Abstract

The linear and nonlinear properties of Si thin films upon Si wafers made by the use of laser ablation are presented. The linear absorption of the films clearly showed a peak at 9.8 µm (1020 cm-1), whereas the peak at 9.04 µm (1070 cm-1) from the asymmetric Si—O—Si vibration mode was absent. Raman spectroscopy data show a typical 4-cm-1 downshift with respect to the Si line. The nonlinear measurements were performed with a tunable free-electron laser. The nonlinear absorption at λ=9.2 µm was measured to be approximately 2, 25, and 5 times larger than the nonlinear absorption at λ=9.0 µm, λ=9.4 µm, and λ=9.6 µm, respectively.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ehbrecht, H. Ferkel, F. Huisken, L. Holz, Yu. N. Polivanov, V. V. Smirnov, O. M. Stelmakh, and R. Schmidt, “Deposition and analysis of silicon clusters generated by laser-induced gas phase reaction,” J. Appl. Phys. 78, 5302–5306 (1995).
    [CrossRef]
  2. Y. Kanemitsu, H. Uto, and Y. Masumoto, “Microstructure and optical properties of free standing porous silicon films: size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B 48, 2827–2830 (1993).
    [CrossRef]
  3. W. L. Wilson, P. F. Szajowski, and L. E. Brus, “Quantum confinement in size-selected surface-oxidized silicon nano- crystals,” Science 262, 1242–1244 (1993).
    [CrossRef] [PubMed]
  4. S. Vijayalakshmi, M. George, and H. Grebel, “Nonlinear optical properties of silicon nanoclusters,” Appl. Phys. Lett. 70, 708–710 (1997).
    [CrossRef]
  5. S. Vijayalakshmi, F. Shen, and H. Grebel, “Artificial dielectrics: nonlinear optical properties of silicon nanoclusters at λ=532 nm,” Appl. Phys. Lett. 71, 3332–3334 (1997).
    [CrossRef]
  6. S. Vijayalakshmi, M. A. George, J. Sturmann, and H. Grebel, “Pulsed-laser deposition of Si nanoclusters,” Appl. Surf. Sci. 127–129, 378–382 (1998).
    [CrossRef]
  7. S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
    [CrossRef]
  8. P. Melinon, P. Keghelian, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pelliarin, J. Lerme, M. Broyer, J. L. Rousset, and P. Delichere, “Structural, vibrational, and optical properties of silicon clusters assembled films,” J. Chem. Phys. 108, 4607–4613 (1998).
    [CrossRef]
  9. C. A. Brau, “The Vanderbilt University Free Electron Laser Center,” Nucl. Instrum. Methods Phys. Res. A 318, 38–50 (1992).
    [CrossRef]
  10. M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  11. J. R. Ferraro and K. Krishnan, eds. Practical Fourier Transform Spectroscopy (Academic, Orlando, Fla., 1990).
  12. V. S. Dneprovski, V. I. Klimov, D. K. Okorokov, and Yu. V. Vandyshev, “Strong optical nonlinearities and laser emission of semiconductor microcrystals,” Solid State Commun. 81, 227–231 (1992).
    [CrossRef]

1999

S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
[CrossRef]

1998

P. Melinon, P. Keghelian, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pelliarin, J. Lerme, M. Broyer, J. L. Rousset, and P. Delichere, “Structural, vibrational, and optical properties of silicon clusters assembled films,” J. Chem. Phys. 108, 4607–4613 (1998).
[CrossRef]

S. Vijayalakshmi, M. A. George, J. Sturmann, and H. Grebel, “Pulsed-laser deposition of Si nanoclusters,” Appl. Surf. Sci. 127–129, 378–382 (1998).
[CrossRef]

1997

S. Vijayalakshmi, M. George, and H. Grebel, “Nonlinear optical properties of silicon nanoclusters,” Appl. Phys. Lett. 70, 708–710 (1997).
[CrossRef]

S. Vijayalakshmi, F. Shen, and H. Grebel, “Artificial dielectrics: nonlinear optical properties of silicon nanoclusters at λ=532 nm,” Appl. Phys. Lett. 71, 3332–3334 (1997).
[CrossRef]

1995

M. Ehbrecht, H. Ferkel, F. Huisken, L. Holz, Yu. N. Polivanov, V. V. Smirnov, O. M. Stelmakh, and R. Schmidt, “Deposition and analysis of silicon clusters generated by laser-induced gas phase reaction,” J. Appl. Phys. 78, 5302–5306 (1995).
[CrossRef]

1993

Y. Kanemitsu, H. Uto, and Y. Masumoto, “Microstructure and optical properties of free standing porous silicon films: size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B 48, 2827–2830 (1993).
[CrossRef]

W. L. Wilson, P. F. Szajowski, and L. E. Brus, “Quantum confinement in size-selected surface-oxidized silicon nano- crystals,” Science 262, 1242–1244 (1993).
[CrossRef] [PubMed]

1992

C. A. Brau, “The Vanderbilt University Free Electron Laser Center,” Nucl. Instrum. Methods Phys. Res. A 318, 38–50 (1992).
[CrossRef]

V. S. Dneprovski, V. I. Klimov, D. K. Okorokov, and Yu. V. Vandyshev, “Strong optical nonlinearities and laser emission of semiconductor microcrystals,” Solid State Commun. 81, 227–231 (1992).
[CrossRef]

1990

M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Brau, C. A.

C. A. Brau, “The Vanderbilt University Free Electron Laser Center,” Nucl. Instrum. Methods Phys. Res. A 318, 38–50 (1992).
[CrossRef]

Broyer, M.

P. Melinon, P. Keghelian, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pelliarin, J. Lerme, M. Broyer, J. L. Rousset, and P. Delichere, “Structural, vibrational, and optical properties of silicon clusters assembled films,” J. Chem. Phys. 108, 4607–4613 (1998).
[CrossRef]

Brus, L. E.

W. L. Wilson, P. F. Szajowski, and L. E. Brus, “Quantum confinement in size-selected surface-oxidized silicon nano- crystals,” Science 262, 1242–1244 (1993).
[CrossRef] [PubMed]

Champagnon, B.

P. Melinon, P. Keghelian, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pelliarin, J. Lerme, M. Broyer, J. L. Rousset, and P. Delichere, “Structural, vibrational, and optical properties of silicon clusters assembled films,” J. Chem. Phys. 108, 4607–4613 (1998).
[CrossRef]

Delichere, P.

P. Melinon, P. Keghelian, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pelliarin, J. Lerme, M. Broyer, J. L. Rousset, and P. Delichere, “Structural, vibrational, and optical properties of silicon clusters assembled films,” J. Chem. Phys. 108, 4607–4613 (1998).
[CrossRef]

Dneprovski, V. S.

V. S. Dneprovski, V. I. Klimov, D. K. Okorokov, and Yu. V. Vandyshev, “Strong optical nonlinearities and laser emission of semiconductor microcrystals,” Solid State Commun. 81, 227–231 (1992).
[CrossRef]

Dupuis, V.

P. Melinon, P. Keghelian, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pelliarin, J. Lerme, M. Broyer, J. L. Rousset, and P. Delichere, “Structural, vibrational, and optical properties of silicon clusters assembled films,” J. Chem. Phys. 108, 4607–4613 (1998).
[CrossRef]

Ehbrecht, M.

M. Ehbrecht, H. Ferkel, F. Huisken, L. Holz, Yu. N. Polivanov, V. V. Smirnov, O. M. Stelmakh, and R. Schmidt, “Deposition and analysis of silicon clusters generated by laser-induced gas phase reaction,” J. Appl. Phys. 78, 5302–5306 (1995).
[CrossRef]

Federici, J.

S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
[CrossRef]

Ferkel, H.

M. Ehbrecht, H. Ferkel, F. Huisken, L. Holz, Yu. N. Polivanov, V. V. Smirnov, O. M. Stelmakh, and R. Schmidt, “Deposition and analysis of silicon clusters generated by laser-induced gas phase reaction,” J. Appl. Phys. 78, 5302–5306 (1995).
[CrossRef]

George, M.

S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
[CrossRef]

S. Vijayalakshmi, M. George, and H. Grebel, “Nonlinear optical properties of silicon nanoclusters,” Appl. Phys. Lett. 70, 708–710 (1997).
[CrossRef]

George, M. A.

S. Vijayalakshmi, M. A. George, J. Sturmann, and H. Grebel, “Pulsed-laser deposition of Si nanoclusters,” Appl. Surf. Sci. 127–129, 378–382 (1998).
[CrossRef]

Grebel, H.

S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
[CrossRef]

S. Vijayalakshmi, M. A. George, J. Sturmann, and H. Grebel, “Pulsed-laser deposition of Si nanoclusters,” Appl. Surf. Sci. 127–129, 378–382 (1998).
[CrossRef]

S. Vijayalakshmi, F. Shen, and H. Grebel, “Artificial dielectrics: nonlinear optical properties of silicon nanoclusters at λ=532 nm,” Appl. Phys. Lett. 71, 3332–3334 (1997).
[CrossRef]

S. Vijayalakshmi, M. George, and H. Grebel, “Nonlinear optical properties of silicon nanoclusters,” Appl. Phys. Lett. 70, 708–710 (1997).
[CrossRef]

Guyot, Y.

P. Melinon, P. Keghelian, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pelliarin, J. Lerme, M. Broyer, J. L. Rousset, and P. Delichere, “Structural, vibrational, and optical properties of silicon clusters assembled films,” J. Chem. Phys. 108, 4607–4613 (1998).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Holz, L.

M. Ehbrecht, H. Ferkel, F. Huisken, L. Holz, Yu. N. Polivanov, V. V. Smirnov, O. M. Stelmakh, and R. Schmidt, “Deposition and analysis of silicon clusters generated by laser-induced gas phase reaction,” J. Appl. Phys. 78, 5302–5306 (1995).
[CrossRef]

Huisken, F.

M. Ehbrecht, H. Ferkel, F. Huisken, L. Holz, Yu. N. Polivanov, V. V. Smirnov, O. M. Stelmakh, and R. Schmidt, “Deposition and analysis of silicon clusters generated by laser-induced gas phase reaction,” J. Appl. Phys. 78, 5302–5306 (1995).
[CrossRef]

Iqbal, Z.

S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
[CrossRef]

Kanemitsu, Y.

Y. Kanemitsu, H. Uto, and Y. Masumoto, “Microstructure and optical properties of free standing porous silicon films: size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B 48, 2827–2830 (1993).
[CrossRef]

Keghelian, P.

P. Melinon, P. Keghelian, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pelliarin, J. Lerme, M. Broyer, J. L. Rousset, and P. Delichere, “Structural, vibrational, and optical properties of silicon clusters assembled films,” J. Chem. Phys. 108, 4607–4613 (1998).
[CrossRef]

Klimov, V. I.

V. S. Dneprovski, V. I. Klimov, D. K. Okorokov, and Yu. V. Vandyshev, “Strong optical nonlinearities and laser emission of semiconductor microcrystals,” Solid State Commun. 81, 227–231 (1992).
[CrossRef]

Lerme, J.

P. Melinon, P. Keghelian, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pelliarin, J. Lerme, M. Broyer, J. L. Rousset, and P. Delichere, “Structural, vibrational, and optical properties of silicon clusters assembled films,” J. Chem. Phys. 108, 4607–4613 (1998).
[CrossRef]

Masumoto, Y.

Y. Kanemitsu, H. Uto, and Y. Masumoto, “Microstructure and optical properties of free standing porous silicon films: size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B 48, 2827–2830 (1993).
[CrossRef]

Melinon, P.

P. Melinon, P. Keghelian, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pelliarin, J. Lerme, M. Broyer, J. L. Rousset, and P. Delichere, “Structural, vibrational, and optical properties of silicon clusters assembled films,” J. Chem. Phys. 108, 4607–4613 (1998).
[CrossRef]

Okorokov, D. K.

V. S. Dneprovski, V. I. Klimov, D. K. Okorokov, and Yu. V. Vandyshev, “Strong optical nonlinearities and laser emission of semiconductor microcrystals,” Solid State Commun. 81, 227–231 (1992).
[CrossRef]

Pelliarin, M.

P. Melinon, P. Keghelian, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pelliarin, J. Lerme, M. Broyer, J. L. Rousset, and P. Delichere, “Structural, vibrational, and optical properties of silicon clusters assembled films,” J. Chem. Phys. 108, 4607–4613 (1998).
[CrossRef]

Perez, A.

P. Melinon, P. Keghelian, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pelliarin, J. Lerme, M. Broyer, J. L. Rousset, and P. Delichere, “Structural, vibrational, and optical properties of silicon clusters assembled films,” J. Chem. Phys. 108, 4607–4613 (1998).
[CrossRef]

Polivanov, Yu. N.

M. Ehbrecht, H. Ferkel, F. Huisken, L. Holz, Yu. N. Polivanov, V. V. Smirnov, O. M. Stelmakh, and R. Schmidt, “Deposition and analysis of silicon clusters generated by laser-induced gas phase reaction,” J. Appl. Phys. 78, 5302–5306 (1995).
[CrossRef]

Prevel, B.

P. Melinon, P. Keghelian, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pelliarin, J. Lerme, M. Broyer, J. L. Rousset, and P. Delichere, “Structural, vibrational, and optical properties of silicon clusters assembled films,” J. Chem. Phys. 108, 4607–4613 (1998).
[CrossRef]

Rousset, J. L.

P. Melinon, P. Keghelian, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pelliarin, J. Lerme, M. Broyer, J. L. Rousset, and P. Delichere, “Structural, vibrational, and optical properties of silicon clusters assembled films,” J. Chem. Phys. 108, 4607–4613 (1998).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Schmidt, R.

M. Ehbrecht, H. Ferkel, F. Huisken, L. Holz, Yu. N. Polivanov, V. V. Smirnov, O. M. Stelmakh, and R. Schmidt, “Deposition and analysis of silicon clusters generated by laser-induced gas phase reaction,” J. Appl. Phys. 78, 5302–5306 (1995).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Shen, F.

S. Vijayalakshmi, F. Shen, and H. Grebel, “Artificial dielectrics: nonlinear optical properties of silicon nanoclusters at λ=532 nm,” Appl. Phys. Lett. 71, 3332–3334 (1997).
[CrossRef]

Smirnov, V. V.

M. Ehbrecht, H. Ferkel, F. Huisken, L. Holz, Yu. N. Polivanov, V. V. Smirnov, O. M. Stelmakh, and R. Schmidt, “Deposition and analysis of silicon clusters generated by laser-induced gas phase reaction,” J. Appl. Phys. 78, 5302–5306 (1995).
[CrossRef]

Stelmakh, O. M.

M. Ehbrecht, H. Ferkel, F. Huisken, L. Holz, Yu. N. Polivanov, V. V. Smirnov, O. M. Stelmakh, and R. Schmidt, “Deposition and analysis of silicon clusters generated by laser-induced gas phase reaction,” J. Appl. Phys. 78, 5302–5306 (1995).
[CrossRef]

Sturmann, J.

S. Vijayalakshmi, M. A. George, J. Sturmann, and H. Grebel, “Pulsed-laser deposition of Si nanoclusters,” Appl. Surf. Sci. 127–129, 378–382 (1998).
[CrossRef]

Szajowski, P. F.

W. L. Wilson, P. F. Szajowski, and L. E. Brus, “Quantum confinement in size-selected surface-oxidized silicon nano- crystals,” Science 262, 1242–1244 (1993).
[CrossRef] [PubMed]

Uto, H.

Y. Kanemitsu, H. Uto, and Y. Masumoto, “Microstructure and optical properties of free standing porous silicon films: size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B 48, 2827–2830 (1993).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Vandyshev, Yu. V.

V. S. Dneprovski, V. I. Klimov, D. K. Okorokov, and Yu. V. Vandyshev, “Strong optical nonlinearities and laser emission of semiconductor microcrystals,” Solid State Commun. 81, 227–231 (1992).
[CrossRef]

Vijayalakshmi, S.

S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
[CrossRef]

S. Vijayalakshmi, M. A. George, J. Sturmann, and H. Grebel, “Pulsed-laser deposition of Si nanoclusters,” Appl. Surf. Sci. 127–129, 378–382 (1998).
[CrossRef]

S. Vijayalakshmi, F. Shen, and H. Grebel, “Artificial dielectrics: nonlinear optical properties of silicon nanoclusters at λ=532 nm,” Appl. Phys. Lett. 71, 3332–3334 (1997).
[CrossRef]

S. Vijayalakshmi, M. George, and H. Grebel, “Nonlinear optical properties of silicon nanoclusters,” Appl. Phys. Lett. 70, 708–710 (1997).
[CrossRef]

Wilson, W. L.

W. L. Wilson, P. F. Szajowski, and L. E. Brus, “Quantum confinement in size-selected surface-oxidized silicon nano- crystals,” Science 262, 1242–1244 (1993).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. Vijayalakshmi, M. George, and H. Grebel, “Nonlinear optical properties of silicon nanoclusters,” Appl. Phys. Lett. 70, 708–710 (1997).
[CrossRef]

S. Vijayalakshmi, F. Shen, and H. Grebel, “Artificial dielectrics: nonlinear optical properties of silicon nanoclusters at λ=532 nm,” Appl. Phys. Lett. 71, 3332–3334 (1997).
[CrossRef]

Appl. Surf. Sci.

S. Vijayalakshmi, M. A. George, J. Sturmann, and H. Grebel, “Pulsed-laser deposition of Si nanoclusters,” Appl. Surf. Sci. 127–129, 378–382 (1998).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Appl. Phys.

M. Ehbrecht, H. Ferkel, F. Huisken, L. Holz, Yu. N. Polivanov, V. V. Smirnov, O. M. Stelmakh, and R. Schmidt, “Deposition and analysis of silicon clusters generated by laser-induced gas phase reaction,” J. Appl. Phys. 78, 5302–5306 (1995).
[CrossRef]

J. Chem. Phys.

P. Melinon, P. Keghelian, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pelliarin, J. Lerme, M. Broyer, J. L. Rousset, and P. Delichere, “Structural, vibrational, and optical properties of silicon clusters assembled films,” J. Chem. Phys. 108, 4607–4613 (1998).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A

C. A. Brau, “The Vanderbilt University Free Electron Laser Center,” Nucl. Instrum. Methods Phys. Res. A 318, 38–50 (1992).
[CrossRef]

Phys. Rev. B

Y. Kanemitsu, H. Uto, and Y. Masumoto, “Microstructure and optical properties of free standing porous silicon films: size dependence of absorption spectra in Si nanometer-sized crystallites,” Phys. Rev. B 48, 2827–2830 (1993).
[CrossRef]

Science

W. L. Wilson, P. F. Szajowski, and L. E. Brus, “Quantum confinement in size-selected surface-oxidized silicon nano- crystals,” Science 262, 1242–1244 (1993).
[CrossRef] [PubMed]

Solid State Commun.

V. S. Dneprovski, V. I. Klimov, D. K. Okorokov, and Yu. V. Vandyshev, “Strong optical nonlinearities and laser emission of semiconductor microcrystals,” Solid State Commun. 81, 227–231 (1992).
[CrossRef]

Thin Solid Films

S. Vijayalakshmi, Z. Iqbal, M. George, J. Federici, and H. Grebel, “Characterization of laser ablated silicon thin films,” Thin Solid Films 339, 102–108 (1999).
[CrossRef]

Other

J. R. Ferraro and K. Krishnan, eds. Practical Fourier Transform Spectroscopy (Academic, Orlando, Fla., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Laser-ablated nc-Si upon a Si wafer. (b) Scan of laser-ablated nc-Si by a laser-scanning microscope.

Fig. 2
Fig. 2

Linear transmission of laser-ablated nc-Si upon a Si substrate and a Si wafer substrate. We calculated the transmission of the film alone by dividing these two curves.

Fig. 3
Fig. 3

Raman spectra of nc-Si deposited upon a Si wafer and a reference Si crystal.

Fig. 4
Fig. 4

Z-scan measurement of an nc-Si film upon a Si substrate at λ=9.0 µm.

Fig. 5
Fig. 5

Z-scan measurement of an nc-Si film upon a Si substrate at λ=9.6 µm.

Fig. 6
Fig. 6

Z-scan measurement of a Si wafer (substrate only) at λ=9.0 µm.

Fig. 7
Fig. 7

Z-scan measurement of a Si wafer (substrate only) at λ=9.6µm.

Tables (1)

Tables Icon

Table 1 Nonlinear Coefficients of Film and Substrate

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Tt=TfTs=A exp[-αf(I)df]exp[-αs(I)ds],
A exp(-α0tdt-βtIdt)
=A exp(-α0fdf-α0sds-βfIdf-βsIds).
Bt dt=βfdf+βsds.
Δϕt=Δϕf+Δϕs=Δϕ0f+Δϕ0s1+z2/z02exp[-2r2/w2(z)],

Metrics