Abstract

The mechanism for refractive-index changes that accompany changes in population during pumping and amplification of an optical beam is studied in a Nd:YAG laser crystal by both resonant four-wave mixing and interferometric techniques. It is found that these refractive-index changes (connected with the difference in polarizability of excited and unexcited Nd3+ ions) have two components: a small noninertial component that accompanies an amplified optical pulse and the major changes that are intensified with a delay time of ∼3 µs. The latter effect is explained by population (or depopulation) of a higher-lying energy level  2(F2)5/2 of the 4f electron shell of Nd3+ ions, which has large polarizability in near-IR and visible light. The real part of the nonlinear optical resonant susceptibility of the inverted Nd:YAG caused by the refractive-index changes is also discussed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Damzen, R. P. M. Green, and K. S. Syed, “Self-adaptive solid-state oscillator formed by dynamic gain-gratings holograms,” Opt. Lett. 20, 1704–1706 (1995).
    [CrossRef]
  2. O. L. Antipov, A. S. Kuzhelev, A. P. Zinov’ev, and V. A. Vorob’ev, “Millisecond pulse repetitive Nd:YAG-laser with self-adaptive cavity formed by population gratings,” Opt. Commun. 152, 313–318 (1998).
    [CrossRef]
  3. G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys. 38, 2726–2738 (1967).
    [CrossRef]
  4. T. Catunda and J. C. Castro, “Phase conjugation in GdAlO3:Cr3+ and ruby,” Opt. Commun. 63, 185–190 (1987).
    [CrossRef]
  5. R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Four-wave mixing of Nd3+-doped crystals and glasses,” Phys. Rev. B 41, 8593–8602 (1990).
    [CrossRef]
  6. M. M. Bubnov, A. B. Grudinin, E. M. Dianov, and A. M. Prokhorov, “Deformation of resonator of Nd-glass laser caused by polarizability changing of excited Nd ions,” Quantum Electron. 8, 275–279 (1978). (Sov.)
  7. A. Brignon and J.-P. Huignard, “Two-wave mixing in Nd:YAG by gain saturation,” Opt. Lett. 18, 1639–1641 (1993).
    [CrossRef] [PubMed]
  8. R. P. M. Green, S. Camacho-Lopez, and M. J. Damzen, “Experimental investigation of vector phase conjugation in Nd3+:YAG,” Opt. Lett. 21, 1214–1216 (1996).
    [CrossRef] [PubMed]
  9. O. L. Antipov, A. S. Kuzhelev, and D. V. Chausov, “Nondegenerate four-wave mixing measurement of resonantly induced refractive index grating in Nd:YAG amplifier,” Opt. Lett. 23, 448–450 (1998).
    [CrossRef]
  10. O. L. Antipov, A. S. Kuzhelev, and D. V. Chausov, “Resonant refractive index and gain gratings measurements by four-wave mixings in Nd:YAG amplifier,” in Advanced Solid State Lasers, W. Bosenberg and M. Feyer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 555– 560.
  11. O. L. Antipov, S. I. Belyaev, A. S. Kuzhelev, and D. V. Chausov, “Resonant two-wave mixing of optical beams by refractive index and gain gratings in inverted Nd:YAG,” J. Opt. Soc. Am. B 15, 2276–2282 (1998).
    [CrossRef]
  12. O. L. Antipov, A. S. Kuzhelev, A. Yu. Luk’yanov, and A. P. Zinov’ev, “Refractive index changes of Nd:YAG laser crystal by Nd3+-ions excitation,” Quantum Electron. 25, (1998). (Rus.)
  13. O. L. Antipov, S. I. Belyaev, and A. S. Kuzhelev, “Stimulated resonance scattering of the light beam in the laser crystal with population inversion,” JETP Lett. 63, 13–16 (1996).
    [CrossRef]
  14. O. L. Antipov, S. I. Belyaev, and A. S. Kuzhelev, “Phase conjugator of the light beams based on Nd:YAG-rod with the reciprocal feedback,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 411–416.
  15. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1968).
  16. A. A. Kaminskii and B. M. Antipenko, Multilevel Operating Schemes of Crystalline Lasers (Nauka, Moscow, 1989).
  17. T. T. Basiev, A. Yu. Dergachev, Yu. V. Orlovscii, V. V. Osiko, and A. M. Prockhorov, “Multiphonon nano- and subnanosecond relaxation from high-lying levels of Nd3+-ions in laser fluorides and oxides,” Proc. General Phys. Inst. Russ. Acad. Sci. 46, 3–64 (1994).
  18. A. P. Bogatov and P. G. Eliseev, “Nonlinear refraction in semiconductor lasers,” Sov. J. Quantum Electron. 12, 465–494 (1985).
  19. G. P. Agrawal, “Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. B 5, 147–159 (1988).
    [CrossRef]
  20. M. Françon and S. Mallick, Polarization Interferometers: Application in Microscopy and Macroscopy (Academic, New York, 1971).
  21. P. K. Brazhnik, M. A. Novikov, and A. A. Pushkin, “Polarizing interferometers in photothermal spectroscopy,” Opt. Spectrosc. (USSR) 68, 631–635 (1990).
  22. M. J. F. Digonnet, R. W. Sadowskii, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching,” Opt. Fiber Technol.: Mater., Devices Syst. 3, 44–64 (1997).
    [CrossRef]
  23. M. A. Kramer and R. W. Boyd, “Three photon absorption in Nd-doped yttrium aluminum garnet,” Phys. Rev. B 23, 986–991 (1981).
    [CrossRef]
  24. G. J. Quarles, G. E. Venikouas, and R. C. Powell, “Sequential two-photon excitation processes of Nd3+ ions in solids,” Phys. Rev. B 31, 6935–6940 (1985).
    [CrossRef]
  25. T. Y. Fan and R. L. Byer, “Two-step excitation and blue fluorescence under continuous-wave pumping in Nd:YLF,” J. Opt. Soc. Am. B 3, 1519–1525 (1986).
    [CrossRef]
  26. M. Pollnau, W. A. Clarkson, and D. C. Hanna, “Thermal lensing in end-pumped Nd:YAG under lasing and nonlasing conditions,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CTuI1, pp. 100–101.

1998 (3)

1997 (1)

M. J. F. Digonnet, R. W. Sadowskii, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching,” Opt. Fiber Technol.: Mater., Devices Syst. 3, 44–64 (1997).
[CrossRef]

1996 (2)

O. L. Antipov, S. I. Belyaev, and A. S. Kuzhelev, “Stimulated resonance scattering of the light beam in the laser crystal with population inversion,” JETP Lett. 63, 13–16 (1996).
[CrossRef]

R. P. M. Green, S. Camacho-Lopez, and M. J. Damzen, “Experimental investigation of vector phase conjugation in Nd3+:YAG,” Opt. Lett. 21, 1214–1216 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

T. T. Basiev, A. Yu. Dergachev, Yu. V. Orlovscii, V. V. Osiko, and A. M. Prockhorov, “Multiphonon nano- and subnanosecond relaxation from high-lying levels of Nd3+-ions in laser fluorides and oxides,” Proc. General Phys. Inst. Russ. Acad. Sci. 46, 3–64 (1994).

1993 (1)

1990 (2)

R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Four-wave mixing of Nd3+-doped crystals and glasses,” Phys. Rev. B 41, 8593–8602 (1990).
[CrossRef]

P. K. Brazhnik, M. A. Novikov, and A. A. Pushkin, “Polarizing interferometers in photothermal spectroscopy,” Opt. Spectrosc. (USSR) 68, 631–635 (1990).

1988 (1)

1987 (1)

T. Catunda and J. C. Castro, “Phase conjugation in GdAlO3:Cr3+ and ruby,” Opt. Commun. 63, 185–190 (1987).
[CrossRef]

1986 (1)

1985 (2)

G. J. Quarles, G. E. Venikouas, and R. C. Powell, “Sequential two-photon excitation processes of Nd3+ ions in solids,” Phys. Rev. B 31, 6935–6940 (1985).
[CrossRef]

A. P. Bogatov and P. G. Eliseev, “Nonlinear refraction in semiconductor lasers,” Sov. J. Quantum Electron. 12, 465–494 (1985).

1981 (1)

M. A. Kramer and R. W. Boyd, “Three photon absorption in Nd-doped yttrium aluminum garnet,” Phys. Rev. B 23, 986–991 (1981).
[CrossRef]

1978 (1)

M. M. Bubnov, A. B. Grudinin, E. M. Dianov, and A. M. Prokhorov, “Deformation of resonator of Nd-glass laser caused by polarizability changing of excited Nd ions,” Quantum Electron. 8, 275–279 (1978). (Sov.)

1967 (1)

G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys. 38, 2726–2738 (1967).
[CrossRef]

Agrawal, G. P.

Antipov, O. L.

O. L. Antipov, A. S. Kuzhelev, A. P. Zinov’ev, and V. A. Vorob’ev, “Millisecond pulse repetitive Nd:YAG-laser with self-adaptive cavity formed by population gratings,” Opt. Commun. 152, 313–318 (1998).
[CrossRef]

O. L. Antipov, A. S. Kuzhelev, and D. V. Chausov, “Nondegenerate four-wave mixing measurement of resonantly induced refractive index grating in Nd:YAG amplifier,” Opt. Lett. 23, 448–450 (1998).
[CrossRef]

O. L. Antipov, S. I. Belyaev, A. S. Kuzhelev, and D. V. Chausov, “Resonant two-wave mixing of optical beams by refractive index and gain gratings in inverted Nd:YAG,” J. Opt. Soc. Am. B 15, 2276–2282 (1998).
[CrossRef]

O. L. Antipov, S. I. Belyaev, and A. S. Kuzhelev, “Stimulated resonance scattering of the light beam in the laser crystal with population inversion,” JETP Lett. 63, 13–16 (1996).
[CrossRef]

Baldwin, G. D.

G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys. 38, 2726–2738 (1967).
[CrossRef]

Basiev, T. T.

T. T. Basiev, A. Yu. Dergachev, Yu. V. Orlovscii, V. V. Osiko, and A. M. Prockhorov, “Multiphonon nano- and subnanosecond relaxation from high-lying levels of Nd3+-ions in laser fluorides and oxides,” Proc. General Phys. Inst. Russ. Acad. Sci. 46, 3–64 (1994).

Belyaev, S. I.

O. L. Antipov, S. I. Belyaev, A. S. Kuzhelev, and D. V. Chausov, “Resonant two-wave mixing of optical beams by refractive index and gain gratings in inverted Nd:YAG,” J. Opt. Soc. Am. B 15, 2276–2282 (1998).
[CrossRef]

O. L. Antipov, S. I. Belyaev, and A. S. Kuzhelev, “Stimulated resonance scattering of the light beam in the laser crystal with population inversion,” JETP Lett. 63, 13–16 (1996).
[CrossRef]

Bogatov, A. P.

A. P. Bogatov and P. G. Eliseev, “Nonlinear refraction in semiconductor lasers,” Sov. J. Quantum Electron. 12, 465–494 (1985).

Boyd, R. W.

M. A. Kramer and R. W. Boyd, “Three photon absorption in Nd-doped yttrium aluminum garnet,” Phys. Rev. B 23, 986–991 (1981).
[CrossRef]

Brazhnik, P. K.

P. K. Brazhnik, M. A. Novikov, and A. A. Pushkin, “Polarizing interferometers in photothermal spectroscopy,” Opt. Spectrosc. (USSR) 68, 631–635 (1990).

Brignon, A.

Bubnov, M. M.

M. M. Bubnov, A. B. Grudinin, E. M. Dianov, and A. M. Prokhorov, “Deformation of resonator of Nd-glass laser caused by polarizability changing of excited Nd ions,” Quantum Electron. 8, 275–279 (1978). (Sov.)

Byer, R. L.

Camacho-Lopez, S.

Castro, J. C.

T. Catunda and J. C. Castro, “Phase conjugation in GdAlO3:Cr3+ and ruby,” Opt. Commun. 63, 185–190 (1987).
[CrossRef]

Catunda, T.

T. Catunda and J. C. Castro, “Phase conjugation in GdAlO3:Cr3+ and ruby,” Opt. Commun. 63, 185–190 (1987).
[CrossRef]

Chase, L. L.

R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Four-wave mixing of Nd3+-doped crystals and glasses,” Phys. Rev. B 41, 8593–8602 (1990).
[CrossRef]

Chausov, D. V.

Damzen, M. J.

Dergachev, A. Yu.

T. T. Basiev, A. Yu. Dergachev, Yu. V. Orlovscii, V. V. Osiko, and A. M. Prockhorov, “Multiphonon nano- and subnanosecond relaxation from high-lying levels of Nd3+-ions in laser fluorides and oxides,” Proc. General Phys. Inst. Russ. Acad. Sci. 46, 3–64 (1994).

Dianov, E. M.

M. M. Bubnov, A. B. Grudinin, E. M. Dianov, and A. M. Prokhorov, “Deformation of resonator of Nd-glass laser caused by polarizability changing of excited Nd ions,” Quantum Electron. 8, 275–279 (1978). (Sov.)

Digonnet, M. J. F.

M. J. F. Digonnet, R. W. Sadowskii, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching,” Opt. Fiber Technol.: Mater., Devices Syst. 3, 44–64 (1997).
[CrossRef]

Eliseev, P. G.

A. P. Bogatov and P. G. Eliseev, “Nonlinear refraction in semiconductor lasers,” Sov. J. Quantum Electron. 12, 465–494 (1985).

Fan, T. Y.

Green, R. P. M.

Grudinin, A. B.

M. M. Bubnov, A. B. Grudinin, E. M. Dianov, and A. M. Prokhorov, “Deformation of resonator of Nd-glass laser caused by polarizability changing of excited Nd ions,” Quantum Electron. 8, 275–279 (1978). (Sov.)

Huignard, J.-P.

Kramer, M. A.

M. A. Kramer and R. W. Boyd, “Three photon absorption in Nd-doped yttrium aluminum garnet,” Phys. Rev. B 23, 986–991 (1981).
[CrossRef]

Kuzhelev, A. S.

O. L. Antipov, A. S. Kuzhelev, and D. V. Chausov, “Nondegenerate four-wave mixing measurement of resonantly induced refractive index grating in Nd:YAG amplifier,” Opt. Lett. 23, 448–450 (1998).
[CrossRef]

O. L. Antipov, S. I. Belyaev, A. S. Kuzhelev, and D. V. Chausov, “Resonant two-wave mixing of optical beams by refractive index and gain gratings in inverted Nd:YAG,” J. Opt. Soc. Am. B 15, 2276–2282 (1998).
[CrossRef]

O. L. Antipov, A. S. Kuzhelev, A. P. Zinov’ev, and V. A. Vorob’ev, “Millisecond pulse repetitive Nd:YAG-laser with self-adaptive cavity formed by population gratings,” Opt. Commun. 152, 313–318 (1998).
[CrossRef]

O. L. Antipov, S. I. Belyaev, and A. S. Kuzhelev, “Stimulated resonance scattering of the light beam in the laser crystal with population inversion,” JETP Lett. 63, 13–16 (1996).
[CrossRef]

Novikov, M. A.

P. K. Brazhnik, M. A. Novikov, and A. A. Pushkin, “Polarizing interferometers in photothermal spectroscopy,” Opt. Spectrosc. (USSR) 68, 631–635 (1990).

Orlovscii, Yu. V.

T. T. Basiev, A. Yu. Dergachev, Yu. V. Orlovscii, V. V. Osiko, and A. M. Prockhorov, “Multiphonon nano- and subnanosecond relaxation from high-lying levels of Nd3+-ions in laser fluorides and oxides,” Proc. General Phys. Inst. Russ. Acad. Sci. 46, 3–64 (1994).

Osiko, V. V.

T. T. Basiev, A. Yu. Dergachev, Yu. V. Orlovscii, V. V. Osiko, and A. M. Prockhorov, “Multiphonon nano- and subnanosecond relaxation from high-lying levels of Nd3+-ions in laser fluorides and oxides,” Proc. General Phys. Inst. Russ. Acad. Sci. 46, 3–64 (1994).

Pantell, R. H.

M. J. F. Digonnet, R. W. Sadowskii, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching,” Opt. Fiber Technol.: Mater., Devices Syst. 3, 44–64 (1997).
[CrossRef]

Payne, S. A.

R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Four-wave mixing of Nd3+-doped crystals and glasses,” Phys. Rev. B 41, 8593–8602 (1990).
[CrossRef]

Powell, R. C.

R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Four-wave mixing of Nd3+-doped crystals and glasses,” Phys. Rev. B 41, 8593–8602 (1990).
[CrossRef]

G. J. Quarles, G. E. Venikouas, and R. C. Powell, “Sequential two-photon excitation processes of Nd3+ ions in solids,” Phys. Rev. B 31, 6935–6940 (1985).
[CrossRef]

Prockhorov, A. M.

T. T. Basiev, A. Yu. Dergachev, Yu. V. Orlovscii, V. V. Osiko, and A. M. Prockhorov, “Multiphonon nano- and subnanosecond relaxation from high-lying levels of Nd3+-ions in laser fluorides and oxides,” Proc. General Phys. Inst. Russ. Acad. Sci. 46, 3–64 (1994).

Prokhorov, A. M.

M. M. Bubnov, A. B. Grudinin, E. M. Dianov, and A. M. Prokhorov, “Deformation of resonator of Nd-glass laser caused by polarizability changing of excited Nd ions,” Quantum Electron. 8, 275–279 (1978). (Sov.)

Pushkin, A. A.

P. K. Brazhnik, M. A. Novikov, and A. A. Pushkin, “Polarizing interferometers in photothermal spectroscopy,” Opt. Spectrosc. (USSR) 68, 631–635 (1990).

Quarles, G. J.

G. J. Quarles, G. E. Venikouas, and R. C. Powell, “Sequential two-photon excitation processes of Nd3+ ions in solids,” Phys. Rev. B 31, 6935–6940 (1985).
[CrossRef]

Riedel, E. P.

G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys. 38, 2726–2738 (1967).
[CrossRef]

Sadowskii, R. W.

M. J. F. Digonnet, R. W. Sadowskii, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching,” Opt. Fiber Technol.: Mater., Devices Syst. 3, 44–64 (1997).
[CrossRef]

Shaw, H. J.

M. J. F. Digonnet, R. W. Sadowskii, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching,” Opt. Fiber Technol.: Mater., Devices Syst. 3, 44–64 (1997).
[CrossRef]

Syed, K. S.

Venikouas, G. E.

G. J. Quarles, G. E. Venikouas, and R. C. Powell, “Sequential two-photon excitation processes of Nd3+ ions in solids,” Phys. Rev. B 31, 6935–6940 (1985).
[CrossRef]

Vorob’ev, V. A.

O. L. Antipov, A. S. Kuzhelev, A. P. Zinov’ev, and V. A. Vorob’ev, “Millisecond pulse repetitive Nd:YAG-laser with self-adaptive cavity formed by population gratings,” Opt. Commun. 152, 313–318 (1998).
[CrossRef]

Wilke, G. D.

R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Four-wave mixing of Nd3+-doped crystals and glasses,” Phys. Rev. B 41, 8593–8602 (1990).
[CrossRef]

Zinov’ev, A. P.

O. L. Antipov, A. S. Kuzhelev, A. P. Zinov’ev, and V. A. Vorob’ev, “Millisecond pulse repetitive Nd:YAG-laser with self-adaptive cavity formed by population gratings,” Opt. Commun. 152, 313–318 (1998).
[CrossRef]

J. Appl. Phys. (1)

G. D. Baldwin and E. P. Riedel, “Measurements of dynamic optical distortion in Nd-doped glass laser rods,” J. Appl. Phys. 38, 2726–2738 (1967).
[CrossRef]

J. Opt. Soc. Am. B (3)

JETP Lett. (1)

O. L. Antipov, S. I. Belyaev, and A. S. Kuzhelev, “Stimulated resonance scattering of the light beam in the laser crystal with population inversion,” JETP Lett. 63, 13–16 (1996).
[CrossRef]

Opt. Commun. (2)

O. L. Antipov, A. S. Kuzhelev, A. P. Zinov’ev, and V. A. Vorob’ev, “Millisecond pulse repetitive Nd:YAG-laser with self-adaptive cavity formed by population gratings,” Opt. Commun. 152, 313–318 (1998).
[CrossRef]

T. Catunda and J. C. Castro, “Phase conjugation in GdAlO3:Cr3+ and ruby,” Opt. Commun. 63, 185–190 (1987).
[CrossRef]

Opt. Fiber Technol.: Mater., Devices Syst. (1)

M. J. F. Digonnet, R. W. Sadowskii, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching,” Opt. Fiber Technol.: Mater., Devices Syst. 3, 44–64 (1997).
[CrossRef]

Opt. Lett. (4)

Opt. Spectrosc. (USSR) (1)

P. K. Brazhnik, M. A. Novikov, and A. A. Pushkin, “Polarizing interferometers in photothermal spectroscopy,” Opt. Spectrosc. (USSR) 68, 631–635 (1990).

Phys. Rev. B (3)

M. A. Kramer and R. W. Boyd, “Three photon absorption in Nd-doped yttrium aluminum garnet,” Phys. Rev. B 23, 986–991 (1981).
[CrossRef]

G. J. Quarles, G. E. Venikouas, and R. C. Powell, “Sequential two-photon excitation processes of Nd3+ ions in solids,” Phys. Rev. B 31, 6935–6940 (1985).
[CrossRef]

R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Four-wave mixing of Nd3+-doped crystals and glasses,” Phys. Rev. B 41, 8593–8602 (1990).
[CrossRef]

Proc. General Phys. Inst. Russ. Acad. Sci. (1)

T. T. Basiev, A. Yu. Dergachev, Yu. V. Orlovscii, V. V. Osiko, and A. M. Prockhorov, “Multiphonon nano- and subnanosecond relaxation from high-lying levels of Nd3+-ions in laser fluorides and oxides,” Proc. General Phys. Inst. Russ. Acad. Sci. 46, 3–64 (1994).

Quantum Electron. (1)

M. M. Bubnov, A. B. Grudinin, E. M. Dianov, and A. M. Prokhorov, “Deformation of resonator of Nd-glass laser caused by polarizability changing of excited Nd ions,” Quantum Electron. 8, 275–279 (1978). (Sov.)

Sov. J. Quantum Electron. (1)

A. P. Bogatov and P. G. Eliseev, “Nonlinear refraction in semiconductor lasers,” Sov. J. Quantum Electron. 12, 465–494 (1985).

Other (7)

M. Françon and S. Mallick, Polarization Interferometers: Application in Microscopy and Macroscopy (Academic, New York, 1971).

M. Pollnau, W. A. Clarkson, and D. C. Hanna, “Thermal lensing in end-pumped Nd:YAG under lasing and nonlasing conditions,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CTuI1, pp. 100–101.

O. L. Antipov, A. S. Kuzhelev, and D. V. Chausov, “Resonant refractive index and gain gratings measurements by four-wave mixings in Nd:YAG amplifier,” in Advanced Solid State Lasers, W. Bosenberg and M. Feyer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 555– 560.

O. L. Antipov, A. S. Kuzhelev, A. Yu. Luk’yanov, and A. P. Zinov’ev, “Refractive index changes of Nd:YAG laser crystal by Nd3+-ions excitation,” Quantum Electron. 25, (1998). (Rus.)

O. L. Antipov, S. I. Belyaev, and A. S. Kuzhelev, “Phase conjugator of the light beams based on Nd:YAG-rod with the reciprocal feedback,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 411–416.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1968).

A. A. Kaminskii and B. M. Antipenko, Multilevel Operating Schemes of Crystalline Lasers (Nauka, Moscow, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of energy levels of Nd3+ ions in a Nd:YAG crystal (white arrow, pump-induced transitions; solid black arrow, working laser transition; dashed arrows, virtual transitions that determine the polarizability of metastable levels; and wavy arrows, nonradiative transitions).

Fig. 2
Fig. 2

Schematic of a polarization interferometer used in our measurements of RI changes in a flash-lamp-pumped Nd:YAG crystal with saturation of amplification by a resonant beam: M1–M3, mirrors; G, Glan prism; D, photodiode; F, optical filter; P, polarizer.

Fig. 3
Fig. 3

Oscillograms of pulses of recorded beams: A pulse of the beam (arbitrary units) saturates the amplification with a pulse duration of 30 ns (upper curves). Lower curves, interferometric oscillograms with a phase shift scale of 0.2 rad/division and three time scales as shown.

Fig. 4
Fig. 4

Configuration and wave-vector diagram of DFWM of the writing beams (kw1 and kw2), the reading beam (kr), and the diffracted beam (kd).

Fig. 5
Fig. 5

Theoretical (dotted curves) and experimental (points) dependencies of diffraction efficiency on gain of a Nd:YAG amplifier when the writing beam intensities are Iw(z=0)=2.8×10-3IS.

Fig. 6
Fig. 6

Oscillograms of (curves 1) the beams writing the grating and (curves 2) the beams diffracted on the grating; the reading beam was cw and the gain of the Nd:YAG amplifier with Kr flash-lamp pumping was ∼0.45 cm-1.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[n(ν)-ik(ν)]2-1[n(ν)-ik(ν)]2+2=4π3qNqpqo(ν),
pqo(ν)=e24π2ml fql(νql2-ν2)+iδqlν,
Δne(ν)=2πFL2n0qΔNqΔpq(ν),
Δχre=n0Δne2π=FL2qΔpqΔNq.
β=χreχim=8π2FL2qΔNqΔpqn0λσmΔNm,
D=α2(1+β2)0l1+2Iw(z)[1+4Iw(z)]1/2-1 14Iw(z)dz2,
αz=2[Iw(z)-Iw(0)]+[1+4Iw(z)]1/2-[1+4Iw(0)]1/2+ln[1+4Iw(z)]1/2-1[1+4Iw(0)]1/2-1,

Metrics