Abstract

We report the development of compact, efficiently diode-pumped Nd:YAG and Nd:YAlO3 lasers in a pulsed regime, mode locked by a nonlinear mirror (NLM) technique. Pumping with an 80-W single-bar diode array at a repetition rate as high as 200 Hz and depending on the NLM configuration, trains of 20–100 pulses, with 25-ps pulses with energies as high as 9 µJ each, are generated. These novel pulsed picosecond sources show excellent amplitude stability (<2% amplitude fluctuation) and beam quality. Numerical simulations of the pulse-formation dynamics are presented, and the results are compared with the experiments.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Agnesi, E. Piccinini, G. C. Reali, and C. Solcia, “All-solid-state picosecond tunable source of near-infrared radiation,” Opt. Lett. 22, 1415–1417 (1997).
    [CrossRef]
  2. A. Agnesi, G. C. Reali, and V. Kubecek, “Nonlinear mirror operation of a diode-pumped quasi-cw picosecond Nd:YAG laser,” Appl. Phys. B: Lasers Opt. 66, 283–285 (1998).
    [CrossRef]
  3. K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B: Photophys. Laser Chem. 45, 191–195 (1988).
    [CrossRef]
  4. D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
    [CrossRef]
  5. K. A. Stankov, “25 ps pulses from a Nd:YAG laser mode locked by a frequency doubling β-BaB2O4 crystal,” Appl. Phys. Lett. 58, 2203–2205 (1991).
    [CrossRef]
  6. I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107, 281–286 (1994).
    [CrossRef]
  7. M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3.” J. Appl. Phys. 42, 4996–5005 (1971).
    [CrossRef]
  8. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  9. D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23, 575–592 (1987).
    [CrossRef]
  10. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
  11. G. Cerullo, V. Magni, and A. Monguzzi, “Group-velocity mismatch compensation in continuous-wave lasers mode locked by second-order nonlinearities,” Opt. Lett. 20, 1785–1787 (1995).
    [CrossRef] [PubMed]
  12. A. Agnesi, C. Pennacchio, and G. C. Reali, “High-average-power nonlinear mirror mode-locking with diode-pumped Neodymium lasers,” in Conference on Lasers and Electro-optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 16.
  13. H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
    [CrossRef]
  14. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” Appl. Phys. 34, 2346–2349 (1963).
    [CrossRef]
  15. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]

1998 (1)

A. Agnesi, G. C. Reali, and V. Kubecek, “Nonlinear mirror operation of a diode-pumped quasi-cw picosecond Nd:YAG laser,” Appl. Phys. B: Lasers Opt. 66, 283–285 (1998).
[CrossRef]

1997 (1)

1995 (2)

1994 (2)

D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
[CrossRef]

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107, 281–286 (1994).
[CrossRef]

1992 (1)

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

1991 (1)

K. A. Stankov, “25 ps pulses from a Nd:YAG laser mode locked by a frequency doubling β-BaB2O4 crystal,” Appl. Phys. Lett. 58, 2203–2205 (1991).
[CrossRef]

1988 (1)

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B: Photophys. Laser Chem. 45, 191–195 (1988).
[CrossRef]

1987 (1)

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23, 575–592 (1987).
[CrossRef]

1971 (1)

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3.” J. Appl. Phys. 42, 4996–5005 (1971).
[CrossRef]

1963 (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Agnesi, A.

A. Agnesi, G. C. Reali, and V. Kubecek, “Nonlinear mirror operation of a diode-pumped quasi-cw picosecond Nd:YAG laser,” Appl. Phys. B: Lasers Opt. 66, 283–285 (1998).
[CrossRef]

A. Agnesi, E. Piccinini, G. C. Reali, and C. Solcia, “All-solid-state picosecond tunable source of near-infrared radiation,” Opt. Lett. 22, 1415–1417 (1997).
[CrossRef]

Bosenberg, W. R.

Buchvarov, I.

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107, 281–286 (1994).
[CrossRef]

Byer, R. L.

Cerullo, G.

Christov, G.

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107, 281–286 (1994).
[CrossRef]

Eckardt, R. C.

Eimerl, D.

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23, 575–592 (1987).
[CrossRef]

Fejer, M. M.

Flood, C. J.

D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
[CrossRef]

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Greiner, U. J.

D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
[CrossRef]

Kazamura, M.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Klingerberg, H. H.

D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
[CrossRef]

Kubecek, V.

A. Agnesi, G. C. Reali, and V. Kubecek, “Nonlinear mirror operation of a diode-pumped quasi-cw picosecond Nd:YAG laser,” Appl. Phys. B: Lasers Opt. 66, 283–285 (1998).
[CrossRef]

Kume, M.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Magni, V.

Monguzzi, A.

Myers, L. E.

Nagai, H.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Ohta, I.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Piccinini, E.

Pierce, J. W.

Reali, G. C.

A. Agnesi, G. C. Reali, and V. Kubecek, “Nonlinear mirror operation of a diode-pumped quasi-cw picosecond Nd:YAG laser,” Appl. Phys. B: Lasers Opt. 66, 283–285 (1998).
[CrossRef]

A. Agnesi, E. Piccinini, G. C. Reali, and C. Solcia, “All-solid-state picosecond tunable source of near-infrared radiation,” Opt. Lett. 22, 1415–1417 (1997).
[CrossRef]

Saltiel, S.

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107, 281–286 (1994).
[CrossRef]

Shimizu, H.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Solcia, C.

Stankov, K. A.

K. A. Stankov, “25 ps pulses from a Nd:YAG laser mode locked by a frequency doubling β-BaB2O4 crystal,” Appl. Phys. Lett. 58, 2203–2205 (1991).
[CrossRef]

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B: Photophys. Laser Chem. 45, 191–195 (1988).
[CrossRef]

Van Driel, H. M.

D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
[CrossRef]

Varitimos, T. E.

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3.” J. Appl. Phys. 42, 4996–5005 (1971).
[CrossRef]

Walker, D. R.

D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
[CrossRef]

Weber, M. J.

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3.” J. Appl. Phys. 42, 4996–5005 (1971).
[CrossRef]

Appl. Phys. (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Appl. Phys. B: Lasers Opt. (1)

A. Agnesi, G. C. Reali, and V. Kubecek, “Nonlinear mirror operation of a diode-pumped quasi-cw picosecond Nd:YAG laser,” Appl. Phys. B: Lasers Opt. 66, 283–285 (1998).
[CrossRef]

Appl. Phys. B: Photophys. Laser Chem. (1)

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B: Photophys. Laser Chem. 45, 191–195 (1988).
[CrossRef]

Appl. Phys. Lett. (2)

D. R. Walker, C. J. Flood, H. M. Van Driel, U. J. Greiner, and H. H. Klingerberg, “High power diode-pumped Nd:YAG regenerative amplifier for picosecond pulses,” Appl. Phys. Lett. 65, 1992–1994 (1994).
[CrossRef]

K. A. Stankov, “25 ps pulses from a Nd:YAG laser mode locked by a frequency doubling β-BaB2O4 crystal,” Appl. Phys. Lett. 58, 2203–2205 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. 23, 575–592 (1987).
[CrossRef]

H. Nagai, M. Kume, I. Ohta, H. Shimizu, and M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

J. Appl. Phys. (1)

M. J. Weber and T. E. Varitimos, “Optical spectra and intensities of Nd3+ in YAlO3.” J. Appl. Phys. 42, 4996–5005 (1971).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behaviour of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107, 281–286 (1994).
[CrossRef]

Opt. Lett. (2)

Other (3)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).

A. Agnesi, C. Pennacchio, and G. C. Reali, “High-average-power nonlinear mirror mode-locking with diode-pumped Neodymium lasers,” in Conference on Lasers and Electro-optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Layout: LD, diode bar; ML, 400-µm-diameter microlens; AL, 8.1-mm focal acylindrical lens; LC, laser crystal; M1, input mirror; AOM, 60-MHz acousto-optic modulator; P, glass plate; L, f=250-mm lens; M2, r=2 f2=150-mm mirror; NLC, nonlinear crystal; M3, dichroic OC.

Fig. 2
Fig. 2

Mode size in the laser crystal (wg) and on the dichroic OC (wo), as a function of the separation. d=170 mm.

Fig. 3
Fig. 3

Envelope of the pulse train emitted from (a) M3 and from (b) P with the Nd:YAG laser and the BBO-NLM.

Fig. 4
Fig. 4

Pulse autocorrelation (a hyperbolic secant squared shape is assumed) of the signal from M3 (dashed line) and P (solid line).

Fig. 5
Fig. 5

Envelope of the pulse train emitted from M3 with the Nd:YAlO3 laser and the BBO-NLM.

Fig. 6
Fig. 6

Numerical results for the mode-locked Nd:YAG laser with the BBO-NLM. (a) pulse train emitted from M3, (b) pulse train emitted from P, (c) SH average efficiency for a single pass through NLC, (d) pulses from M3 and P corresponding to the train peak in (a), and (e) pulses corresponding to the half-peak value after the envelope peak in (a).

Tables (2)

Tables Icon

Table 1 Performance of the KTP-NLM Mode-Locked Nd:YAG Lasera

Tables Icon

Table 2 Performance of the BBO-NLM Mode-Locked Nd:YAG Lasera

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

GVM=1vω-1v2ω,
τc=2×GVM×l.
1v=kω=-λ2c(n/λ)λ
E2ωz=Z0ω0deffn2ωEω2 exp(iδ),
Eωz=-Z0ω0deffnωE2ωEω* exp(-iδ),
δ=φ+Δk¯z,
lF(ν)ννF2,
gg01-ν2νg2-l0-lF(ν)g0-l0-g0ν2νg2+1g0ν2νF2g01-ν2νg,eff2-l0,
νg,eff=-νg1+1g0νgνF21/2.
Iz=gI,gt=-gIJs,

Metrics