Abstract

Bistable responses of Fabry–Perot cavities and optical arrays in the presence of diffraction and diffusion are studied both analytically and numerically. The model is a pair of nonlinear Schrödinger equations coupled through a diffusion equation. The numerical computations are based on a split-step method, with three distinct characteristics. In these diffusion-dominated arrays with weak diffraction, this study demonstrates that focusing nonlinearity can improve the response characteristics significantly. The primary results of the study are that (1) for diffusion-dominated media a small amount of diffraction is sufficient to alter optical bistability significantly; (2) focusing nonlinearities enhance optical bistability in comparison with defocusing nonlinearities; (3) in diffusion-dominated media these focusing–defocusing effects are quite distinct from self-focusing behavior in Kerr media; (4) in the presence of diffraction the response of the array can be described analytically by a reduced map, whose derivation can be viewed as an extension of Firth’s diffusive model to include weak diffraction; (5) this map is used to explain analytically certain qualitative features of bistability, as observed in the numerical experiments; and (6) optimal spacing predictions are made with a reduced map and verified with numerical simulations of small all-optical arrays.

© 1999 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diffusion and diffraction in dispersive optical bistability

W. J. Firth, I. Galbraith, and E. M. Wright
J. Opt. Soc. Am. B 2(6) 1005-1009 (1985)

Self-focusing effects in a bistable semiconductor interferometer

Yu. I. Balkarei, M. G. Evtikhov, J. V. Moloney, and Yu. A. Rzhanov
J. Opt. Soc. Am. B 7(7) 1298-1302 (1990)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription