter, and H. Melchior, “High efficiency second harmonic generation in KNbO3 crystals,” Opt. Commun. 48, 215–220 (1983).
[CrossRef]

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, “Efficient frequency doubling of a continuous wave titanium:sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
[CrossRef]

F. Seifert and V. Petrov, “Synchronous pumping of a visible dye laser by a frequency doubled mode-locked Ti:sapphire laser and its application for difference frequency generation in the near infrared,” Opt. Commun. 99, 413–420 (1993).
[CrossRef]

Opt. Lett. (5)

Sov. Phys. JETP (1)

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space–time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for SHG by frequency doubling of femtosecond pulses: PP, prism pair; A, variable attenuator; PBS, polarizing beam splitter.

Fig. 2
Fig. 2

SHG conversion efficiencies at different crystal temperatures and optimum phase-matching temperatures versus input power for a focal length of 31 mm.

Fig. 3
Fig. 3

Absorbed power and temperature rise versus input power for a focal length of 31 mm.

Fig. 4
Fig. 4

Optimum phase-matching temperatures and SHG efficiencies versus focusing at an input power of 282 mW and an input wavelength of 860 nm.

Fig. 5
Fig. 5

Temperature dependence of the SHG efficiency at an input power of 282 mW for focal lengths of 31 and 80 mm.

Fig. 6
Fig. 6

SHG efficiencies versus spacing d between the focusing lens and the crystal at an input power of 282 mW for focal lengths of (a) 31 and (b) 80 mm. The experiments were performed at an input wavelength of 860 nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

α=1v2ω-1vω.
U2ωUω=γUωtplT2bLlT=(γUω) Lαb,
γ=4ω02deff2n2c30λ.
U2ω/Uω=(γUω/α)tan-1(L/b),
U2ω/Uω(π/2)(γUω/α).
|HPM(Ω=2ω-2ω0)|2=sin2(ΔkL/2)(ΔkL/2)2,
Δν=0.88/αL.

Metrics