Abstract

Experiments with a XeCl* excimer laser have shown that not all resonator configurations with intracavity Fabry–Perot etalons result in proper output-beam formation. We present a model for the growth of the coherence length in the resonator. This model explains the experimental results with various resonator configurations.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. McKee, “Spectral-narrowing techniques for excimer oscillators,” Can. J. Phys. 63, 214–219 (1985).
    [CrossRef]
  2. S. V. Efimovskii, S. V. Kurbasov, A. V. Novichkov, and K. K. Pal’chikov, “Influence of the parameters of a Fabry–Perot etalon on the output characteristics of a narrow-band long-optical-pulse XeCl laser,” Quantum Electron. 26, 599–603 (1996).
    [CrossRef]
  3. O. L. Bourne and A. J. Alcock, “High-power, narrow linewidth XeCl* oscillator,” Appl. Phys. Lett. 42, 777–779 (1983).
    [CrossRef]
  4. J. C. M. Timmermans, “Double discharge XeCl-laser,” Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 1995).
  5. R. M. Hofstra, F. A. van Goor, and W. J. Witteman, “Beam divergence studies on hard edge unstable resonators for a long pulse XeCl excimer laser,” Opt. Commun. 144, 43–49 (1997).
    [CrossRef]
  6. J. W. Gerritsen, A. L. Keet, G. J. Ernst, and W. J. Witteman, “High-efficiency operation of a gas discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit,” J. Appl. Phys. 67, 3517–3519 (1990).
    [CrossRef]
  7. P. W. Milonni and J. H. Eberly, Lasers (Wiley, New York, 1988).
  8. M. V. Klein and T. E. Furtak, Optics, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, New York, 1986).
  9. T. J. Pacala, I. S. McDermid, and J. B. Laudenslager, “Ultranarrow linewidth, magnetically switched, long pulse, xenon chloride laser,” Appl. Phys. Lett. 44, 658–660 (1984).
    [CrossRef]
  10. T. J. Pacala, I. S. McDermid, and J. B. Laudenslager, “Single longitudinal mode operation of an XeCl laser,” Appl. Phys. Lett. 45, 507–509 (1984).
    [CrossRef]
  11. M. Sugii, M. Ando, and K. Sasaki, “Simple long-pulse XeCl laser with narrow-line output,” IEEE J. Quantum Electron. 23, 1458–1460 (1987).
    [CrossRef]

1997 (1)

R. M. Hofstra, F. A. van Goor, and W. J. Witteman, “Beam divergence studies on hard edge unstable resonators for a long pulse XeCl excimer laser,” Opt. Commun. 144, 43–49 (1997).
[CrossRef]

1996 (1)

S. V. Efimovskii, S. V. Kurbasov, A. V. Novichkov, and K. K. Pal’chikov, “Influence of the parameters of a Fabry–Perot etalon on the output characteristics of a narrow-band long-optical-pulse XeCl laser,” Quantum Electron. 26, 599–603 (1996).
[CrossRef]

1990 (1)

J. W. Gerritsen, A. L. Keet, G. J. Ernst, and W. J. Witteman, “High-efficiency operation of a gas discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit,” J. Appl. Phys. 67, 3517–3519 (1990).
[CrossRef]

1987 (1)

M. Sugii, M. Ando, and K. Sasaki, “Simple long-pulse XeCl laser with narrow-line output,” IEEE J. Quantum Electron. 23, 1458–1460 (1987).
[CrossRef]

1985 (1)

T. J. McKee, “Spectral-narrowing techniques for excimer oscillators,” Can. J. Phys. 63, 214–219 (1985).
[CrossRef]

1984 (2)

T. J. Pacala, I. S. McDermid, and J. B. Laudenslager, “Ultranarrow linewidth, magnetically switched, long pulse, xenon chloride laser,” Appl. Phys. Lett. 44, 658–660 (1984).
[CrossRef]

T. J. Pacala, I. S. McDermid, and J. B. Laudenslager, “Single longitudinal mode operation of an XeCl laser,” Appl. Phys. Lett. 45, 507–509 (1984).
[CrossRef]

1983 (1)

O. L. Bourne and A. J. Alcock, “High-power, narrow linewidth XeCl* oscillator,” Appl. Phys. Lett. 42, 777–779 (1983).
[CrossRef]

Alcock, A. J.

O. L. Bourne and A. J. Alcock, “High-power, narrow linewidth XeCl* oscillator,” Appl. Phys. Lett. 42, 777–779 (1983).
[CrossRef]

Ando, M.

M. Sugii, M. Ando, and K. Sasaki, “Simple long-pulse XeCl laser with narrow-line output,” IEEE J. Quantum Electron. 23, 1458–1460 (1987).
[CrossRef]

Bourne, O. L.

O. L. Bourne and A. J. Alcock, “High-power, narrow linewidth XeCl* oscillator,” Appl. Phys. Lett. 42, 777–779 (1983).
[CrossRef]

Efimovskii, S. V.

S. V. Efimovskii, S. V. Kurbasov, A. V. Novichkov, and K. K. Pal’chikov, “Influence of the parameters of a Fabry–Perot etalon on the output characteristics of a narrow-band long-optical-pulse XeCl laser,” Quantum Electron. 26, 599–603 (1996).
[CrossRef]

Ernst, G. J.

J. W. Gerritsen, A. L. Keet, G. J. Ernst, and W. J. Witteman, “High-efficiency operation of a gas discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit,” J. Appl. Phys. 67, 3517–3519 (1990).
[CrossRef]

Gerritsen, J. W.

J. W. Gerritsen, A. L. Keet, G. J. Ernst, and W. J. Witteman, “High-efficiency operation of a gas discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit,” J. Appl. Phys. 67, 3517–3519 (1990).
[CrossRef]

Hofstra, R. M.

R. M. Hofstra, F. A. van Goor, and W. J. Witteman, “Beam divergence studies on hard edge unstable resonators for a long pulse XeCl excimer laser,” Opt. Commun. 144, 43–49 (1997).
[CrossRef]

Keet, A. L.

J. W. Gerritsen, A. L. Keet, G. J. Ernst, and W. J. Witteman, “High-efficiency operation of a gas discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit,” J. Appl. Phys. 67, 3517–3519 (1990).
[CrossRef]

Kurbasov, S. V.

S. V. Efimovskii, S. V. Kurbasov, A. V. Novichkov, and K. K. Pal’chikov, “Influence of the parameters of a Fabry–Perot etalon on the output characteristics of a narrow-band long-optical-pulse XeCl laser,” Quantum Electron. 26, 599–603 (1996).
[CrossRef]

Laudenslager, J. B.

T. J. Pacala, I. S. McDermid, and J. B. Laudenslager, “Ultranarrow linewidth, magnetically switched, long pulse, xenon chloride laser,” Appl. Phys. Lett. 44, 658–660 (1984).
[CrossRef]

T. J. Pacala, I. S. McDermid, and J. B. Laudenslager, “Single longitudinal mode operation of an XeCl laser,” Appl. Phys. Lett. 45, 507–509 (1984).
[CrossRef]

McDermid, I. S.

T. J. Pacala, I. S. McDermid, and J. B. Laudenslager, “Single longitudinal mode operation of an XeCl laser,” Appl. Phys. Lett. 45, 507–509 (1984).
[CrossRef]

T. J. Pacala, I. S. McDermid, and J. B. Laudenslager, “Ultranarrow linewidth, magnetically switched, long pulse, xenon chloride laser,” Appl. Phys. Lett. 44, 658–660 (1984).
[CrossRef]

McKee, T. J.

T. J. McKee, “Spectral-narrowing techniques for excimer oscillators,” Can. J. Phys. 63, 214–219 (1985).
[CrossRef]

Novichkov, A. V.

S. V. Efimovskii, S. V. Kurbasov, A. V. Novichkov, and K. K. Pal’chikov, “Influence of the parameters of a Fabry–Perot etalon on the output characteristics of a narrow-band long-optical-pulse XeCl laser,” Quantum Electron. 26, 599–603 (1996).
[CrossRef]

Pacala, T. J.

T. J. Pacala, I. S. McDermid, and J. B. Laudenslager, “Ultranarrow linewidth, magnetically switched, long pulse, xenon chloride laser,” Appl. Phys. Lett. 44, 658–660 (1984).
[CrossRef]

T. J. Pacala, I. S. McDermid, and J. B. Laudenslager, “Single longitudinal mode operation of an XeCl laser,” Appl. Phys. Lett. 45, 507–509 (1984).
[CrossRef]

Pal’chikov, K. K.

S. V. Efimovskii, S. V. Kurbasov, A. V. Novichkov, and K. K. Pal’chikov, “Influence of the parameters of a Fabry–Perot etalon on the output characteristics of a narrow-band long-optical-pulse XeCl laser,” Quantum Electron. 26, 599–603 (1996).
[CrossRef]

Sasaki, K.

M. Sugii, M. Ando, and K. Sasaki, “Simple long-pulse XeCl laser with narrow-line output,” IEEE J. Quantum Electron. 23, 1458–1460 (1987).
[CrossRef]

Sugii, M.

M. Sugii, M. Ando, and K. Sasaki, “Simple long-pulse XeCl laser with narrow-line output,” IEEE J. Quantum Electron. 23, 1458–1460 (1987).
[CrossRef]

van Goor, F. A.

R. M. Hofstra, F. A. van Goor, and W. J. Witteman, “Beam divergence studies on hard edge unstable resonators for a long pulse XeCl excimer laser,” Opt. Commun. 144, 43–49 (1997).
[CrossRef]

Witteman, W. J.

R. M. Hofstra, F. A. van Goor, and W. J. Witteman, “Beam divergence studies on hard edge unstable resonators for a long pulse XeCl excimer laser,” Opt. Commun. 144, 43–49 (1997).
[CrossRef]

J. W. Gerritsen, A. L. Keet, G. J. Ernst, and W. J. Witteman, “High-efficiency operation of a gas discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit,” J. Appl. Phys. 67, 3517–3519 (1990).
[CrossRef]

Appl. Phys. Lett. (3)

O. L. Bourne and A. J. Alcock, “High-power, narrow linewidth XeCl* oscillator,” Appl. Phys. Lett. 42, 777–779 (1983).
[CrossRef]

T. J. Pacala, I. S. McDermid, and J. B. Laudenslager, “Ultranarrow linewidth, magnetically switched, long pulse, xenon chloride laser,” Appl. Phys. Lett. 44, 658–660 (1984).
[CrossRef]

T. J. Pacala, I. S. McDermid, and J. B. Laudenslager, “Single longitudinal mode operation of an XeCl laser,” Appl. Phys. Lett. 45, 507–509 (1984).
[CrossRef]

Can. J. Phys. (1)

T. J. McKee, “Spectral-narrowing techniques for excimer oscillators,” Can. J. Phys. 63, 214–219 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sugii, M. Ando, and K. Sasaki, “Simple long-pulse XeCl laser with narrow-line output,” IEEE J. Quantum Electron. 23, 1458–1460 (1987).
[CrossRef]

J. Appl. Phys. (1)

J. W. Gerritsen, A. L. Keet, G. J. Ernst, and W. J. Witteman, “High-efficiency operation of a gas discharge XeCl laser using a magnetically induced resonant voltage overshoot circuit,” J. Appl. Phys. 67, 3517–3519 (1990).
[CrossRef]

Opt. Commun. (1)

R. M. Hofstra, F. A. van Goor, and W. J. Witteman, “Beam divergence studies on hard edge unstable resonators for a long pulse XeCl excimer laser,” Opt. Commun. 144, 43–49 (1997).
[CrossRef]

Quantum Electron. (1)

S. V. Efimovskii, S. V. Kurbasov, A. V. Novichkov, and K. K. Pal’chikov, “Influence of the parameters of a Fabry–Perot etalon on the output characteristics of a narrow-band long-optical-pulse XeCl laser,” Quantum Electron. 26, 599–603 (1996).
[CrossRef]

Other (3)

J. C. M. Timmermans, “Double discharge XeCl-laser,” Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 1995).

P. W. Milonni and J. H. Eberly, Lasers (Wiley, New York, 1988).

M. V. Klein and T. E. Furtak, Optics, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transmission function of a Fabry-Perot etalon for five coherence lengths.

Fig. 2
Fig. 2

Calculated intensity and linewidth evolution for four different configurations: (a) no intracavity etalon; (b) d=0.1 mm, R=80% intracavity etalon; (c) both d=0.1 mm, R=80% and d=0.7 mm, R=80% intracavity etalons; (d) both d=0.1 mm, R=80% and d=1.0 mm, R=50% intracavity etalons. Note the different scales used for the intensities.

Fig. 3
Fig. 3

Experimental setup for injection of a slave oscillator. HR, highly reflecting.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P(T)=exp(-T/τcol).
P(L)=exp(-L/Lc).
I=n=1NIn+n=1Nm=1NnmInIm cos(ϕm-ϕn),
Lc=λ2/πΔλ.

Metrics