Abstract

We investigated bismuth germanate (Bi12GeO20) single crystals grown from melt with several GeO2 mole percentages, 100×[GeO2]/([GeO2]+[Bi2O3])=8, 12, 14.3, 20, 24, as an aid to understanding the stoichiometric dependence of their optical and electrical properties. Although no observable differences in their lattice constants or GeO2 concentrations could be detected, their crystalline properties depended strongly on the melt composition. Their optical absorption increased almost linearly with the increase of bismuth concentration in the melt, and the dark conductivity increased in crystals grown from germanium-rich melts. The crystal grown from the stoichiometric melt with 14.3-mol. % GeO2 exhibited the largest photoconductivity, which was measured optically by grating-decay experiments. The photoconductivity was quenched in crystals grown from bismuth melts that were either richer or poorer than the stoichiometric melt. Photoluminescence emission spectra displayed two broad bands, with maximum intensities at 1.9 eV (intense) and 2.9 eV (very weak) for the crystal grown from the bismuth-rich melt (8-mol. % GeO2). Only one band, at 2.9 eV, was observed for all other crystals. Based on these optical and electrical results, a three-level transition model is suggested to interpret the stoichiometry-dependent transport mechanism.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Gunther and J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vols. I and II.
  2. E. Ochoa, L. Hesselink, and J. W. Goodman, “Real time intensity inversion using two-wave and four-wave mixing in photorefractive Bi12GeO20,” Appl. Opt. 24, 1826–1832 (1985).
    [CrossRef]
  3. L. Solymer, D. J. Webb, and A. Grunnet-Jepsen, eds., The Physics and Applications of Photorefractive Materials (Oxford U. Press, New York, 1996).
  4. M. H. Garrett, “Properties of photorefractive nonstoichiometric bismuth silicon oxide, BixSiO1.5x+2,” J. Opt. Soc. Am. B 8, 78–87 (1991).
    [CrossRef]
  5. F. P. Strohkendl, P. Tayebati, and R. W. Hellwarth, “Comparative study of photorefractive Bi12SiO20 crystals,” J. Appl. Phys. 66, 6024–6029 (1989).
    [CrossRef]
  6. J. P. Herriau, D. Rojas, J. P. Huignard, J. M. Bassat, and J. C. Launay, “Highly efficient diffraction in photorefractive BSO–BGO crystals at large applied fields,” Ferroelectrics 75, 271–279 (1987).
    [CrossRef]
  7. J. Larkin, M. Harris, J. E. Cormier, and A. Armington, “Hydrothermal growth of bismuth silicate (BSO),” J. Cryst. Growth 128, 871–875 (1993).
    [CrossRef]
  8. S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
    [CrossRef]
  9. B. C. Grabmaier and R. Oberschmid, “Properties of pure and doped Bi12GeO20 and Bi12SiO20 crystals,” Phys. Status Solidi A 96, 199–210 (1986).
    [CrossRef]
  10. R. Oberschmid, “Conductivity instabilities and polarization effects of Bi12(Ge, Si)O20 single-crystal samples,” Phys. Status Solidi A 89, 657–671 (1985).
    [CrossRef]
  11. R. Oberschmid, “Absorption centers of Bi12GeO20 and Bi12SiO20,” Phys. Status Solidi A 89, 263–270 (1985).
    [CrossRef]
  12. D. Nesheva, Z. Aneva, and Z. Levi, “Bi12SiO20 monocrystals doped with transition metals,” J. Phys. Chem. Solids 56, 241–250 (1995).
    [CrossRef]
  13. T. V. Panchenko, V. Kh. Kostyuk, and S. Yu. Kopylova, “Local centers in nonstoichiometric Bi12SiO20 crystals,” Phys. Solid State 38, 84–89 (1996).
  14. P. Tissot and H. Lartigue, “Study of the system GeO2-Bi2O3,” Thermochim. Acta 127, 377–383 (1988).
    [CrossRef]
  15. P. Tayebati, “The effect of shallow traps on the dark storage of photorefractive grating in Bi12SiO20,” J. Appl. Phys. 70, 4082–4094 (1991).
    [CrossRef]
  16. P. Nouchi, J. P. Partanen, and R. W. Hellwarth, “Temperature dependence of the electron mobility in photorefractive Bi12SiO20,” J. Opt. Soc. Am. B 9, 1428–1431 (1992).
    [CrossRef]
  17. I. Biaggio, R. W. Hellwarth, and J. P. Partanen, “Band mobility of photoexcited electrons in Bi12SiO20,” Phys. Rev. Lett. 78, 891–894 (1997).
    [CrossRef]
  18. P. Bernasconi, I. Biaggio, M. Zgonik, and P. Gunter, “Anisotropy of the electron and drift mobility in KNbO3 and BaTiO3,” Phys. Rev. Lett. 78, 106–109 (1997).
    [CrossRef]
  19. V. P. Avramenko, L. P. Klimenko, A. Yu. Kudzin, and G. Kh. Sokolyanskii, “Hopping conduction in bismuth germanate single crystals,” Sov. Phys. Solid State 19, 702–703 (1977).
  20. B. Kh. Kostyuk, A. Yu. Kudzin, and G. Kh. Sokolyanskii, “Phototransport in Bi12SiO20 and Bi12GeO20 single crystals,” Sov. Phys. Solid State 22, 1429–1432 (1980).
  21. V. P. Zenchenko and E. P. Sinyavskii, “Influence of impurities on the interband absorption of long-wave radiation in semiconductors,” Sov. Phys. Solid State 22, 2168–2169 (1980).
  22. R. B. Lauer, “Electron effective mass and conduction band effective density of states in Bi12SiO20,” J. Appl. Phys. 45, 1794–1797 (1974).
    [CrossRef]
  23. R. B. Lauer, “Photoluminescence in Bi12SiO20 and Bi12GeO20,” Appl. Phys. Lett. 17, 178–179 (1970).
    [CrossRef]
  24. R. B. Lauer, “Thermally stimulated currents and luminescence in Bi12SiO20 and Bi12GeO20,” J. Appl. Phys. 42, 2147–2149 (1971).
    [CrossRef]
  25. R. Moncourge, B. Jacquier, and G. Boulon, “Temperature dependent luminescence of Bi4Ge3O12. Discussion on possible models,” J. Lumin. 14, 337–348 (1976).
  26. M. J. Weber and R. R. Monchamp, “Luminescence of Bi4Ge3O12: spectral and decay properties,” J. Appl. Phys. 44, 5495–5499 (1973).
    [CrossRef]
  27. Sh. M. Effendiev, V. G. Darvishov, E. R. Mustafaev, and V. E. Bagiev, “Radiative transitions in crystals of sillenite-type structure,” Phys. Status Solidi A 143, 413–421 (1994).
    [CrossRef]
  28. N. Maffei, D. H. H. Quon, J. Aota, T. T. Chen, J. McCaffrey, and S. Charbonneau, “Characterization of Bi12GeO20 processed in a microgravity environment,” J. Cryst. Growth 181, 382–389 (1997).
    [CrossRef]

1997

I. Biaggio, R. W. Hellwarth, and J. P. Partanen, “Band mobility of photoexcited electrons in Bi12SiO20,” Phys. Rev. Lett. 78, 891–894 (1997).
[CrossRef]

P. Bernasconi, I. Biaggio, M. Zgonik, and P. Gunter, “Anisotropy of the electron and drift mobility in KNbO3 and BaTiO3,” Phys. Rev. Lett. 78, 106–109 (1997).
[CrossRef]

N. Maffei, D. H. H. Quon, J. Aota, T. T. Chen, J. McCaffrey, and S. Charbonneau, “Characterization of Bi12GeO20 processed in a microgravity environment,” J. Cryst. Growth 181, 382–389 (1997).
[CrossRef]

1996

T. V. Panchenko, V. Kh. Kostyuk, and S. Yu. Kopylova, “Local centers in nonstoichiometric Bi12SiO20 crystals,” Phys. Solid State 38, 84–89 (1996).

1995

D. Nesheva, Z. Aneva, and Z. Levi, “Bi12SiO20 monocrystals doped with transition metals,” J. Phys. Chem. Solids 56, 241–250 (1995).
[CrossRef]

1994

Sh. M. Effendiev, V. G. Darvishov, E. R. Mustafaev, and V. E. Bagiev, “Radiative transitions in crystals of sillenite-type structure,” Phys. Status Solidi A 143, 413–421 (1994).
[CrossRef]

1993

J. Larkin, M. Harris, J. E. Cormier, and A. Armington, “Hydrothermal growth of bismuth silicate (BSO),” J. Cryst. Growth 128, 871–875 (1993).
[CrossRef]

1992

1991

M. H. Garrett, “Properties of photorefractive nonstoichiometric bismuth silicon oxide, BixSiO1.5x+2,” J. Opt. Soc. Am. B 8, 78–87 (1991).
[CrossRef]

P. Tayebati, “The effect of shallow traps on the dark storage of photorefractive grating in Bi12SiO20,” J. Appl. Phys. 70, 4082–4094 (1991).
[CrossRef]

1989

F. P. Strohkendl, P. Tayebati, and R. W. Hellwarth, “Comparative study of photorefractive Bi12SiO20 crystals,” J. Appl. Phys. 66, 6024–6029 (1989).
[CrossRef]

1988

P. Tissot and H. Lartigue, “Study of the system GeO2-Bi2O3,” Thermochim. Acta 127, 377–383 (1988).
[CrossRef]

1987

J. P. Herriau, D. Rojas, J. P. Huignard, J. M. Bassat, and J. C. Launay, “Highly efficient diffraction in photorefractive BSO–BGO crystals at large applied fields,” Ferroelectrics 75, 271–279 (1987).
[CrossRef]

1986

B. C. Grabmaier and R. Oberschmid, “Properties of pure and doped Bi12GeO20 and Bi12SiO20 crystals,” Phys. Status Solidi A 96, 199–210 (1986).
[CrossRef]

1985

R. Oberschmid, “Conductivity instabilities and polarization effects of Bi12(Ge, Si)O20 single-crystal samples,” Phys. Status Solidi A 89, 657–671 (1985).
[CrossRef]

R. Oberschmid, “Absorption centers of Bi12GeO20 and Bi12SiO20,” Phys. Status Solidi A 89, 263–270 (1985).
[CrossRef]

E. Ochoa, L. Hesselink, and J. W. Goodman, “Real time intensity inversion using two-wave and four-wave mixing in photorefractive Bi12GeO20,” Appl. Opt. 24, 1826–1832 (1985).
[CrossRef]

1980

B. Kh. Kostyuk, A. Yu. Kudzin, and G. Kh. Sokolyanskii, “Phototransport in Bi12SiO20 and Bi12GeO20 single crystals,” Sov. Phys. Solid State 22, 1429–1432 (1980).

V. P. Zenchenko and E. P. Sinyavskii, “Influence of impurities on the interband absorption of long-wave radiation in semiconductors,” Sov. Phys. Solid State 22, 2168–2169 (1980).

1977

V. P. Avramenko, L. P. Klimenko, A. Yu. Kudzin, and G. Kh. Sokolyanskii, “Hopping conduction in bismuth germanate single crystals,” Sov. Phys. Solid State 19, 702–703 (1977).

1976

R. Moncourge, B. Jacquier, and G. Boulon, “Temperature dependent luminescence of Bi4Ge3O12. Discussion on possible models,” J. Lumin. 14, 337–348 (1976).

1974

R. B. Lauer, “Electron effective mass and conduction band effective density of states in Bi12SiO20,” J. Appl. Phys. 45, 1794–1797 (1974).
[CrossRef]

1973

S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
[CrossRef]

M. J. Weber and R. R. Monchamp, “Luminescence of Bi4Ge3O12: spectral and decay properties,” J. Appl. Phys. 44, 5495–5499 (1973).
[CrossRef]

1971

R. B. Lauer, “Thermally stimulated currents and luminescence in Bi12SiO20 and Bi12GeO20,” J. Appl. Phys. 42, 2147–2149 (1971).
[CrossRef]

1970

R. B. Lauer, “Photoluminescence in Bi12SiO20 and Bi12GeO20,” Appl. Phys. Lett. 17, 178–179 (1970).
[CrossRef]

Aldrich, R. E.

S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
[CrossRef]

Aneva, Z.

D. Nesheva, Z. Aneva, and Z. Levi, “Bi12SiO20 monocrystals doped with transition metals,” J. Phys. Chem. Solids 56, 241–250 (1995).
[CrossRef]

Aota, J.

N. Maffei, D. H. H. Quon, J. Aota, T. T. Chen, J. McCaffrey, and S. Charbonneau, “Characterization of Bi12GeO20 processed in a microgravity environment,” J. Cryst. Growth 181, 382–389 (1997).
[CrossRef]

Armington, A.

J. Larkin, M. Harris, J. E. Cormier, and A. Armington, “Hydrothermal growth of bismuth silicate (BSO),” J. Cryst. Growth 128, 871–875 (1993).
[CrossRef]

Avramenko, V. P.

V. P. Avramenko, L. P. Klimenko, A. Yu. Kudzin, and G. Kh. Sokolyanskii, “Hopping conduction in bismuth germanate single crystals,” Sov. Phys. Solid State 19, 702–703 (1977).

Bagiev, V. E.

Sh. M. Effendiev, V. G. Darvishov, E. R. Mustafaev, and V. E. Bagiev, “Radiative transitions in crystals of sillenite-type structure,” Phys. Status Solidi A 143, 413–421 (1994).
[CrossRef]

Bassat, J. M.

J. P. Herriau, D. Rojas, J. P. Huignard, J. M. Bassat, and J. C. Launay, “Highly efficient diffraction in photorefractive BSO–BGO crystals at large applied fields,” Ferroelectrics 75, 271–279 (1987).
[CrossRef]

Bernasconi, P.

P. Bernasconi, I. Biaggio, M. Zgonik, and P. Gunter, “Anisotropy of the electron and drift mobility in KNbO3 and BaTiO3,” Phys. Rev. Lett. 78, 106–109 (1997).
[CrossRef]

Biaggio, I.

P. Bernasconi, I. Biaggio, M. Zgonik, and P. Gunter, “Anisotropy of the electron and drift mobility in KNbO3 and BaTiO3,” Phys. Rev. Lett. 78, 106–109 (1997).
[CrossRef]

I. Biaggio, R. W. Hellwarth, and J. P. Partanen, “Band mobility of photoexcited electrons in Bi12SiO20,” Phys. Rev. Lett. 78, 891–894 (1997).
[CrossRef]

Boulon, G.

R. Moncourge, B. Jacquier, and G. Boulon, “Temperature dependent luminescence of Bi4Ge3O12. Discussion on possible models,” J. Lumin. 14, 337–348 (1976).

Charbonneau, S.

N. Maffei, D. H. H. Quon, J. Aota, T. T. Chen, J. McCaffrey, and S. Charbonneau, “Characterization of Bi12GeO20 processed in a microgravity environment,” J. Cryst. Growth 181, 382–389 (1997).
[CrossRef]

Chen, T. T.

N. Maffei, D. H. H. Quon, J. Aota, T. T. Chen, J. McCaffrey, and S. Charbonneau, “Characterization of Bi12GeO20 processed in a microgravity environment,” J. Cryst. Growth 181, 382–389 (1997).
[CrossRef]

Cormier, J. E.

J. Larkin, M. Harris, J. E. Cormier, and A. Armington, “Hydrothermal growth of bismuth silicate (BSO),” J. Cryst. Growth 128, 871–875 (1993).
[CrossRef]

Darvishov, V. G.

Sh. M. Effendiev, V. G. Darvishov, E. R. Mustafaev, and V. E. Bagiev, “Radiative transitions in crystals of sillenite-type structure,” Phys. Status Solidi A 143, 413–421 (1994).
[CrossRef]

Effendiev, Sh. M.

Sh. M. Effendiev, V. G. Darvishov, E. R. Mustafaev, and V. E. Bagiev, “Radiative transitions in crystals of sillenite-type structure,” Phys. Status Solidi A 143, 413–421 (1994).
[CrossRef]

Garrett, M. H.

Goodman, J. W.

Grabmaier, B. C.

B. C. Grabmaier and R. Oberschmid, “Properties of pure and doped Bi12GeO20 and Bi12SiO20 crystals,” Phys. Status Solidi A 96, 199–210 (1986).
[CrossRef]

Gunter, P.

P. Bernasconi, I. Biaggio, M. Zgonik, and P. Gunter, “Anisotropy of the electron and drift mobility in KNbO3 and BaTiO3,” Phys. Rev. Lett. 78, 106–109 (1997).
[CrossRef]

Harris, M.

J. Larkin, M. Harris, J. E. Cormier, and A. Armington, “Hydrothermal growth of bismuth silicate (BSO),” J. Cryst. Growth 128, 871–875 (1993).
[CrossRef]

Hellwarth, R. W.

I. Biaggio, R. W. Hellwarth, and J. P. Partanen, “Band mobility of photoexcited electrons in Bi12SiO20,” Phys. Rev. Lett. 78, 891–894 (1997).
[CrossRef]

P. Nouchi, J. P. Partanen, and R. W. Hellwarth, “Temperature dependence of the electron mobility in photorefractive Bi12SiO20,” J. Opt. Soc. Am. B 9, 1428–1431 (1992).
[CrossRef]

F. P. Strohkendl, P. Tayebati, and R. W. Hellwarth, “Comparative study of photorefractive Bi12SiO20 crystals,” J. Appl. Phys. 66, 6024–6029 (1989).
[CrossRef]

Herriau, J. P.

J. P. Herriau, D. Rojas, J. P. Huignard, J. M. Bassat, and J. C. Launay, “Highly efficient diffraction in photorefractive BSO–BGO crystals at large applied fields,” Ferroelectrics 75, 271–279 (1987).
[CrossRef]

Hesselink, L.

Hou, S. L.

S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
[CrossRef]

Huignard, J. P.

J. P. Herriau, D. Rojas, J. P. Huignard, J. M. Bassat, and J. C. Launay, “Highly efficient diffraction in photorefractive BSO–BGO crystals at large applied fields,” Ferroelectrics 75, 271–279 (1987).
[CrossRef]

Jacquier, B.

R. Moncourge, B. Jacquier, and G. Boulon, “Temperature dependent luminescence of Bi4Ge3O12. Discussion on possible models,” J. Lumin. 14, 337–348 (1976).

Klimenko, L. P.

V. P. Avramenko, L. P. Klimenko, A. Yu. Kudzin, and G. Kh. Sokolyanskii, “Hopping conduction in bismuth germanate single crystals,” Sov. Phys. Solid State 19, 702–703 (1977).

Kopylova, S. Yu.

T. V. Panchenko, V. Kh. Kostyuk, and S. Yu. Kopylova, “Local centers in nonstoichiometric Bi12SiO20 crystals,” Phys. Solid State 38, 84–89 (1996).

Kostyuk, B. Kh.

B. Kh. Kostyuk, A. Yu. Kudzin, and G. Kh. Sokolyanskii, “Phototransport in Bi12SiO20 and Bi12GeO20 single crystals,” Sov. Phys. Solid State 22, 1429–1432 (1980).

Kostyuk, V. Kh.

T. V. Panchenko, V. Kh. Kostyuk, and S. Yu. Kopylova, “Local centers in nonstoichiometric Bi12SiO20 crystals,” Phys. Solid State 38, 84–89 (1996).

Kudzin, A. Yu.

B. Kh. Kostyuk, A. Yu. Kudzin, and G. Kh. Sokolyanskii, “Phototransport in Bi12SiO20 and Bi12GeO20 single crystals,” Sov. Phys. Solid State 22, 1429–1432 (1980).

V. P. Avramenko, L. P. Klimenko, A. Yu. Kudzin, and G. Kh. Sokolyanskii, “Hopping conduction in bismuth germanate single crystals,” Sov. Phys. Solid State 19, 702–703 (1977).

Larkin, J.

J. Larkin, M. Harris, J. E. Cormier, and A. Armington, “Hydrothermal growth of bismuth silicate (BSO),” J. Cryst. Growth 128, 871–875 (1993).
[CrossRef]

Lartigue, H.

P. Tissot and H. Lartigue, “Study of the system GeO2-Bi2O3,” Thermochim. Acta 127, 377–383 (1988).
[CrossRef]

Lauer, R. B.

R. B. Lauer, “Electron effective mass and conduction band effective density of states in Bi12SiO20,” J. Appl. Phys. 45, 1794–1797 (1974).
[CrossRef]

S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
[CrossRef]

R. B. Lauer, “Thermally stimulated currents and luminescence in Bi12SiO20 and Bi12GeO20,” J. Appl. Phys. 42, 2147–2149 (1971).
[CrossRef]

R. B. Lauer, “Photoluminescence in Bi12SiO20 and Bi12GeO20,” Appl. Phys. Lett. 17, 178–179 (1970).
[CrossRef]

Launay, J. C.

J. P. Herriau, D. Rojas, J. P. Huignard, J. M. Bassat, and J. C. Launay, “Highly efficient diffraction in photorefractive BSO–BGO crystals at large applied fields,” Ferroelectrics 75, 271–279 (1987).
[CrossRef]

Levi, Z.

D. Nesheva, Z. Aneva, and Z. Levi, “Bi12SiO20 monocrystals doped with transition metals,” J. Phys. Chem. Solids 56, 241–250 (1995).
[CrossRef]

Maffei, N.

N. Maffei, D. H. H. Quon, J. Aota, T. T. Chen, J. McCaffrey, and S. Charbonneau, “Characterization of Bi12GeO20 processed in a microgravity environment,” J. Cryst. Growth 181, 382–389 (1997).
[CrossRef]

McCaffrey, J.

N. Maffei, D. H. H. Quon, J. Aota, T. T. Chen, J. McCaffrey, and S. Charbonneau, “Characterization of Bi12GeO20 processed in a microgravity environment,” J. Cryst. Growth 181, 382–389 (1997).
[CrossRef]

Monchamp, R. R.

M. J. Weber and R. R. Monchamp, “Luminescence of Bi4Ge3O12: spectral and decay properties,” J. Appl. Phys. 44, 5495–5499 (1973).
[CrossRef]

Moncourge, R.

R. Moncourge, B. Jacquier, and G. Boulon, “Temperature dependent luminescence of Bi4Ge3O12. Discussion on possible models,” J. Lumin. 14, 337–348 (1976).

Mustafaev, E. R.

Sh. M. Effendiev, V. G. Darvishov, E. R. Mustafaev, and V. E. Bagiev, “Radiative transitions in crystals of sillenite-type structure,” Phys. Status Solidi A 143, 413–421 (1994).
[CrossRef]

Nesheva, D.

D. Nesheva, Z. Aneva, and Z. Levi, “Bi12SiO20 monocrystals doped with transition metals,” J. Phys. Chem. Solids 56, 241–250 (1995).
[CrossRef]

Nouchi, P.

Oberschmid, R.

B. C. Grabmaier and R. Oberschmid, “Properties of pure and doped Bi12GeO20 and Bi12SiO20 crystals,” Phys. Status Solidi A 96, 199–210 (1986).
[CrossRef]

R. Oberschmid, “Absorption centers of Bi12GeO20 and Bi12SiO20,” Phys. Status Solidi A 89, 263–270 (1985).
[CrossRef]

R. Oberschmid, “Conductivity instabilities and polarization effects of Bi12(Ge, Si)O20 single-crystal samples,” Phys. Status Solidi A 89, 657–671 (1985).
[CrossRef]

Ochoa, E.

Panchenko, T. V.

T. V. Panchenko, V. Kh. Kostyuk, and S. Yu. Kopylova, “Local centers in nonstoichiometric Bi12SiO20 crystals,” Phys. Solid State 38, 84–89 (1996).

Partanen, J. P.

I. Biaggio, R. W. Hellwarth, and J. P. Partanen, “Band mobility of photoexcited electrons in Bi12SiO20,” Phys. Rev. Lett. 78, 891–894 (1997).
[CrossRef]

P. Nouchi, J. P. Partanen, and R. W. Hellwarth, “Temperature dependence of the electron mobility in photorefractive Bi12SiO20,” J. Opt. Soc. Am. B 9, 1428–1431 (1992).
[CrossRef]

Quon, D. H. H.

N. Maffei, D. H. H. Quon, J. Aota, T. T. Chen, J. McCaffrey, and S. Charbonneau, “Characterization of Bi12GeO20 processed in a microgravity environment,” J. Cryst. Growth 181, 382–389 (1997).
[CrossRef]

Rojas, D.

J. P. Herriau, D. Rojas, J. P. Huignard, J. M. Bassat, and J. C. Launay, “Highly efficient diffraction in photorefractive BSO–BGO crystals at large applied fields,” Ferroelectrics 75, 271–279 (1987).
[CrossRef]

Sinyavskii, E. P.

V. P. Zenchenko and E. P. Sinyavskii, “Influence of impurities on the interband absorption of long-wave radiation in semiconductors,” Sov. Phys. Solid State 22, 2168–2169 (1980).

Sokolyanskii, G. Kh.

B. Kh. Kostyuk, A. Yu. Kudzin, and G. Kh. Sokolyanskii, “Phototransport in Bi12SiO20 and Bi12GeO20 single crystals,” Sov. Phys. Solid State 22, 1429–1432 (1980).

V. P. Avramenko, L. P. Klimenko, A. Yu. Kudzin, and G. Kh. Sokolyanskii, “Hopping conduction in bismuth germanate single crystals,” Sov. Phys. Solid State 19, 702–703 (1977).

Strohkendl, F. P.

F. P. Strohkendl, P. Tayebati, and R. W. Hellwarth, “Comparative study of photorefractive Bi12SiO20 crystals,” J. Appl. Phys. 66, 6024–6029 (1989).
[CrossRef]

Tayebati, P.

P. Tayebati, “The effect of shallow traps on the dark storage of photorefractive grating in Bi12SiO20,” J. Appl. Phys. 70, 4082–4094 (1991).
[CrossRef]

F. P. Strohkendl, P. Tayebati, and R. W. Hellwarth, “Comparative study of photorefractive Bi12SiO20 crystals,” J. Appl. Phys. 66, 6024–6029 (1989).
[CrossRef]

Tissot, P.

P. Tissot and H. Lartigue, “Study of the system GeO2-Bi2O3,” Thermochim. Acta 127, 377–383 (1988).
[CrossRef]

Weber, M. J.

M. J. Weber and R. R. Monchamp, “Luminescence of Bi4Ge3O12: spectral and decay properties,” J. Appl. Phys. 44, 5495–5499 (1973).
[CrossRef]

Zenchenko, V. P.

V. P. Zenchenko and E. P. Sinyavskii, “Influence of impurities on the interband absorption of long-wave radiation in semiconductors,” Sov. Phys. Solid State 22, 2168–2169 (1980).

Zgonik, M.

P. Bernasconi, I. Biaggio, M. Zgonik, and P. Gunter, “Anisotropy of the electron and drift mobility in KNbO3 and BaTiO3,” Phys. Rev. Lett. 78, 106–109 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. B. Lauer, “Photoluminescence in Bi12SiO20 and Bi12GeO20,” Appl. Phys. Lett. 17, 178–179 (1970).
[CrossRef]

Ferroelectrics

J. P. Herriau, D. Rojas, J. P. Huignard, J. M. Bassat, and J. C. Launay, “Highly efficient diffraction in photorefractive BSO–BGO crystals at large applied fields,” Ferroelectrics 75, 271–279 (1987).
[CrossRef]

J. Appl. Phys.

S. L. Hou, R. B. Lauer, and R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
[CrossRef]

R. B. Lauer, “Thermally stimulated currents and luminescence in Bi12SiO20 and Bi12GeO20,” J. Appl. Phys. 42, 2147–2149 (1971).
[CrossRef]

F. P. Strohkendl, P. Tayebati, and R. W. Hellwarth, “Comparative study of photorefractive Bi12SiO20 crystals,” J. Appl. Phys. 66, 6024–6029 (1989).
[CrossRef]

R. B. Lauer, “Electron effective mass and conduction band effective density of states in Bi12SiO20,” J. Appl. Phys. 45, 1794–1797 (1974).
[CrossRef]

P. Tayebati, “The effect of shallow traps on the dark storage of photorefractive grating in Bi12SiO20,” J. Appl. Phys. 70, 4082–4094 (1991).
[CrossRef]

M. J. Weber and R. R. Monchamp, “Luminescence of Bi4Ge3O12: spectral and decay properties,” J. Appl. Phys. 44, 5495–5499 (1973).
[CrossRef]

J. Cryst. Growth

N. Maffei, D. H. H. Quon, J. Aota, T. T. Chen, J. McCaffrey, and S. Charbonneau, “Characterization of Bi12GeO20 processed in a microgravity environment,” J. Cryst. Growth 181, 382–389 (1997).
[CrossRef]

J. Larkin, M. Harris, J. E. Cormier, and A. Armington, “Hydrothermal growth of bismuth silicate (BSO),” J. Cryst. Growth 128, 871–875 (1993).
[CrossRef]

J. Lumin.

R. Moncourge, B. Jacquier, and G. Boulon, “Temperature dependent luminescence of Bi4Ge3O12. Discussion on possible models,” J. Lumin. 14, 337–348 (1976).

J. Opt. Soc. Am. B

J. Phys. Chem. Solids

D. Nesheva, Z. Aneva, and Z. Levi, “Bi12SiO20 monocrystals doped with transition metals,” J. Phys. Chem. Solids 56, 241–250 (1995).
[CrossRef]

Phys. Rev. Lett.

I. Biaggio, R. W. Hellwarth, and J. P. Partanen, “Band mobility of photoexcited electrons in Bi12SiO20,” Phys. Rev. Lett. 78, 891–894 (1997).
[CrossRef]

P. Bernasconi, I. Biaggio, M. Zgonik, and P. Gunter, “Anisotropy of the electron and drift mobility in KNbO3 and BaTiO3,” Phys. Rev. Lett. 78, 106–109 (1997).
[CrossRef]

Phys. Solid State

T. V. Panchenko, V. Kh. Kostyuk, and S. Yu. Kopylova, “Local centers in nonstoichiometric Bi12SiO20 crystals,” Phys. Solid State 38, 84–89 (1996).

Phys. Status Solidi A

B. C. Grabmaier and R. Oberschmid, “Properties of pure and doped Bi12GeO20 and Bi12SiO20 crystals,” Phys. Status Solidi A 96, 199–210 (1986).
[CrossRef]

R. Oberschmid, “Conductivity instabilities and polarization effects of Bi12(Ge, Si)O20 single-crystal samples,” Phys. Status Solidi A 89, 657–671 (1985).
[CrossRef]

R. Oberschmid, “Absorption centers of Bi12GeO20 and Bi12SiO20,” Phys. Status Solidi A 89, 263–270 (1985).
[CrossRef]

Sh. M. Effendiev, V. G. Darvishov, E. R. Mustafaev, and V. E. Bagiev, “Radiative transitions in crystals of sillenite-type structure,” Phys. Status Solidi A 143, 413–421 (1994).
[CrossRef]

Sov. Phys. Solid State

V. P. Avramenko, L. P. Klimenko, A. Yu. Kudzin, and G. Kh. Sokolyanskii, “Hopping conduction in bismuth germanate single crystals,” Sov. Phys. Solid State 19, 702–703 (1977).

B. Kh. Kostyuk, A. Yu. Kudzin, and G. Kh. Sokolyanskii, “Phototransport in Bi12SiO20 and Bi12GeO20 single crystals,” Sov. Phys. Solid State 22, 1429–1432 (1980).

V. P. Zenchenko and E. P. Sinyavskii, “Influence of impurities on the interband absorption of long-wave radiation in semiconductors,” Sov. Phys. Solid State 22, 2168–2169 (1980).

Thermochim. Acta

P. Tissot and H. Lartigue, “Study of the system GeO2-Bi2O3,” Thermochim. Acta 127, 377–383 (1988).
[CrossRef]

Other

P. Gunther and J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vols. I and II.

L. Solymer, D. J. Webb, and A. Grunnet-Jepsen, eds., The Physics and Applications of Photorefractive Materials (Oxford U. Press, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorption coefficient of the BGO crystals grown from five [Ge]/[Bi] ratios in the melt: Abs., absorption.

Fig. 2
Fig. 2

I–V characteristics of the BGO crystals under dark conditions at room temperature.

Fig. 3
Fig. 3

I–V characteristics of the BGO crystals under illumination at room temperature.

Fig. 4
Fig. 4

Spectral dependence of the photocurrent for the BGO crystals at room temperature.

Fig. 5
Fig. 5

Decay time constants (in milliseconds) at various intensities of green-light erasures measured for the BGO crystals. The intensities of the writing and the signal beams were kept constant and were at their lowest fluence.

Fig. 6
Fig. 6

Composition dependence of dielectric constants for the BGO crystals observed at various frequencies at room temperature.

Fig. 7
Fig. 7

Photoconductivity of the BGO crystals at several intensities of green light determined by the holographic method incorporating the measured dielectric constant values.

Fig. 8
Fig. 8

Luminescence emission spectra of the BGO crystals at 80 K. Excitation was provided by a He–Cd laser operating at 325 nm (more than the bandgap of the crystal).

Fig. 9
Fig. 9

Schematic diagram of the interband transitions in BGO crystals, highlighting the prominent excitation and emission phenomena: CB, conduction band; VB, valence band.

Tables (1)

Tables Icon

Table 1 Comparison of Composition, Lattice Constant, and Absorption in BGO Crystals Grown for the Melts of Several [Ge]/[Bi] Ratios

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ=(0)/τ,
Z*(ω)=1/[iωC*(ω)],
={Cd}/{A0},

Metrics