Abstract

A long-wavelength injection method is proposed that will yield a broad amplified spectrum in a femtosecond terawatt Ti:sapphire laser. By injecting a seed pulse on the red side of the gain peak and amplifying it to a saturated fluence level, we could significantly compensate for the spectral narrowing that is due to the gain-narrowing effect by use of the amplifying characteristics of a positively chirped pulse in a gain-saturated regime, and 20-fs, 3-TW pulses could be demonstrated from a Ti:sapphire laser with two multipass amplifiers.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. J. Barty, C. L. Gordon, III, and B. E. Lemoff, “Multiterawatt 30-fs Ti:sapphire laser system,” Opt. Lett. 19, 1442–1444 (1994).
    [CrossRef] [PubMed]
  2. J. Zhou, C.-P. Huang, M. M. Murnane, and H. C. Kapteyn, “Amplification of 26-fs, 2-TW pulses near the gain-narrowing limit in Ti:sapphire,” Opt. Lett. 20, 64–66 (1995).
    [CrossRef] [PubMed]
  3. J. P. Chambaret, C. Le Blanc, G. Chériaux, P. Curley, G. Darpentigny, P. Rousseau, G. Hamoniaux, A. Antonetti, and F. Salin, “Generation of 25-TW, 32-fs pulses at 10 Hz,” Opt. Lett. 21, 1921–1923 (1996).
    [CrossRef] [PubMed]
  4. C. P. J. Barty, T. Guo, C. Le Blanc, F. Raksi, C. Rose-Petruck, J. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,” Opt. Lett. 21, 668–670 (1996).
    [CrossRef] [PubMed]
  5. K. Yamakawa, M. Aoyama, S. Matsuoka, H. Takuma, C. P. J. Barty, and D. Fittinghoff, “Generation of 16-fs, 10-TW pulses at a 10-Hz repetition rate with efficient Ti:sapphire amplifiers,” Opt. Lett. 23, 525–527 (1998).
    [CrossRef]
  6. S. Backus, C. G. Durfee, III, G. Mourou, H. C. Kapteyn, and M. M. Murnane, “0.2-TW laser system at 1 kHz,” Opt. Lett. 22, 1256–1258 (1997).
    [CrossRef] [PubMed]
  7. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
    [CrossRef]
  8. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996), p. 116.
  9. C. L. Blanc, P. Curely, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti:sapphire amplifiers,” Opt. Commun. 131, 391–398 (1996).
    [CrossRef]
  10. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
    [CrossRef]
  11. G. Chériaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett. 21, 414–416 (1996).
    [CrossRef] [PubMed]

1998 (1)

1997 (1)

1996 (4)

1995 (1)

1994 (1)

1986 (1)

1963 (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Antonetti, A.

Aoyama, M.

Backus, S.

Barty, C. P. J.

Blanc, C. L.

C. L. Blanc, P. Curely, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti:sapphire amplifiers,” Opt. Commun. 131, 391–398 (1996).
[CrossRef]

Chambaret, J. P.

Chériaux, G.

Curely, P.

C. L. Blanc, P. Curely, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti:sapphire amplifiers,” Opt. Commun. 131, 391–398 (1996).
[CrossRef]

Curley, P.

Darpentigny, G.

Dimauro, L. F.

Durfee III, C. G.

Fittinghoff, D.

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Gordon III, C. L.

Guo, T.

Hamoniaux, G.

Huang, C.-P.

Kapteyn, H. C.

Le Blanc, C.

Lemoff, B. E.

Matsuoka, S.

Moulton, P. F.

Mourou, G.

Murnane, M. M.

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

Raksi, F.

Rose-Petruck, C.

Rousseau, P.

Salin, F.

Squier, J.

Takuma, H.

Walker, B.

Wilson, K. R.

Yakovlev, V. V.

Yamakawa, K.

Zhou, J.

J. Appl. Phys. (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

C. L. Blanc, P. Curely, and F. Salin, “Gain-narrowing and gain-shifting of ultra-short pulses in Ti:sapphire amplifiers,” Opt. Commun. 131, 391–398 (1996).
[CrossRef]

Opt. Lett. (7)

Other (1)

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996), p. 116.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simulated spectra obtained after an eight-pass amplifier with several values of amplified energy. The input spectra of (a) and (b) are centered at 775 and 815 nm, respectively. The numbers in parentheses are the spectral widths.

Fig. 2
Fig. 2

Experimentally obtained spectra after an eight-pass amplifier with several values of amplified energy. The input spectra of (a) and (b) are centered at 775 and 815 nm, respectively. The numbers in parentheses are the spectral widths.

Fig. 3
Fig. 3

Amplified spectra after an eight-pass amplifier obtained from (a) simulation and (b) experiment for a properly shaped and positioned input spectrum.

Fig. 4
Fig. 4

Amplified spectrum after a five-pass power amplifier obtained from (a) experiment and (b) simulation. The simulation result shows that gain narrowing and gain saturation balance each other at the power amplifier.

Fig. 5
Fig. 5

Single-shot autocorrelation trace of a compressed pulse and its fit curve to a pulse shape obtained by inverse Fourier transform of the spectrum.

Metrics